Flavour in the LHC Era

Andrzej J. Buras (Technical University Munich, TUM-IAS)

"Particle Physics and the LHC" Vienna, November 2011

Overture

A very important year for the humanity !

1676 : The Discovery of the Microuniverse (Animalcula) (The Empire of Bacteria)

Antoni van Leeuwenhoek *24.10.1632 \$\presspace{27.08.1723}

> (Magnification by ~300)

Animalcula Hunters

Antoni van Leeuwenhoek *24.10.1632 \$\pm 27.08.1723

L. Pasteur 5 Vienna1111 *27.12.1822 \$28.09.1895

Lazzaro Spallanzani *12.01.1729 \$12.02.1799

Robert Koch *11.12.1843 **‡27.05.1910**

Most important Message from this Talk

Antoni van Leeuwenhook discovered in 1676

Animalcula

But how will these New Animalcula look like ?

But how will these New Animalcula look like ?

Overture Completed!

•

•

Introduction and Basic Strategy (17 min)

2nd Movement **Expectations and first Messages from New Animalcula (10 min)**

•

Introduction and Basic Strategy (17 min)

Expectations and first Messages from New Animalcula (10 min)

: New Animalcula Fairytales (10 min)

•

3rd

Movement

4th Movement Introduction and Basic Strategy (17 min)

Expectations and first Messages from New Animalcula (10 min)

- : New Animalcula Fairytales (10 min)
- : Finale: Vivace ! (2 min)

(hep-ph/0910.1032): "Flavour Theory : 2009" (hep-ph/1012.1447): "MFV and Beyond"

1st Movement Introduction and Basic Strategy

Pillars in Flavour Physics

Charged Current Interactions only between left-handed Quarks

2. <u>Quark Mixing</u>

17

Vienna1111

{ Weak Eigenstates } ≠ { Mass Eigenstates }

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{ub}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

$$\begin{pmatrix} Weak\\Eigenstates \end{pmatrix} \begin{pmatrix} Unitarity\\CKM-Matrix \end{pmatrix} \begin{pmatrix} Mass\\Eigenstates \end{pmatrix}$$

$$\textbf{3. GIM Mechanism}\\Natural suppression of FCNC$$

$$\begin{cases} \gamma, G, Z^0, H^0 & i\\j & = 0 \end{cases} \textbf{ i} \\ \begin{cases} V_{cd}, V_{cs} & V_{ub}\\CKM-Matrix & i \\ \\ \\ \end{cases} \begin{pmatrix} Loop Induced Decays, sensitive to short distance flavour dynamics \end{cases}$$

Dirac Medal (2010)

N. Cabibbo (1935-2010)

M. Kobayashi

T. Maskawa

Sheldon Glashow

John Iliopoulos

Luciano Maiani

Asymptotic Freedom

(Nobel Prize 2004) (EPS High Energy Prize 2003)

David Gross

Frank Wilczek

David Politzer

Asymptotic Freedom in QCD

Hierarchical Structure of the CKM Matrix

$$\begin{pmatrix} 0.97 & s_{12} & s_{13}e^{-i\gamma} \\ -s_{12} & 0.97 & s_{23} \\ s_{12}s_{23}-s_{13}e^{i\gamma} & -s_{23} & 1 \end{pmatrix}$$

$$S_{13} << S_{23} << S_{12}$$

(4·10⁻³) (4·10⁻²) (0.2)

 $A_{CP}(B_{d} \rightarrow \psi K_{s}) \approx 0(1) \qquad S_{\psi K_{s}} \approx \frac{2}{3}$

GIM Structure of FCNC's

Large *CP* effects in B_d Small *CP* effects in B_s Tiny *CP* effects in K_L

PMNS: Negligible LFV

(tiny v masses)

$$A_{CP}(B_{s} \rightarrow \psi \phi) \approx 0(10^{-2}) S_{\psi \phi} \approx \frac{1}{25}$$
$$\varepsilon \approx 0(10^{-3}) \quad \varepsilon' \approx 0(10^{-6})$$
$$Br(K_{L} \rightarrow \pi^{0} \nu \overline{\nu}) \approx 0(10^{-11})$$

Crucial Question

What is the Origin of Particle Masses and the Reason for their Hierarchy and Hierarchy of their Flavour-Changing Interactions ? Which Dynamics could be responsible for the observedstructure ofElectroweak Symmetry Breakingand ofPatterns seen in Flavour Physics?

