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Born Amplitude

S = 1 + iδD
(∑

pi

)
(2π)DT (s, t)

TBorn = −8πG
s2 + ts
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k1 knk2
...

Individual graviton momenta ki
small

Eikonal Amplitude

Eikonal phase χ(b, s) =
1
2s

∫ dD−2q⊥
(2π)D−2 e

i~q⊥·~bTBorn

(
s,−~q2

⊥
)

Eikonal amplitude TEik =

−2is
∫
dD−2be−i~q⊥·

~b [χ(b, s)− 1]

For χ� 1, TEik ≈ TBorn

Crossover occurs for
χ ∼ 1⇒ b ∼ E

2
D−4
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Asymptotically AdS
R2

cos2 ρ

(
−dτ2 + dρ2 + sin2 ρdΩ2

D−2

)

Gauge Symmetries

Normalizable fields

Non-normalizable fields

Masses of fields m2 ∝ R−2

CFT on ∂AdS

Conformal field theory on
SD−2 × R
Without Gravity

Global symmetries

CFT states

CFT sources

Conformal dimensions ∆
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S-Matrix from AdS/CFT

Localized Scattering in AdS

Scatter wavepackets in a single,
flat region [Polchinski, 99;
Susskind, 99]

Problems

Non-normalizability ⇒
infinite near-boundary
interactions, definition of
single-particle state?

Normalizable states scatter
infinite number of times

Solution

Use boundary-compact
sources: compact in both
SD−2 and time
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Read off S-Matrix from singularity in Lorentzian CFT
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lim
z→z̄
A(z , z̄) ∼ g2R6−D−2j F(σ)
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Checks
Problems

Black Hole Amplitude

Possible to create small BHs – scale E keeping source sizes
fixed, satisfy hoop conjecture calculation

CFT calculation of S-Matrix unknown – strong coupling

Sanity check – enough states in CFT corresponding to
Hawking radiation to encode S-Matrix?

Yes

Number of Hawking States vs Number of Detectors

BH with lifetime ∼ R emits 〈N〉 ∼ R
D−2
D−1 Hawking quanta

Typical energy of Hawking quanta 〈ω〉 ∼ R
−1
D−1

Detector must be of size δθ � 1
ωR

Nmax ≤
V
SD−2

Vdet

�∼ R
(D−2)2

D−1 maximum number of detectors

For R � 1,Nmax � 〈N〉
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Checks
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Overcounting

Problem

Reversing this logic, should be able to localize Nmax ∼ (ωR)D−2

particles within a single RAdS-sized region. R-dependence agrees
with the holographic bound, but for ω � 1, this grossly violates
usual graviatational intuition.

Solution?

Power law tails–∂-cpct wavepackets have power law tails
ψ ∼ 1

(ωδθx⊥)∆ . More of the norm is outside of the flat region than

would like.
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Conclusions

Checks of Gravitational S-Matrix from AdS/CFT

Born amplitude captured by CFT [MG, Giddings, Penedones]

Possible to Eikonalize CFT amplitudes [Penedones et al, ’08,
’12]

Enough states in CFT to capture BH S-Matrix [MG]

Difficulties

BH S-Matrix requires strong coupling CFT calculation

Too many states corresponding to localized excitations –
solution from power law tails?
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