Anomalies and Transport

Karl Landsteiner

Instituto de Física Teórica, UAM-CSIC
in collaboration with
I. Amado, E. Megías, L. Melgar, F. Peña-Benitez, arXiv:1102.4577 (JHEP 1105.5006)
arXiv:1103.5006 (Phys. Rev. Lett. 107 (2011) 021601) $\operatorname{arXiv}: 1107.0368$ (JHEP 1109 (2011) 121)

8th Central European Seminar on Particle Physics and QFT, Vienna, 2011

Outline

- The Chiral Magnetic Effect
- Kubo formulas I
- Kubo formulas II
- Hydrodynamics
- Strong coupling (Holography)
- Observable gravitational anomaly?
- Summary

The Chiral Magnetic Effect

[parity violating currents: Vilenkin '80, Giovannini, Shaposhnikov '98, Alekseev, Chaianov, Frohlich '98]

The Chiral Magnetic Effect

[parity violating currents: Vilenkin '80, Giovannini, Shaposhnikov '98, Alekseev, Chaianov, Frohlich '98]

The Chiral Magnetic Effect

[parity violating currents: Vilenkin '80, Giovannini, Shaposhnikov '98, Alekseev, Chaianov, Frohlich '98]

The Chiral Magnetic Effect

[parity violating currents: Vilenkin '80, Giovannini, Shaposhnikov '98, Alekseev, Chaianov, Frohlich '98]

The Chiral Magnetic Effect

[parity violating currents: Vilenkin '80, Giovannini, Shaposhnikov '98, Alekseev, Chaianov, Frohlich '98]

Kubo formulas I

- Chiral magnetic conductivity

$$
\begin{gathered}
\vec{J}=\sigma \vec{B} \\
J_{i}=\sigma \epsilon_{i j k}\left(i p_{j}\right) A_{k}
\end{gathered}
$$

[Kharzeev, Warringa]

- Kubo formula, general symmetry group

$$
\left[T^{A}, T^{B}\right]=i f_{C}^{A B} T^{C}
$$

$$
\sigma^{A B}=\left.\lim _{p_{j} \rightarrow 0} \sum_{i, k} \frac{i}{2 p_{j}} \epsilon_{i j k}\left\langle J_{i}^{A} J_{k}^{B}\right\rangle\right|_{\omega=0}
$$

Kubo formulas I

- chiral fermions

$$
J_{i}^{A}=\sum_{f, g=1}^{N}\left(T^{A}\right)^{g}{ }_{f} \bar{\Psi}_{g} \gamma_{i} P_{+} \Psi^{f}
$$

- chemical potentials and Cartan generators

$$
H_{A}=q_{A}^{f} \delta^{f}{ }_{g} \quad \mu^{f}=\sum_{A} q_{A}^{f} \mu_{A}
$$

- 1-loop calculation

$$
\sigma_{A B}=\frac{1}{8 \pi^{2}} \sum_{C} \operatorname{tr}\left(T^{A}\left\{T^{B}, H^{C}\right\}\right) \mu_{C}=\frac{1}{4 \pi^{2}} d^{A B C} \mu_{C}
$$

Kubo formulas I

- chiral fermions

$$
J_{i}^{A}=\sum_{f, g=1}^{N}\left(T^{A}\right)^{g}{ }_{f} \bar{\Psi}_{g} \gamma_{i} P_{+} \Psi^{f}
$$

- chemical potentials and Cartan generators

$$
H_{A}=q_{A}^{f} \delta^{f}{ }_{g} \quad \mu^{f}=\sum_{A} q_{A}^{f} \mu_{A}
$$

Anomalycoeff

- 1-loop calculation

$$
\sigma_{A B}=\frac{1}{8 \pi^{2}} \sum_{C} \operatorname{tr}\left(T^{A}\left\{T^{B}, H^{C}\right\}\right) \mu_{C}=\frac{1}{4 \pi^{2}} d^{A B C} \mu_{C}
$$

