Holography and the Gravitational S-Matrix

Michael Gary

Institute for Theoretical Physics Vienna University of Technology

9th Vienna Central European Seminar November 30th, 2012

[arXiv:1209.3040]

Outline

- 2 The Gravitational S-Matrix
- 3 AdS/CFT and the Flat-Space S-Matrix

4 Conclusions

Motivation

The Gravitational S-Matrix AdS/CFT and the Flat-Space S-Matrix Conclusions

Motivation

Motivation

• Black hole evaporation and unitarity

Motivation

- Black hole evaporation and unitarity
- Strong Quantum Gravity lessons for cosmology?

Motivation

- Black hole evaporation and unitarity
- Strong Quantum Gravity lessons for cosmology?
- \bullet Implications of AdS/CFT for gravity in flat-space

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

$$S = 1 + i\delta^D \left(\sum p_i\right) (2\pi)^D T(s,t)$$

 $T_{
m Born} = -8\pi G rac{s^2 + ts}{t}$

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

 $\log(b M_p)$

$$S = 1 + i\delta^D \left(\sum p_i\right) (2\pi)^D T(s,t)$$

 $T_{
m Born} = -8\pi G rac{s^2 + ts}{t}$

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

Individual graviton momenta k_i small

Eikonal Amplitude

• Eikonal phase
$$\chi(b, s) = \frac{1}{2s} \int \frac{d^{D-2}q_{\perp}}{(2\pi)^{D-2}} e^{i\vec{q}_{\perp}\cdot\vec{b}} T_{\text{Born}}(s, -\vec{q}_{\perp}^2)$$

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

Individual graviton momenta k_i small

Eikonal Amplitude

- Eikonal phase $\chi(b, s) = \frac{1}{2s} \int \frac{d^{D-2}q_{\perp}}{(2\pi)^{D-2}} e^{i\vec{q}_{\perp}\cdot\vec{b}} T_{\text{Born}}(s, -\vec{q}_{\perp}^2)$
- Eikonal amplitude $T_{\text{Eik}} = -2is \int d^{D-2}b e^{-i\vec{q}_{\perp}\cdot\vec{b}} [\chi(b,s)-1]$

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

Individual graviton momenta k_i small

Eikonal Amplitude

- Eikonal phase $\chi(b, s) = \frac{1}{2s} \int \frac{d^{D-2}q_{\perp}}{(2\pi)^{D-2}} e^{i\vec{q}_{\perp}\cdot\vec{b}} T_{\text{Born}}(s, -\vec{q}_{\perp}^2)$
- Eikonal amplitude $T_{\text{Eik}} = -2is \int d^{D-2}b e^{-i\vec{q}_{\perp}\cdot\vec{b}} [\chi(b,s)-1]$

• For $\chi \ll 1$, $T_{\rm Eik} pprox T_{
m Born}$

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

$\log(b M_p)$

Eikonal Amplitude

- Eikonal phase $\chi(b, s) = \frac{1}{2s} \int \frac{d^{D-2}q_{\perp}}{(2\pi)^{D-2}} e^{i\vec{q}_{\perp}\cdot\vec{b}} T_{\text{Born}}(s, -\vec{q}_{\perp}^2)$
- Eikonal amplitude $T_{\text{Eik}} = -2is \int d^{D-2}b e^{-i\vec{q}_{\perp}\cdot\vec{b}} [\chi(b,s)-1]$
- For $\chi \ll 1$, $T_{\rm Eik} pprox T_{
 m Born}$
- Crossover occurs for $\chi \sim 1 \Rightarrow b \sim E^{\frac{2}{D-4}}$

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

Black Holes

• Form black hole when $b < R_S(E) = E^{\frac{1}{D-3}}$

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

 $\log(b M_p)$

Black Holes

• Form black hole when $b < R_S(E) = E^{\frac{1}{D-3}}$

• Lifetime
$$\sim R_s S \sim E^{\frac{D-1}{D-3}}$$

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

 $\log(b M_p)$

Black Holes

- Form black hole when $b < R_S(E) = E^{\frac{1}{D-3}}$
- Lifetime $\sim R_s S \sim E^{\frac{D-1}{D-3}}$
- Number of outgoing Hawking quanta $\langle N \rangle \sim S \sim E^{\frac{D-2}{D-3}}$