Could it be an elementary SM Higgs system with all problems of instability under radiative corrections (hierachy problems) ?

Crucial questions in Particle Physics

Could it be a new strong dynamics with a composite Higgs or without Higgs at all ?

Could this dynamics help us understanding matterantimatter asymmetry and the amount of dark matter in the universe ?

Would these dynamics explain anomalies in flavour physics ?

In Order to identify New Animalcula through Flavour Physics

We need

Many precision measurements of many observables and precise theory.

Study Patterns on Flavour Violation in various New Physics models (correlations between many flavour observables).

2

Basic Questions for Flavour Physics

New Flavour violating CPV phases?

Flavour Conserving CPV phases?

Non-MFV Interactions?

(Non-CKM)

Right-Handed Charged Currents? Scalars H⁰, H[±] and related FCNC's?

New Fermions? New Gauge Bosons?

How to explain dynamically 22 free Parameters in the Flavour Sector ?

Most popular BSM Directions (NMFV) **CMFV** MFV **2HDM** (GMFV) (constrained MFV) **SUSY** \mathbf{Z}' **RHMFV** LHJ (Langacker...) (Littlest Higgs (flavour models) with T-parity) Gauge **Vector-Like** 4th G RS Flavour Quarks **Models** (Randall-Sundrum) (Hou., Soni., Lenz., Melic) (Branco..., (Warped Extra Munich del Aguila) L-R **Dimensions**) **Non-Decoupling Models**

New gauge bosons, fermions, scalars in loops and even trees with often non-CKM interactions.

Superstars of 2011 – 2015 (Flavour Physics)

2nd Novement

Expectations and First Messages from New Animalcula

(LHCb) First Evidence for CP Violation in Charm

$$\mathbf{A}_{\mathsf{CP}} \equiv \mathbf{A}_{\mathsf{CP}} \left(\mathbf{K}^{-} \mathbf{K}^{+} \right) - \mathbf{A}_{\mathsf{CP}} \left(\pi^{+} \pi^{-} \right)$$

Difference in timeintegrated **CP** asymmetries

$$\Delta A_{CP} \equiv -0.82 \pm 0.21(\text{stat}) \pm 0.11(\text{sys})\%$$

Significance 3.5σ ; Sensitive mainly to direct CPV

Central value larger than SM expectation but theoretical uncertainties in direct CPV are substantial.

 $D^0 \rightarrow K^+K^-$

 $D^0 \rightarrow \pi^+\pi^-$

From Mat Charles (Oxford) LHCb-CONF-2011-061
Departures from Standard Model Expectations

