

Recent results from CMS on SUSY searches in leptonic final states

8th VIENNA CENTRAL EUROPEAN SEMINAR on Particle Physics and Quantum Field Theory

Robert Schöfbeck on behalf of the CMS Collaboration

Overview

At the LHC, colored production of squarks and gluinos will be dominant

- followed by cascade decays
 involving jets and
 (di-) leptons, photons, ...
- Under moderate
 assumptions (e.g. R-parity)
 there is a stable LSP
 responsible for MET

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Robert Schöfbeck			PP, 20-25 June 20)11		Slide 2

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Robert Schöfbe	eck	ICP	P, 20-25 June 20)11		Slide 3

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Robert Schöfbeck ICP			P, 20-25 June 20)11		Slide 4

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Robert Schöfbeck ICP			P, 20-25 June 20)11		Slide 5

multilepton channel

$\tilde{\chi}_0^1$ multi lepton channel $\tilde{\chi}^{1}_{+}$ ➢ very little SM Õ background > many channels ĝ + (tau final state) QQQ00000 in general we have \succ multiple methods of data-driven background ĝ estimation for each р channel + q **Parametrization** $\tilde{\chi}_0^2$ detector response $\tilde{\chi}_0^1$ simplified models 0-leptons 1-lepton OSDL SSDL ≥3 leptons 2-photons y+lepton Jets + MET Opposite-Multi-lepton Di-photon + Single Same-sign Photon + jet + MET lepton + sign didi-lepton + lepton + Jets + MET MET lepton + jets jets + MET + MET

ICPP, 20-25 June 2011

Robert Schöfbeck

Slide 7

single lepton channel

Example SUSY Scenario

- Lepton spectrum (LS) method: use the fact that, for W decays, charged lepton and neutrino P_T spectrum are similar \blacktriangleright Idea: Take μ -P_T spectrum as model for MET Correct for acceptance, efficiency, polarization \blacktriangleright MET resolution worse than e/ μ : smear μ -P_T
 - 2nd method: Lepton projection (LP)

single lepton: results

Background contributions

- W+Jets and TTbar → lepton + jets: ~ 75%
- tt dilepton with one lost lepton (ID or accaptance): ~ 10%
 - estimated from dilepton data by scaling with probability to lose lepton
- tt, W+Jets $\rightarrow \tau \rightarrow (e, \mu)$: ~ 15%

estimate with μ + jets data by replacing the μ with the τ response

SUS-11-015

data total background prediction dilepton+ τ prediction

Event counts in signal region:

	${\sf MET}>250~{\sf GeV}$	MET>350~GeV
predicted	$49.8 \pm 8.8 \pm 10.8$	$12.1 \pm 4.3 \pm 3.6$
observed	52	8

no excess seen

set limits in cMSSM plane

 \geq

OSDL: search strategy

Signal selection: **Background prediction:** $P_{T}(\mu,e) > 10/20 \text{GeV} (ee/e\mu/\mu\mu)$ ttbar (dominant) Z-Veto: $|m_{||} - m_{z}| > 20 \text{ GeV}$ Matrix method in H_T and S_{MET} (y) exploit that $y = MET / \sqrt{HT}$ 2 jets > 30 GeV $H_{\tau} > 100 \text{ GeV } E_{\tau}^{\text{miss}} > 50 \text{ GeV}$ and HT are nearly uncorrelated pT(II) method (di-lepton spectrum m.) **OF** subtraction **CMS** Preliminary **CMS** Preliminary $\sqrt{s} = 7$ TeV, (Ldt = 0.98 fb⁻¹ √s = 7 TeV, (Ldt = 0.98 fb⁻¹ 103 E Events with ee/µµ/eµ Events with ee/uu/eu data 10³ \geq QCD (small) estimation 10² 'tight-to-loose' 10² 10 10 DY Good Data/MC agreement in preselection regions! 100 150 200 250 0 100 200 300 400 500 600 700 800 900100 0 50 300 E^{miss} (GeV) H_T (GeV) vv **CMS Preliminary CMS Preliminary** 2 search regions defined 600 $500 = 7 \text{ TeV}, \int \text{Ldt} = 0.98 \text{ fb}^{-1}$ Events with ee/µµ/eµ √s = 7 TeV, /Ldt = 0.98 fb⁻¹ single top Events with ee/µµ/eµ high E_T^{miss} 500 400 400 $H_{T} > 300 \text{ GeV } E_{T}^{miss} > 275 \text{ GeV}$ 300 W+jets 300F high H_T 200 200F $H_{T} > 600 \text{ GeV } E_{T}^{miss} > 200 \text{ GeV}$ 100 LM6 100 200 250 30(p_{_}(II) (GeV) 50 100 150 200 250 300 50 100 150 m(II) (GeV)