Born Regime Eikonal Regime Black Hole Regime

The Gravitational S-Matrix

 $\log(b M_p)$

Black Holes

- Form black hole when $b < R_S(E) = E^{\frac{1}{D-3}}$
- Lifetime $\sim R_s S \sim E^{\frac{D-1}{D-3}}$
- Number of outgoing Hawking quanta $\langle N \rangle \sim S \sim E^{\frac{D-2}{D-3}}$
- Typical energy of Hawking quanta $\langle E \rangle \sim \frac{1}{R_S} \sim E^{\frac{-1}{D-3}}$

Checks Problems

The AdS/CFT Correspondence

Gravity in AdS

• Gravitational theory in Asymptotically AdS $\frac{R^2}{\cos^2\rho} \left(-d\tau^2 + d\rho^2 + \sin^2\rho d\Omega_{D-2}^2\right)$

CFT on ∂AdS

• Conformal field theory on $S^{D-2} imes \mathbb{R}$

Checks Problems

The AdS/CFT Correspondence

Gravity in AdS

- Gravitational theory in Asymptotically AdS $\frac{R^2}{\cos^2\rho} \left(-d\tau^2 + d\rho^2 + \sin^2\rho d\Omega_{D-2}^2\right)$
- Gauge Symmetries

CFT on ∂AdS

• Conformal field theory on $S^{D-2} imes \mathbb{R}$

Without Gravity

Global symmetries

Checks Problems

The AdS/CFT Correspondence

Gravity in AdS

- Gravitational theory in Asymptotically AdS $\frac{R^2}{\cos^2\rho} \left(-d\tau^2 + d\rho^2 + \sin^2\rho d\Omega_{D-2}^2\right)$
- Gauge Symmetries
- Normalizable fields

CFT on ∂AdS

• Conformal field theory on $S^{D-2} imes \mathbb{R}$

- Global symmetries
- CFT states

Checks Problems

The AdS/CFT Correspondence

Gravity in AdS

- Gravitational theory in Asymptotically AdS $\frac{R^2}{\cos^2\rho} \left(-d\tau^2 + d\rho^2 + \sin^2\rho d\Omega_{D-2}^2\right)$
- Gauge Symmetries
- Normalizable fields
- Non-normalizable fields

CFT on ∂AdS

• Conformal field theory on $S^{D-2} imes \mathbb{R}$

- Global symmetries
- CFT states
- CFT sources

Checks Problems

The AdS/CFT Correspondence

Gravity in AdS

- Gravitational theory in Asymptotically AdS $\frac{R^2}{\cos^2\rho} \left(-d\tau^2 + d\rho^2 + \sin^2\rho d\Omega_{D-2}^2\right)$
- Gauge Symmetries
- Normalizable fields
- Non-normalizable fields
- Masses of fields $m^2 \propto R^{-2}$

CFT on ∂AdS

• Conformal field theory on $S^{D-2} imes \mathbb{R}$

- Global symmetries
- CFT states
- CFT sources
- Conformal dimensions Δ

Checks Problems

S-Matrix from AdS/CFT

Localized Scattering in AdS

 Scatter wavepackets in a single, flat region [Polchinski, 99; Susskind, 99]

Checks Problems

S-Matrix from AdS/CFT

Problems

- Non-normalizability ⇒ infinite near-boundary interactions, definition of single-particle state?
- Normalizable states scatter infinite number of times

Localized Scattering in AdS

• Scatter wavepackets in a single, flat region [Polchinski, 99; Susskind, 99]

Checks Problems

S-Matrix from AdS/CFT

Problems

- Non-normalizability ⇒ infinite near-boundary interactions, definition of single-particle state?
- Normalizable states scatter infinite number of times

Localized Scattering in AdS

• Scatter wavepackets in a single, flat region [Polchinski, 99; Susskind, 99]

Solution

• Use boundary-compact sources: compact in both S^{D-2} and time

Checks Problems

Born Amplitude

 $\bullet~2 \rightarrow 2$ scattering of $\partial\text{-cpct}$ wavepackets

Checks Problems

- $\bullet~2 \rightarrow 2$ scattering of $\partial\text{-cpct}$ wavepackets
- Read off S-Matrix from singularity in Lorentzian CFT amplitude

$$\lim_{z \to \bar{z}} \mathcal{A}(z, \bar{z}) \sim g^2 R^{6-D-2j} \frac{\mathcal{F}(\sigma)}{(-\rho^2)^{\beta}}$$
$$z = \sigma e^{-\rho}, \ \bar{z} = \sigma e^{\rho}, \ \beta = \Delta_1 + \Delta + 2 + j - \frac{5}{2}$$