$$\begin{split} \textbf{CP}^{} \left\{ \begin{array}{ll} \textbf{K}^{0} - \overline{\textbf{K}}^{0} & (\epsilon_{\textbf{K}}) & \frac{\left|\epsilon_{\textbf{K}}\right|_{\text{SM}}}{\left|\epsilon_{\textbf{K}}\right|_{\text{exp}}} \approx 0.80 \pm 0.10 & (\textbf{AJB}, \textbf{Guadagnoli}) \\ \textbf{B}_{d}^{0} - \overline{\textbf{B}}_{d}^{0} & (\textbf{S}_{\psi\textbf{K}_{s}}) & (\textbf{S}_{\psi\textbf{K}_{s}}) \cong \frac{0.82 \pm 0.04 & (\textbf{SM})}{0.678 \pm 0.022} & (\textbf{exp}) \\ \textbf{B}_{s}^{0} - \overline{\textbf{B}}_{s}^{0} & (\textbf{S}_{\psi\phi}) & \frac{\left(\textbf{S}_{\psi\phi}\right)_{\text{exp}}}{\left(\textbf{S}_{\psi\phi}\right)_{\text{SM}}} \approx 10 - 20 & (\textbf{CDF}, \textbf{DØ}, \textbf{DOB}) \\ \textbf{B}_{s}^{0} - \overline{\textbf{B}}_{s}^{0} & (\textbf{S}_{\psi\phi}) & \frac{\left(\textbf{S}_{\psi\phi}\right)_{\text{exp}}}{\left(\textbf{S}_{\psi\phi}\right)_{\text{SM}}} \approx 10 - 20 & (\textbf{CDF}, \textbf{DØ}, \textbf{DOB}) \\ \textbf{B}_{s}^{0} - \overline{\textbf{B}}_{s}^{0} & (\textbf{S}_{\psi\phi}) & \textbf{OB} & \textbf{OB} & \textbf{OB} \\ \textbf{B}_{s}^{1} \left(\textbf{B}^{+} \rightarrow \tau^{+} \nu\right)_{\text{exp}} & \Xi 2.2 \pm 0.5 & \textbf{OB} & \textbf{OB} \\ \textbf{B}_{s}^{1} \left(\textbf{B}^{+} \rightarrow \tau^{+} \nu\right)_{\text{SM}} & \Xi 2.2 \pm 0.5 & \textbf{OB} & \textbf{OB} \\ \textbf{V}_{ub} \right| = \begin{cases} 4.4 \cdot 10^{-3} & \text{Inclusive Decays} & (\textbf{B} \rightarrow \textbf{X}_{u} \textbf{I}\nu) \\ \textbf{AJB}, \textbf{Gemmler}, \textbf{Stored} \\ \textbf{AJB}, \textbf{Gemmler}, \textbf{Isidori} \\ \textbf{Mannel et al.} \\ \textbf{AJB}, \textbf{Gemmler}, \textbf{Isidori} \end{cases} \end{split}$$

News about New Physics from Summer Conferences

DØ, CDF, LHCb $-0.1 \leq S_{\psi\phi} \leq 0.4 \quad \text{*})$

*) Altmannshofer + Carena 1110.0843

Can
$$|V_{ub}|_{excl} \neq |V_{ub}|_{incl}$$
 be explained through right-handed currents?

Crivellin; Chen + Nam; Feger, Mannel et al.; AJB, Gemmler, Isidori

$$\begin{aligned} \left| \mathbf{V}_{ub} \right|_{excl} &= 3.38 \ (36) \cdot 10^{-3} \\ \left| \mathbf{V}_{ub} \right|_{inc} &= 4.27 \ (38) \cdot 10^{-3} \\ \left| \mathbf{V}_{ub} \right|_{excl} &= \left| \mathbf{V}_{ub}^{L} + a\epsilon^{2} \mathbf{V}_{ub}^{R} \right| \\ \left| \mathbf{V}_{ub} \right|_{inc} &\approx \left| \mathbf{V}_{ub}^{L} \right| \end{aligned}$$

Generally: in principle yes

But a very detailed analysis of $SU(2)_{L} \otimes SU(2)_{R} \otimes U(I)_{B-L}$ with $g_{L} \neq g_{R}$; $V_{L} \neq V_{R}$ (mixing) including FCNC constraints + EWP constraints shows that in this concrete model the effect of RH currents too small !!

Blanke AJB Gemmler Heidsieck November 2011

ε ≈

Two Scenarios for $|V_{ub}|$

(Taking into account ΔM_s , $\Delta M_d \leftarrow B_{d,s}^0 - \overline{B}_{d,s}^0$ Mixing)