8th Vienna Seminar on Particle Physics

OSDL: results

	high <i>E</i> ^{miss} signal region	high H _T signal region
observed yield	8	4
MC prediction	7.3 ± 2.2	7.1 ± 2.2
ABCD' prediction	$4.0 \pm 1.0 ({ m stat}) \pm 0.8 ({ m syst})$	$4.5 \pm 1.6 (\text{stat}) \pm 0.9 (\text{syst})$
$p_T(\ell \ell)$ prediction	$14.3 \pm 6.3 \text{ (stat)} \pm 5.3 \text{ (syst)}$	$10.1 \pm 4.2 (\text{stat}) \pm 3.5 (\text{syst})$
N _{bkg}	4.2 ± 1.3	5.1 ± 1.7
non-SM yield UL	10	5.3
LM1	49 ± 11	38 ± 12
LM3	18 ± 5.0	19 ± 6.2
LM6	8.1 ± 1.0	7.4 ± 1.2

Robert Schöfbeck

Robert Schöfbeck

8th Vienna Seminar on Particle Physics

same-sign dilepton search

- > example: Gluino production will give SS:OS = 1:1
- Very little SM background
 - Leading in μ channel:

ttbar with a SS fake μ from a decay in ajet (i.e.

- not charge-mis-ID)
- Pursue different trigger strategies: inclusive dilepton: HT and di.-lep high-p_T di.-lep: no H_T requirement tau dileptons: H_MET and (l or 2 had

Robert Schöfbeck

8th Vienna Seminar on Particle Physics

SSDL Bkg. prediction

Backgrounds:

- Prompt SS leptons (WW/WZ/ZZ) very small, never measured in pp: take from MC
- charge mis-ID (for electron channel) use the ratio SS/OS for ee events in a Z mass window to estimate charge mis-ID rate. Result from measurement: 2.10⁻⁴ to 3.10⁻³
- dominating background: non-prompt leptons from jets (WJets, TTbar, QCD) measure from data with tight-to-loose method.

QCD: Factorization of selection cuts

Study events with two fakes; uncorrelated cuts: Iso of lepton 1 and 2, MET

- \succ Left: Factorization of μ isolation cuts
- Right: Rellso efficiency as fkt. of MET (reduce W with impact parameter cut)

Signal efficiency parameterization

- Acceptance model defined wrt. stable generator particles
- H_T : calculated from u,d,c,s,b,g p_T>30 in final state, resolution ~ 20-30%
- MET: calculated from non-interacting particles resolution ~ 10 %

(H_T and MET resolutions depend on H_T)

Lepton efficiencies:

$$\epsilon(x) = \operatorname{par}(1) + \operatorname{par}(2) \cdot \left(\operatorname{erf}\left(\frac{x - x_0}{\operatorname{par}(3)}\right) - 1\right)$$

➢ Isolation corrections:

$$\Delta \varepsilon = -0.10 \frac{< n > -25}{15}$$

where <n> is the avarage number of stable charged particles $|\eta|$ <2.4 p_T>3 GeV

 \rightarrow efficiency model to interface with theory!