Kubo formulas I

Kubo formulas II

- finite density: charge transport => energy transport

$$
\delta T_{0 i}=\mu \delta J_{i}=\mu \delta \sigma B_{i}
$$

- energy flux sourced by magnetic fields

$$
\left.\frac{i}{2 p_{j}} \sum_{i, k} \epsilon_{i j k}\left\langle T_{0 i} J_{k}\right\rangle\right|_{\omega=0}=\int \mu d \sigma+\text { const. }
$$

- at $\omega=0$ reverse order of operators

$$
\sigma_{V}=\left.\frac{i}{2 p_{j}} \sum_{i, k} \epsilon_{i j k}\left\langle J_{i} T_{0 k}\right\rangle\right|_{\omega=0}=\int \mu d \sigma+\text { const. }
$$

Kubo formulas II

- finite density: charge transport => energy transport

$$
\delta T_{0 i}=\mu \delta J_{i}=\mu \delta \sigma B_{i}
$$

- energy flux sourced by magnetic fields

$$
\left.\frac{i}{2 p_{j}} \sum_{i, k} \epsilon_{i j k}\left\langle T_{0 i} J_{k}\right\rangle\right|_{\omega=0}=\int \mu d \sigma+\text { const. }
$$

- at $\omega=0$ reverse order of operators

conductivity ?

Kubo formulas II

- T $\mathrm{T}_{\mu \mathrm{v}}$ sourced by metric

$$
d s^{2}=-(1-2 \Phi) d t^{2}+2 \vec{A}_{g} d t d \vec{x}+(1+2 \Phi) d \vec{x}^{2}
$$

- A_{g} "gravitomagnetic field" \rightarrow chiral gravitomagnetic effect

$$
\vec{J}=\sigma_{V} \vec{B}_{g}
$$

- chiral vortical effect: fluid velocities

$$
\begin{gathered}
u^{\mu}=(1,0,0,0) \quad u_{\mu}=\left(-1, \vec{A}_{g}\right) \\
J^{i}=\sigma_{V} \epsilon^{i j k} \partial_{j} u_{k}
\end{gathered}
$$

Kubo formulas II

- as before: general symmetry group

$$
\begin{aligned}
T^{0 i} & =\frac{i}{2} \sum_{f=1}^{N} \bar{\Psi}_{f}\left(\gamma^{0} \partial^{i}+\gamma^{i} \partial^{0}\right) P_{+} \Psi^{f} \\
\sigma_{V}^{A} & =\frac{1}{8 \pi^{2}} \sum_{f=1}^{N}\left(T^{A}\right)^{f}{ }_{f}\left[\left(\mu^{f}\right)^{2}+\frac{\pi^{2}}{3} T^{2}\right] \\
& =\frac{1}{8 \pi^{2}} \sum_{B, C} d^{A B C} \mu_{B} \mu_{C}+\frac{T^{2}}{24} \operatorname{tr}\left(T^{A}\right)
\end{aligned}
$$

Kubo formulas II

- as before: general symmetry group

$$
\begin{aligned}
T^{0 i} & =\frac{i}{2} \sum_{f=1}^{N} \bar{\Psi}_{f}\left(\gamma^{0} \partial^{i}+\gamma^{i} \partial^{0}\right) P_{+} \Psi^{f} \\
\sigma_{V}^{A} & =\frac{1}{8 \pi^{2}} \sum_{f=1}^{N}\left(T^{A}\right)^{f}{ }_{f}\left[\left(\mu^{f}\right)^{2}+\frac{\pi^{2}}{3} T^{2}\right] \\
& =\frac{1}{8 \pi^{2}} \sum_{B, C} d^{A B C} \mu_{B} \mu_{C}\left(\frac{T^{2}}{24} \operatorname{tr}\left(T^{A}\right)\right.
\end{aligned}
$$

Integration constant gravitational anomaly!