$$\left\{ \begin{vmatrix} \mathbf{V}_{ub} \end{vmatrix} \cong 4.3 \cdot 10^{-3} \right\} \Rightarrow \begin{cases} \frac{\left(\mathbf{S}_{\psi K_{s}}\right)_{SM}}{\left(\mathbf{S}_{\psi K_{s}}\right)_{exp}} \\ \left\{ \begin{vmatrix} \mathbf{V}_{ub} \end{vmatrix} \cong 3.4 \cdot 10^{-3} \\ \end{cases} \Rightarrow \begin{cases} \frac{\left(\mathbf{S}_{\psi K_{s}}\right)_{exp}}{\left(\mathbf{S}_{\psi K_{s}}\right)_{exp}} \\ \frac{\left(\mathbf{S}_{\psi K_{s}}\right)_{exp}}{\left(\mathbf{S}_{\psi K_{s}}\right)_{exp}} \\ \end{cases} \cong 1.0 \quad \frac{\left| \mathbf{\varepsilon}_{K} \right|_{exp}}{\left| \mathbf{\varepsilon}_{K} \right|_{exp}} \cong 0.8 \\ \frac{\left| \mathbf{\varepsilon}_{K} \right|_{exp}}{\left| \mathbf{\varepsilon}_{K} \right|_{exp}} \cong 0.8 \\ \end{cases}$$

Unfortunately to resolve this issue we have to wait for Belle II, Super-B and smarter Theorists The size of CP Violation depends on the size of CKM elements: here |V_{ub}|

Possible Simplest Solutions

Soni, Lunghi AJB, Guadagnoli **UTfitters** New <u>negative</u> \mathcal{P} phase φ_{new} in $\mathbf{B}_d^0 - \overline{\mathbf{B}}_d^0$ Mixing Α Lenz, Nierste + IV_{ub} from inclusive decays is correct **CKMfitters** Laiho, Lunghi, van der Water Fleischer et al $(\mathbf{S}_{\psi \mathbf{K}_s})_{\mathbf{SM}} = \sin 2\beta \rightarrow \mathbf{S}_{\psi \mathbf{K}_s} = \sin(2\beta - \phi_{new})$ Blanke et al Branco et al for $\phi_{new} = 10^{\circ}$ 0.68 0.82 ϵ_{κ} and $Br(B^{+} \rightarrow \tau^{+}\nu)$ much closer to experiment **Non-Supersymmetric** Two-Higgs **Dynamical Model :** В **Doublet Model with Flavour Blind** Phases (AJB, Carlucci, Gori, Isidori Correlated AJB, Isidori, Paradisi) 2HDM_{MFV} **Implications:** Enhanced $S_{\psi\phi}$, $Br(B_s \rightarrow \mu^+ \mu^-)$, $Br(B_d \rightarrow \mu^+ \mu^-)$, EDM's

More on 2HDM with MFV and Flavour Blind Phases

Correlation between *CP* Effects

 $\mathbf{S}_{\mathbf{\psi}\mathbf{K}_{s}} = \operatorname{sin}(2\beta - \theta_{d}^{H}) \qquad \mathbf{S}_{\mathbf{\psi}\mathbf{\varphi}} \cong \operatorname{sin}(\theta_{s}^{H})$

L_{Yukawa} :

$$\frac{\theta_{d}^{H}}{\theta_{s}^{H}} \approx \frac{m_{d}}{m_{s}} \approx \frac{1}{17} BCG$$

L_{Higgs}: (potential)

$$\frac{\theta_d^{\rm H}}{\theta_s^{\rm H}} = 1$$

Kagan, Perez, Volansky, Zupan Paradisi, Straub Dobrescu, Fox, Martin Blum, Hochberg, Nir Ligeti, Papucci, Perez, Zupan

AJB, Isidori, Paradisi 1007.5291

Insight after Summer Conferences

$$\left\{ -0.1 \le S_{\psi\phi} \le 0.4 \right\} \Rightarrow \begin{cases} \text{Phases in} \\ \text{Higgs Potential} \\ \text{favoured} \end{cases}$$