SSDL results

Multi lepton channels

Include most of >3L and $\geq 4L$ combinations \succ µµµ,eee,µµe,eeµ ▶µµτ,eeτ,eµτ ≻μττ, εττ \rightarrow All \geq 4L combinations with \leq 2 τ Low SM backgrounds for multi-lepton channels **Reduce backgrounds further** by requiring one or more of ≻H_T > 200 GeV ➢ MET > 50 GeV ➢ Veto m(l⁺l⁻) < 12 GeV</p> ✓Veto Z's: 75 < m(l⁺l⁻) < 105 GeV</p> 52 channels considered!

Institut für Hochenergiephysik

Results for multi leptons

Selection	$N(\tau)=0$		N(τ)=1		$N(\tau)=2$	
	obs	expected SM	obs	expected SM	obs	expected SM
≥FOUR Lepton Results	-14					
MET>50, H_T >200,noZ	0	0.003 ± 0.002	0	0.01 ± 0.05	0	0.30 ± 0.22
MET>50, H_T >200, Z	0	0.06 ± 0.04	0	0.13 ± 0.10	0	0.15 ± 0.23
MET>50,H _T <200,noZ	1	0.014 ± 0.005	0	0.22 ± 0.10	0	0.59 ± 0.25
MET>50,H _T <200, Z	0	0.43 ± 0.15	2	0.91 ± 0.28	0	0.34 ± 0.15
$MET < 50, H_T > 200, noZ$	0	0.0013 ± 0.0008	0	0.01 ± 0.05	0	0.18 ± 0.07
MET< $50, H_T > 200, Z$	1	0.28 ± 0.11	0	0.13 ± 0.10	0	0.52 ± 0.19
MET<50,H _T <200,noZ	0	0.08 ± 0.03	4	0.73 ± 0.20	6	6.9 ± 3.8
MET<50,H _T <200, Z	11	9.5 ± 3.8	14	5.7 ± 1.4	39	21 ± 11
THREE Lepton Results						
MET>50,H _T >200,no-OSSF	2	0.87 ± 0.33	21	14.3 ± 4.8	12	10.4 ± 2.2
MET>50,H _T <200,no-OSSF	4	3.7 ± 1.2	88	68 ± 17	76	100 ± 17
MET<50,H _T >200,no-OSSF	1	0.50 ± 0.33	12	7.7 ± 2.3	22	24.7 ± 4.0
MET<50,H _T <200,no-OSSF	7	5.0 ± 1.7	245	208 ± 39	976	1157 ± 323
MET>50,H _T >200,noZ	5	1.9 ± 0.5	7	10.8 ± 3.3	-	-
MET>50,H _T >200, Z	8	8.1 ± 2.7	10	11.2 ± 2.5	-	8 <u>11</u> 1
MET>50,H _T <200,noZ	19	11.6 ± 3.2	64	52 ± 13	-	-
MET<50, H_T >200,noZ	5	2.0 ± 0.7	24	26.6 ± 3.3		1 75 2
MET>50,H _T <200, Z	58	57 ± 21	47	44.1 ± 7.0	-	-
MET<50,H _T >200, Z	6	8.2 ± 2.0	90	119 ± 14	2	31 <u>-1</u> -1
MET<50,HT <200,noZ	86	82 ± 21	2566	1965 ± 438	-	-
MET<50,H _T <200, Z	335	359 ± 89	9720	7740 ± 1698	-	-
Totals 4L	13.0	10.4 ± 3.8	20.0	7.8 ± 1.5	45	30 ± 12
Totals 3L	536	539 ± 94	12894	10267 ± 1754	1086	1291 ± 324

no excess beyond SM seen.

Set limits in cMSSM plane

(All LHC and Tevatron results are given for the other MSSM parameters fixed at tan $\beta = 3$, $A_0 = 0$, $\mu > 0$)

GMSB scenario with slepton co-NLSP decaying into I + gravitino. The next higher state is a bino-like neutralino, leading to a four lepton + MET final state.