Kubo formulas II

Anomalies

$$
\nabla_{\mu} J_{A}^{\mu}=\epsilon^{\mu \nu \rho \lambda}\left(\frac{d_{A B C}}{32 \pi^{2}} F_{\mu \nu}^{B} F_{\rho \lambda}^{C}+\frac{b_{A}}{768 \pi^{2}} R^{\alpha}{ }_{\beta \mu \nu} R^{\beta}{ }_{\alpha \rho \lambda}\right)
$$

$$
d_{A B C}=\frac{1}{2} \operatorname{tr}\left(\left\{T_{A}, T_{B}\right\} T_{C}\right)_{R}-\frac{1}{2} \operatorname{tr}\left(\left\{T_{A}, T_{B}\right\} T_{C}\right)_{L}
$$

$$
b_{A}=\operatorname{tr}\left(T_{A}\right)_{R}-\operatorname{tr}\left(T_{A}\right)_{L}
$$

Hydrodynamics

- also energy flux $\left.\lim _{p_{j} \rightarrow 0} \frac{i}{2 p_{j}} \sum_{i, k} \epsilon_{i j k}\left\langle T_{0 i} T_{0 k}\right\rangle\right|_{\omega=0} \neq 0$

- hydrodynamics:

$$
\begin{aligned}
& T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P g^{\mu \nu}+\eta \sigma^{\mu \nu}+\zeta P^{\mu \nu} \partial_{\lambda} u^{\lambda}+Q^{\mu} u^{\nu}+Q^{\nu} u^{\mu} \\
& J^{\mu}=n u^{\mu}+\sigma P^{\mu \nu} \partial_{\nu}\left(\frac{\mu}{T}\right) u^{\lambda}+\nu^{\mu}
\end{aligned}
$$

[Son,Surowka], [Eling, Neiman, Oz], [Erdmenger, Haack, Kaminski, Yarom], [Banerjee, Bhattacharya, Bahattacharya, Dutta Loganayagam, Surowka], [Loganayagam] [Kharzeev, Yee] [Sadovyev, Isachenkov, Zakharov]

Hydrodynamics

- also energy flux $\left.\lim _{p_{j} \rightarrow 0} \frac{i}{2 p_{j}} \sum_{i, k} \epsilon_{i j k}\left\langle T_{0 i} T_{0 k}\right\rangle\right|_{\omega=0} \neq 0$
© hydrodynamics:

anomalous contributions
[Son,Surowka], [Eling, Neiman, Oz], [Erdmenger, Haack, Kaminski, Yarom], [Banerjee, Bhattacharya, Bahattacharya, Dutta Loganayagam, Surowka], [Loganayagam] [Kharzeev, Yee] [Sadovyev, Isachenkov, Zakharov]

Hydrodynamics

$$
\begin{array}{ll}
\nu_{A}^{\mu}=\sigma_{A B}^{\mathcal{B}} \mathcal{B}^{B, \mu}+\sigma_{A}^{\mathcal{V}} \omega^{\mu} & \mathcal{B}^{A, \mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \lambda} u_{\nu} \mathcal{F}_{\rho \lambda}^{A} \\
Q^{\mu}=\rho_{A}^{\mathcal{B}} \mathcal{B}^{A, \mu}+\rho_{A}^{\mathcal{V}} \omega^{\mu} & \omega^{\mu}=\epsilon^{\mu \nu \rho \lambda} u_{\nu} \partial_{\rho} u_{\lambda}
\end{array}
$$

$$
\begin{aligned}
\sigma_{A B}^{\mathcal{B}} & =\frac{1}{4 \pi^{2}} d_{A B C} \mu^{C} \\
\sigma_{A}^{\mathcal{\nu}} & =\rho_{A}^{\mathcal{B}}=\frac{1}{8 \pi^{2}} d_{A B C} \mu^{B} \mu^{C}+\frac{T^{2}}{24} b_{A} \\
\rho^{\mathcal{\nu}} & =\frac{1}{12 \pi^{2}} d_{A B C} \mu^{A} \mu^{B} \mu^{C}+\frac{T^{2}}{12} b_{A} \mu^{A}
\end{aligned}
$$