LHCb, CDF, DØ

See also: Altmannshofer + Carena 1110.0843 (MFV-MSSM + higher-dimension operators)

$$\begin{array}{c} \textbf{But } | \textbf{V}_{ub} | \ \textbf{could turn out to be small !} \\ | \textbf{V}_{ub} | \approx | \textbf{V}_{ub} |_{exl} \approx 3.4 \cdot 10^{-3} \\ \textbf{AJB, Guadagnoli} \\ \textbf{(2008)} \end{array}$$

$$\begin{array}{c} \textbf{Then } \left(\textbf{S}_{\psi K_s} \right)_{SM} \cong \left(\textbf{S}_{\psi K_s} \right)_{exp} \\ \textbf{But } \left(\boldsymbol{\epsilon}_{K} \right)_{SM} \cong \textbf{0.8} \left(\boldsymbol{\epsilon}_{K} \right)_{exp} \\ \textbf{But } \left(\boldsymbol{\epsilon}_{K} \right)_{SM} \cong \textbf{0.8} \left(\boldsymbol{\epsilon}_{K} \right)_{exp} \\ \textbf{Need new contributions to } \boldsymbol{\epsilon}_{K} \\ \textbf{without new phases in } \textbf{B}_{d}^{0} - \overline{\textbf{B}}_{d}^{0} \\ \textbf{mixing} \\ \textbf{AJB, Carlucci, Merlo, Stamou} \end{array}$$

(2011)

Flavour Gauge Model of Grinstein et al provides an example

$B_s \rightarrow \mu^+ \mu^-$ Beyond the Standard Model

	Model Independent Limit (95% C.L.) $Br(B_s \rightarrow \mu^+\mu^-) < 5.6 \cdot 10^-$
	Altmannshofer, Paradisi, Straub 1111.1257
'	

$$Br\!\left(B_s\to\mu^+\mu^-\right)\!<\!11\!\cdot\!10^{-\!9}$$

In the case of Br $(B_s \rightarrow \mu^+ \mu^-) > 6 \cdot 10^{-9}$ distinction between Z,Z' and H⁰ possible

More on 2HDM with MFV and Flavour Blind Phases

 $2HDM_{\overline{\rm MFV}}$

Srd MovementNew Animalcula

Fairytales

Most popular BSM Directions (NMFV) **CMFV** MFV **2HDM** (GMFV) (constrained MFV) **SUSY** \mathbf{Z}' **RHMFV** LHJ (Langacker...) (Littlest Higgs (flavour models) with T-parity) Gauge **Vector-Like** 4th G RS Flavour Quarks **Models** (Randall-Sundrum) (Hou., Soni., Lenz., Melic) (Branco..., (Warped Extra Munich del Aguila) L-R **Dimensions**) **Non-Decoupling Models**

New gauge bosons, fermions, scalars in loops and even trees with often non-CKM interactions.

Models with non-MFV Interactions facing Large $S_{\psi\phi}$

Model Expectations

0.80 (4G) (Fourth Generation) (t') (Soni, Hou, Munich, Lenz)

0.75 (AC) (abelian flavour, SUSY) (Higgs penguin)

ABGPS

- $S_{\psi\phi} \leq \{0.50 \text{ (RVV)} \text{ (non-abelian flavour, SUSY) (Higgs penguin)} \}$
 - 0.75 (RS) (Heavy KK Gauge Bosons) (Duling et al (08))
 - 0.30 (LHT) (Mirror Fermions at work) (Tarantino et al (09))

$$(S_{\psi\phi})_{SM} \approx 0.04$$

ABGPS = Altmannshofer, AJB, Gori, Paradisi, Straub 0909.1333

53

$$K^+ \rightarrow \pi^+ \nu \overline{\nu}$$
 and $K_L \rightarrow \pi^0 \nu \overline{\nu}$ (Z°-penguins)

(TH cleanest FCNC decays in Quark Sector)

Important Messages

1.

Many Models (SUSY, 4G, LHT, RS) can still accommodate

$$\begin{aligned} &\mathsf{Br}\big(\mathsf{K}^{+}\to\pi^{+}\nu\overline{\nu}\big)\sim\mathsf{3Br}\big(\mathsf{K}^{+}\to\pi^{+}\nu\overline{\nu}\big)_{\mathsf{SM}} \\ &\mathsf{Br}\big(\mathsf{K}_{\mathsf{L}}\to\pi^{0}\nu\overline{\nu}\big)\sim\mathsf{10Br}\big(\mathsf{K}_{\mathsf{L}}\to\pi^{0}\nu\overline{\nu}\big)_{\mathsf{SM}} \end{aligned}$$

Even if no significant New Physics would be seen in B-decays large effects in $K \rightarrow \pi v \overline{v}$ are possible.