Simplified models

For limits on $m(\tilde{g}), m(\tilde{g}) >> m(\tilde{g})$ (and vice versa). $\sigma^{\text{prod}} = \sigma^{\text{NLO-QCD}}$.

$$m(\tilde{\chi}^{\pm}), m(\tilde{\chi}_{2}^{0}) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^{0})}{2}.$$

 $m(\tilde{\chi}^0)$ is varied from 0 GeV/c^2 (dark blue) to $m(\tilde{g})-200 \ GeV/c^2$ (light blue).

Robert Schöfbeck

8th Vienna Seminar on Particle Physics

400

200

600

800

1000 1200

m_a (GeV)

Summary

- CMS preformed a variety of SUSY searches with up to 2 fb⁻¹
- Multiple methods for data-driven background optimatic

background estimations ^o

 $\sqrt{s} = 7$ TeV, $\int Ldt \approx 1$ fb⁻¹ **CMS** Preliminary 700 m_{1/2} (GeV/c²) 2011 Limits CDF $\tilde{g}, \tilde{q}, \tan\beta=5, \mu<0$ \bigotimes D0 $\widetilde{g}, \widetilde{q}, \tan\beta=3, \mu<0$ ---- 2010 Limits 600 LEP2 $\tilde{\chi}^{\pm}_{+}$ $\tan\beta = 10, \ A_{0} = 0, \ \mu > 0$ LEP2 \tilde{l}^{\pm} 500 ĝ(1000)GeV Jets+MHT MT2 Razor (0.8 fb 1 Lepton 400 ữ(1000)Ge⊽ (750) SS Dilepton 300 S Dilepto 200 200 400 600 800 1000 $m_0 (GeV/c^2)$

have been validated and used for early 2011 data

- We have not seen significant evidence for BSM
- > Almost **5fb**⁻¹ are being **analyzed** right now!

Institut für Hocheneraieohusik

References

latest public results of CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Further interpretation of SUSY searches, CMS PAS SUS-11-001

Search for supersymmetry in events with opposite-sign dileptons and missing energy, CMS PAS SUS-11-011

Search for supersymmetry in events with same-sign dileptons and missing energy, CMS PAS SUS-11-010

Search for supersymmetry in events with a Z boson and missing energy, CMS PAS SUS-11-012, SUS-11-017

Search for supersymmetry in events with three or more leptons and missing energy, CMS PAS SUS-11-013

8th Vienna Seminar on Particle Physics

Slide 24

8th Vienna Seminar on Particle Physics

Three methods for fake lepton predictions **prompt-fake**, fake-fake

Tight to Loose (TL)

ratio measured in QCD multijet; two sets of loose definition (A1/2): (different isolation requirements)

Factorization Method (next slide):

factorize isolation and E_{T}^{miss} efficiency

B Tag-and-Probe:

relax isolation

requirement and measure efficiency in a benriched control sample

CMS

Z+Jets+MET search with JZB

Signal selection:

 $P_T(\mu,e)$ >10/20GeV (same flavour) Z-requirement: $|m_{\parallel} - m_Z|$ < 20 GeV ≥2 Jets with p_T > 30 GeV Jet-Z Balance:

$$JZB = \left| \sum_{\text{jets}} \vec{p_{\text{T}}} \right| - \left| \vec{p_{\text{T}}}^{(Z)} \right|$$

Same-Flavor Leptons

- Dominant backgrounds: Z+Jets, ttbar
 - Use JZB<0 to predict Z+Jets in JZB>0
 - Use eµ pairs to predict ttbar in JZB>0
 - new physics is preferentially positive for JZB since jets balance Z+MET

Opposite-Flavor Leptons

Robert Schöfbeck

JZB: results with 191 pb⁻¹

Region	Observed	Predicted	UL
JZB > 50	20	$24 \pm 6 \; (ext{stat}) \pm 1.4 \; (ext{peak}) \; {}^{+1.2}_{-2.4} \; (ext{sys})$	11.1
JZB > 100	6	$8 \pm 4 \; ({ m stat}) \pm 0.1 \; ({ m peak}) \; {}^{+0.4}_{-0.8} \; ({ m sys})$	6.6