Holography

[H.U. Yee], [Gynther, KL,Pena-Benitez, Rebhan]
[Kalayhdzian, Kirsch], [Gorski, Zayakin]

- mixed gauge gravitational Chern Simons term

$$
\begin{array}{r}
S=\frac{1}{16 \pi G} \int d^{5} x \sqrt{-g}\left[R+2 \Lambda-\frac{1}{4} F_{M N} F^{M N}\right. \\
\left.+\epsilon^{M N P Q R} A_{M}\left(\frac{\kappa}{3} F_{N P} F_{Q R}+\lambda R_{B N P}^{A} R^{B}{ }_{A Q R}\right)\right]
\end{array}
$$

- current

$$
16 \pi G J^{\mu}=\frac{\sqrt{-g}}{\sqrt{-g_{0}}} F^{r \mu}
$$

- on-shell we recover the anomaly

$$
D_{\mu} J^{\mu}=-\frac{1}{16 \pi G} \epsilon^{\mu \nu \rho \lambda}\left(\kappa F_{\mu \nu} F_{\rho \lambda}+\lambda R_{(4) \beta \mu \nu}^{\alpha} R_{(4) \alpha \rho \lambda}^{\beta}\right)
$$

Holography

- Kubo formulas: fluctuations

$$
a_{x}(z), a_{y}(z), h_{x}^{t}(z), h_{y}^{t}(z), h_{x}^{z}(z), h_{y}^{z}(z)
$$

- background: charged AdS black hole

$$
d s^{2}=\frac{r^{2}}{L^{2}}\left(-f(r) d t^{2}+d \vec{x}^{2}\right)+\frac{L^{2}}{r^{2} f(r)} d r^{2} \quad A_{(0)}=\left(\beta-\frac{\mu r_{H}^{2}}{r^{2}}\right)
$$

- correlators are

$$
\begin{aligned}
& \langle J J\rangle=-i p_{z}\left(\frac{\kappa}{2 \pi G} \mu-\frac{\kappa}{6 \pi G} \beta\right) \\
& \langle J T\rangle=-i p_{z}\left(\frac{\kappa}{4 \pi G} \mu^{2}+\frac{2 \lambda \pi}{G} T^{2}\right) \\
& \langle T T\rangle=-i p_{z}\left(\frac{\kappa}{6 \pi G} \mu^{3}+\frac{4 \lambda \pi}{G} \mu T^{2}\right)
\end{aligned}
$$

coeffs consistent with weak coupling no $T^{\wedge} 3$ terms !

Observe grav. Anomaly?

$$
J_{5}^{i}=\left(\frac{\mu^{2}+\mu_{5}^{2}}{4 \pi^{2}}+\frac{T^{2}}{6}\right) \omega^{i}
$$

Enhanced Ω _ Production
[Karen-Zur, Oz]

Better Observable? Energy!

$$
T^{0 i}=\frac{\mu_{5}}{6} T^{2} \omega^{i}
$$

$E_{\text {up }}>E_{\text {down }}$
measurable effect?

Summary

- Anomalies \rightarrow parity violating transport
- Magnetic fields or vortices
- We have derived Kubo formulas
- (non)-renormalizaton
- Surprise: mixed gauge gravitational anomaly contributes
- Hydrodynamics and derivative expansion? (fluid/gravity)
[Oz, Neiman], [Son], [Kharzeev, Yee], [Loganayagam]
- Holography with gravitational CS term
- Observable effects?
[Karen-Zur, Oz], [Kharzeev, Son], [Kharzeev, Yee]