Lepton Flavour Violation,
$$\Delta(g-2)_{\mu}$$
 and EDM's

(MEGA)
$$Br(\mu \rightarrow e\gamma) < 1.2 \cdot 10^{-11} \implies 10^{-13} (MEG) \text{ SM:} 10^{-54}$$

 $\left(a_{\mu}\right)_{SM} < \left(a_{\mu}\right)_{exp} (3.1\sigma)$
 $a_{\mu} = \frac{1}{2}(g-2)_{\mu}$

(Regan et al) $d_{e} < 1.6 \cdot 10^{-27} \implies 10^{-31} (d_{e})_{SM} \approx 10^{-38}$
(Baker et al) $d_{n} < 2.9 \cdot 10^{-26} \implies 10^{-28} (d_{n})_{SM} \approx 10^{-32}$
[e cm]

Lepton Flavour Violation,
$$\Delta(g-2)_{\mu}$$
 and EDM's

(MEGA)
$$Br(\mu \rightarrow e\gamma) < 1.2 \cdot 10^{-11} \implies 10^{-13} (MEG) SM:10^{-54}$$

 $(a_{\mu})_{SM} < (a_{\mu})_{exp} (3.1\sigma)$
 $a_{\mu} = \frac{1}{2}(g-2)_{\mu}$

(Regan et al) $d_{e} < 1.6 \cdot 10^{-27} \implies 10^{-31} (d_{e})_{SM} \approx 10^{-38}$
(Baker et al) $d_{n} < 2.9 \cdot 10^{-26} \implies 10^{-28} (d_{n})_{SM} \approx 10^{-32}$
 e^{cm}

MEG: $Br(\mu \rightarrow e\gamma) \le 2 \cdot 10^{-12}$

Correlations in the SU(3) Flavour SUSY Model (RVV)

Correlations within SUSY-SU(5)-GUT with RH Neutrinos

AJB, Nagai, Paradisi, 1011.1993

DNA Tests of Flavour Models

O_i : Observables *M_i* : Models beyond SM

	M_1	M_2	M_3	M_4	M_5
O_1	***	*	*	*	**
O_2	*	**	***	**	*
O_3	**	***	**	*	*
O_4	***	**	*	***	**
O_5	*	***	*	**	***

★★★ ★★ ★

Very large New Physics effect Moderate New Physics effect Very small New Physics effect

DNA Tests of Flavour Models

	AC	RVV2	AKM	$\delta \mathrm{LL}$	FBMSSM	LHT	RS	4G
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?	**
ϵ_K	*	***	***	*	*	**	***	**
$S_{\psi\phi}$	***	***	***	*	*	***	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?	**
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?	*
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?	**
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?	**
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*	***
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***	*
d_e	***	***	**	*	***	*	***	*
$(q-2)_{\mu}$	***	***	**	***	***	*	?	*

Vienna 2020 Vision

		NEW SM
	$D^0 - \bar{D}^0$	**
,	ϵ_K	**
	$S_{\psi\phi}$	***
ŗ	$S_{\phi K_S}$	**
	$A_{\rm CP}\left(B\to X_s\gamma\right)$	*
	$A_{7,8}(B \to K^* \mu^+ \mu^-)$	**
	$A_9(B \to K^* \mu^+ \mu^-)$	*
	$B \to K^{(*)} \nu \bar{\nu}$	***
	$B_s \to \mu^+ \mu^-$	***
	$K^+ \to \pi^+ \nu \bar{\nu}$	**
	$K_L \to \pi^0 \nu \bar{\nu}$	***
	$\mu ightarrow e \gamma$	***
	$ au ightarrow \mu \gamma$	***
	$\mu + N \rightarrow e + N$	***
	d_n	***
	d_e	***
	$(g-2)_{\mu}$	**

4th Movement Finale: Vivace !