Checks Problems

- $\bullet~2 \rightarrow 2$ scattering of $\partial\text{-cpct}$ wavepackets
- Read off S-Matrix from singularity in Lorentzian CFT amplitude

$$\lim_{z \to \bar{z}} \mathcal{A}(z, \bar{z}) \sim g^2 R^{6-D-2j} \frac{\mathcal{F}(\sigma)}{(-\rho^2)^{\beta}}$$
$$z = \sigma e^{-\rho}, \ \bar{z} = \sigma e^{\rho}, \ \beta = \Delta_1 + \Delta + 2 + j - \frac{5}{2}$$
$$\bullet \ T(s, t) = -i\mathcal{K}g^2 s^{j-1} \left(\frac{-t}{s}\right)^{j-2} \left(\frac{-u}{s}\right)^{\frac{1}{2}-\beta} \mathcal{F}\left(\frac{-t}{s}\right)$$

- $\bullet~2 \rightarrow 2$ scattering of $\partial\text{-cpct}$ wavepackets
- Read off S-Matrix from singularity in Lorentzian CFT amplitude

$$\lim_{z \to \bar{z}} \mathcal{A}(z, \bar{z}) \sim g^2 R^{6-D-2j} \frac{\mathcal{F}(\sigma)}{(-\rho^2)^{\beta}}$$
$$z = \sigma e^{-\rho}, \ \bar{z} = \sigma e^{\rho}, \ \beta = \Delta_1 + \Delta + 2 + j - \frac{5}{2}$$
$$\bullet \ T(s, t) = -i\mathcal{K}g^2 s^{j-1} \left(\frac{-t}{s}\right)^{j-2} \left(\frac{-u}{s}\right)^{\frac{1}{2}-\beta} \mathcal{F}\left(\frac{-t}{s}\right)$$
$$\bullet \ T_{\text{Born}} = -8\pi G \frac{s^2 + ts}{t}$$

Black Hole Amplitude

• Possible to create small BHs – scale *E* keeping source sizes fixed, satisfy hoop conjecture calculation

Black Hole Amplitude

- Possible to create small BHs scale *E* keeping source sizes fixed, satisfy hoop conjecture calculation
- CFT calculation of S-Matrix unknown strong coupling

Black Hole Amplitude

- Possible to create small BHs scale *E* keeping source sizes fixed, satisfy hoop conjecture calculation
- CFT calculation of S-Matrix unknown strong coupling
- Sanity check enough states in CFT corresponding to Hawking radiation to encode S-Matrix?

Black Hole Amplitude

- Possible to create small BHs scale *E* keeping source sizes fixed, satisfy hoop conjecture calculation
- CFT calculation of S-Matrix unknown strong coupling
- Sanity check enough states in CFT corresponding to Hawking radiation to encode S-Matrix? Yes

Number of Hawking States vs Number of Detectors

• BH with lifetime $\sim R$ emits $\langle N
angle \sim R^{rac{D-2}{D-1}}$ Hawking quanta

Black Hole Amplitude

- Possible to create small BHs scale *E* keeping source sizes fixed, satisfy hoop conjecture calculation
- CFT calculation of S-Matrix unknown strong coupling
- Sanity check enough states in CFT corresponding to Hawking radiation to encode S-Matrix? Yes

- BH with lifetime $\sim R$ emits $\langle N
 angle \sim R^{rac{D-2}{D-1}}$ Hawking quanta
- Typical energy of Hawking quanta $\langle \omega
 angle \sim R^{rac{-1}{D-1}}$

Black Hole Amplitude

- Possible to create small BHs scale *E* keeping source sizes fixed, satisfy hoop conjecture calculation
- CFT calculation of S-Matrix unknown strong coupling
- Sanity check enough states in CFT corresponding to Hawking radiation to encode S-Matrix? Yes

- BH with lifetime $\sim R$ emits $\langle N
 angle \sim R^{rac{D-2}{D-1}}$ Hawking quanta
- Typical energy of Hawking quanta $\langle \omega
 angle \sim R^{rac{-1}{D-1}}$
- Detector must be of size $\delta\theta \gg \frac{1}{\omega R}$

Black Hole Amplitude

- Possible to create small BHs scale *E* keeping source sizes fixed, satisfy hoop conjecture calculation
- CFT calculation of S-Matrix unknown strong coupling
- Sanity check enough states in CFT corresponding to Hawking radiation to encode S-Matrix? Yes