6 Vienna1111

Superstars of 2011 – 2015 (Flavour Physics)

Many Thanks to my Collaborators

S. Gori

M. Blanke

B. Duling

rieder

A. Weiler

M. Albrecht

B. Duling

S. Uhlig

ALL WANTED !!

SUSY

S. Gori

P. Paradisi

D. Straub

M. Blanke

B. Duling

rieder

A. Weiler

M. Albrecht

B. Duling

A. Weiler

S. Recksiegel

S. Gori

C. Promberger T. Feldmann

S. Recksiegel

- M.V.Carlucci
- S. Gori

G. Isidori

D. Guadagnoli

K. Gemmler

G. Isidori

More Collaborators

A. Bharucha

M. Wick

L. Calibbi

logt/local/Lin/schfs

M. Nagai

L. Merlo

C. Grojean

A. Lenz

R. Ziegler

Should we be frustrated after Summer Conferences ?

Should we be frustrated after Summer Conferences ?

No, no, no !!!

Should we be frustrated after Summer Conferences ?

No, no, no !!!

Exciting Times are just ahead of us !!!

New Animalcula in Sight !

New Animalcula in Sight !

Hopefully we will soon know how they really look like !

Thank You !!

New Animalcula in Sight !

Hopefully we will soon know how they really look like !

Backup

Big Superstars for 2011-2013

 $S_{\psi\phi}$

$$\mu \rightarrow e\gamma$$

Mixing induced CP Violation $(B_s^0 - \overline{B}_s^0)$

$$Br(B_{s,d} \to \mu^+ \mu^-)_{SM}$$

$$\cong 3.2 \cdot 10^{-9} (1 \cdot 10^{-10})$$

$$\begin{split} &Br(\mu \to e\gamma)_{SM} \\ &\cong 0 (10^{-54}) \end{split}$$

 $\left(\mathbf{S}_{\psi\phi}\right)_{\mathrm{SM}}\cong\mathbf{0.04}$

CP-conserving Quark-Flavour Violating

Lepton Flavour Violation

$$\left(\mathbf{S}_{\mathbf{\psi}\mathbf{K}_{\mathbf{S}}}\right)_{\mathbf{SM}}\cong\mathbf{0.80}$$

 $\begin{array}{l} \text{Mixing induced} \\ \text{CP Violation} \\ (B_d^0 - \overline{B}_d^0) \end{array}$

Precise prediction for ε_{K} (CP in $K_{L} \rightarrow \pi\pi$) and

Precise measurement of CKM phase

 $= \gamma$

4G has hard time to describe simultaneously ϵ'/ϵ and $S_{\psi\phi} > 0.2$ if $B_{6,8}$ within 20% from large N values Can $|V_{ub}|_{excl} \neq |V_{ub}|_{incl}$ be explained through right-handed currents?

Crivellin; Chen + Nam; Feger, Mannel et al.; AJB, Gemmler, Isidori

$$\begin{aligned} \left| V_{ub} \right|_{V} &= 3.38 \ (36) \cdot 10^{-3} \end{aligned} \quad \left| V_{ub} \right|_{inc} &= 4.27 \ (38) \cdot 10^{-3} \end{aligned} \quad \left| V_{ub} \right|_{A} &= 4.70 \ (56) \cdot 10^{-3} \end{aligned}$$

$$\epsilon \approx \frac{\upsilon_{L}}{\upsilon_{R}} \quad \left| V_{ub} \right|_{V} &= \left| V_{ub}^{L} + a\varepsilon^{2} V_{ub}^{R} \right| \qquad \left| V_{ub} \right|_{inc} \approx \left| V_{ub}^{L} \right| \qquad \left| V_{ub} \right|_{A} &= \left| V_{ub}^{L} - a\varepsilon^{2} V_{ub}^{R} \right| \end{aligned}$$

Generally: in principle yes

But a very detailed analysis of $SU(2)_L \otimes SU(2)_R \otimes U(I)_{B-L}$ with $g_L \neq g_R$; $V_L \neq V_R$ (mixing) including FCNC constraints + EWP constraints shows that in this concrete model the effect of RH currents too small !!

Blanke AJB Gemmler Heidsieck November 2011