- BH with lifetime $\sim R$ emits $\langle N
 angle \sim R^{rac{D-2}{D-1}}$ Hawking quanta
- Typical energy of Hawking quanta $\langle \omega
 angle \sim R^{rac{-1}{D-1}}$
- Detector must be of size $\delta\theta \gg \frac{1}{\omega R}$

•
$$N_{\max} \leq rac{V_{S^{D-2}}}{V_{\det}} \stackrel{\ll}{\sim} R^{rac{(D-2)^2}{D-1}}$$
 maximum number of detectors

Black Hole Amplitude

- Possible to create small BHs scale *E* keeping source sizes fixed, satisfy hoop conjecture calculation
- CFT calculation of S-Matrix unknown strong coupling
- Sanity check enough states in CFT corresponding to Hawking radiation to encode S-Matrix? Yes

- BH with lifetime $\sim R$ emits $\langle N
 angle \sim R^{rac{D-2}{D-1}}$ Hawking quanta
- Typical energy of Hawking quanta $\langle \omega \rangle \sim R^{rac{-1}{D-1}}$
- Detector must be of size $\delta\theta \gg \frac{1}{\omega R}$
- $N_{\max} \leq rac{V_{sD-2}}{V_{det}} \lesssim R^{rac{(D-2)^2}{D-1}}$ maximum number of detectors

• For
$$R \gg 1, N_{
m max} \gg \langle N
angle$$

Checks Problems

Overcounting

Problem

Reversing this logic, should be able to localize $N_{\rm max} \sim (\omega R)^{D-2}$ particles within a single $R_{\rm AdS}$ -sized region. *R*-dependence agrees with the holographic bound, but for $\omega \gg 1$, this grossly violates usual graviatational intuition.

Checks Problems

Overcounting

Problem

Reversing this logic, should be able to localize $N_{\rm max} \sim (\omega R)^{D-2}$ particles within a single $R_{\rm AdS}$ -sized region. *R*-dependence agrees with the holographic bound, but for $\omega \gg 1$, this grossly violates usual graviatational intuition.

Solution?

Power law tails– ∂ -cpct wavepackets have power law tails $\psi \sim \frac{1}{(\omega \delta \theta x_{\perp})^{\Delta}}$. More of the norm is outside of the flat region than would like.

Conclusions

Checks of Gravitational S-Matrix from AdS/CFT

• Born amplitude captured by CFT [MG, Giddings, Penedones]

Conclusions

Checks of Gravitational S-Matrix from AdS/CFT

- Born amplitude captured by CFT [MG, Giddings, Penedones]
- Possible to Eikonalize CFT amplitudes [Penedones et al, '08, '12]

Conclusions

Checks of Gravitational S-Matrix from AdS/CFT

- Born amplitude captured by CFT [MG, Giddings, Penedones]
- Possible to Eikonalize CFT amplitudes [Penedones et al, '08, '12]
- Enough states in CFT to capture BH S-Matrix [MG]

Conclusions

Checks of Gravitational S-Matrix from AdS/CFT

- Born amplitude captured by CFT [MG, Giddings, Penedones]
- Possible to Eikonalize CFT amplitudes [Penedones et al, '08, '12]
- Enough states in CFT to capture BH S-Matrix [MG]

Difficulties

• BH S-Matrix requires strong coupling CFT calculation

Conclusions

Checks of Gravitational S-Matrix from AdS/CFT

- Born amplitude captured by CFT [MG, Giddings, Penedones]
- Possible to Eikonalize CFT amplitudes [Penedones et al, '08, '12]
- Enough states in CFT to capture BH S-Matrix [MG]

Difficulties

- BH S-Matrix requires strong coupling CFT calculation
- Too many states corresponding to localized excitations solution from power law tails?

References

- M. Gary, arXiv:1209.3040 [hep-th].
- S. B. Giddings, arXiv:1105.2036 [hep-th].
- J. Polchinski, hep-th/9901076.
- L. Susskind, hep-th/9901079.
- S. B. Giddings, Phys. Rev. D 61 (2000) 106008 [hep-th/9907129].
- M. Gary, S. B. Giddings and J. Penedones, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437 [hep-th]].
- M. Gary and S. B. Giddings, Phys. Rev. D **80** (2009) 046008 [arXiv:0904.3544 [hep-th]].
- M. Gary and S. B. Giddings, arXiv:1106.3553 [hep-th].
- L. Cornalba, M. S. Costa and J. Penedones, JHEP 0806 (2008) 048 [arXiv:0801.3002 [hep-th]].
- M. S. Costa, V. Goncalves and J. Penedones, arXiv:1209.4355 [hep-th].