

University of Southern Denmark

Composite Dynamics

Francesco Sannino

CP³ - Origins

Particle Physics & Origin of Mass

Vienna - November 25 - 2011

Francesco Sannino

Standard Model

Standard Model

O' Higgs, where art thou!

© Francesco Sannino

MSSM Status

© Francesco Sannino

 $\begin{array}{l} \textbf{MSUGRA/CMSSM} = \text{five parameters:} \\ \textbf{the universal scalar mass } m_0, \ \textbf{gaugino mass } m_{1/2}, \\ \textbf{the trilinear scalar coupling } A_0, \\ \textbf{tan } \beta \text{: the ratio of the VEV of the two Higgses} \\ \textbf{the sign of the higgsino mass parameter } \mu. \end{array}$

*Only a selection of the available results leading to mass limits shown

SUSY

What else has LHC not seen ?

© Francesco Sannino

What about Technicolor ?

Andersen, Hapola, Sannino 11

Belyaev, Foad, Frandsen, Jarvinen, Pukhov, Sannino 08

Much unexplored !

Andersen, Hapola, Sannino 11

Belyaev, Foad, Frandsen, Jarvinen, Pukhov, Sannino 08

Much unexplored !

Andersen, Hapola, Sannino 11

Belyaev, Foad, Frandsen, Jarvinen, Pukhov, Sannino 08

Francesco Sannino

$L(H) \to -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + i \bar{Q} \gamma^\mu D_\mu Q + \cdots$

$$L(H) \to -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + i \bar{Q} \gamma^\mu D_\mu Q + \cdots$$

Dots are partially fixed by Anomalies as well as other principles

$$L(H) \to -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + i \bar{Q} \gamma^\mu D_\mu Q + \cdots$$

Dots are partially fixed by Anomalies as well as other principles

$\cdots \rightarrow L(\text{New SM Fermions})$

Need novel dynamics

Large & Positive S from QCD-like Technicolor

SM Fermion Masses

Francesco Sannino

Extending Technicolor

Scalar-less New Gauge Interactions (Extended TC)

Scalar-less New Gauge Interactions (Extended TC)

Marry SUSY and Technicolor

Scalar-less New Gauge Interactions (Extended TC)

Marry SUSY and Technicolor

Add New Scalars in the Flavor Sector

Scalar-less New Gauge Interactions (Extended TC)

Marry SUSY and Technicolor

....

Add New Scalars in the Flavor Sector

Eichten & Lane 80

Antola, Di Chira, Sannino, Tuominen 10,11

Need to go beyond QCD

$$\left\langle \bar{Q}Q_{ETC} \right\rangle = \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \left\langle \bar{Q}Q_{TC} \right\rangle$$

$$\left\langle \bar{Q}Q_{ETC} \right\rangle = \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \left\langle \bar{Q}Q_{TC} \right\rangle$$

<u>QCD-Like</u>

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \, \gamma_m(\alpha(\mu))\right) \sim (\ln(\Lambda_{ETC}/\Lambda_{TC}))^{\gamma_m}$$

$$\left\langle \bar{Q}Q_{ETC} \right\rangle = \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \left\langle \bar{Q}Q_{TC} \right\rangle$$

<u>QCD-Like</u>

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \, \gamma_m(\alpha(\mu))\right) \sim (\ln(\Lambda_{ETC}/\Lambda_{TC}))^{\gamma_m}$$

Near the conformal window

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \, \gamma_m(\alpha(\mu))\right) \sim (\Lambda_{ETC}/\Lambda_{TC})^{\gamma_m(\alpha^{\star})}$$

$$\left\langle \bar{Q}Q_{ETC} \right\rangle = \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \left\langle \bar{Q}Q_{TC} \right\rangle$$

<u>QCD-Like</u>

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \, \gamma_m(\alpha(\mu))\right) \sim (\ln(\Lambda_{ETC}/\Lambda_{TC}))^{\gamma_m}$$

Near the conformal window

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \sim \left(\left(\Lambda_{ETC}/\Lambda_{TC}\right)^{\gamma_m(\alpha^{\star})}\right)$$

$$m_{\rm f} \approx \frac{g_{ETC}^2}{\Lambda_{ETC}^2} < \bar{Q}Q >_{ETC} = \frac{g_{ETC}^2}{\Lambda_{ETC}^2} \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{\gamma_m(\alpha^*)} < \bar{Q}Q >_{TC}$$

If large anomalous dimension, around $\gamma_m(\alpha^*) \sim 1.7$

$$m_{\rm f} \approx \frac{g_{ETC}^2}{\Lambda_{ETC}^2} < \bar{Q}Q >_{ETC} = \frac{g_{ETC}^2}{\Lambda_{ETC}^2} \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{\gamma_m(\alpha^*)} < \bar{Q}Q >_{TC}$$

1

If large anomalous dimension, around $\gamma_m(\alpha^*) \sim 1.7$

$$m_{\rm f} \approx \frac{g_{ETC}^2}{\Lambda_{ETC}^2} < \bar{Q}Q >_{ETC} = \frac{g_{ETC}^2}{\Lambda_{ETC}^2} \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{\gamma_m(\alpha^*)} < \bar{Q}Q >_{TC}$$

If large anomalous dimension, around $\gamma_m(\alpha^*) \sim 1.7$

Fermion Mass Enhancement & FCNC decoupling

• Understand Phase Diagram of gauge theories

• Understand Phase Diagram of gauge theories

• Walking: Is it really phenomenologically viable?

• Understand Phase Diagram of gauge theories

• Walking: Is it really phenomenologically viable?

• Need a working example of ETC

Phase diagram

Gauge Group, i.e. SU, SO, SP

Gauge Group, i.e. SU, SO, SP

Matter Representation

Gauge Group, i.e. SU, SO, SP

Matter Representation

of Flavors per Representation

Gauge Group, i.e. SU, SO, SP

Matter Representation

of Flavors per Representation

 $\bullet N_f$

Gauge Group, i.e. SU, SO, SP

Matter Representation

of Flavors per Representation

Gauge Group, i.e. SU, SO, SP

Matter Representation

of Flavors per Representation

Gauge Group, i.e. SU, SO, SP

Matter Representation

of Flavors per Representation

Gauge Group, i.e. SU, SO, SP

Matter Representation

of Flavors per Representation

Gauge Group, i.e. SU, SO, SP

Matter Representation

of Flavors per Representation

Pica & Sannino 10

Interesting structure at large Nf

Pica & Sannino 10

Interesting structure at large Nf

Pica & Sannino 10

Entire series at large Nf is known

Interesting structure at large Nf

Pica & Sannino 10

Entire series at large Nf is known

Interesting structure at large Nf

Pica & Sannino 10

Entire series at large Nf is known

Universal Picture

Lattice SU(N) Phase Diagram

iWalk = ideal Walking

Dietrich Sannino 06 Fukano & Sannino 10

iWalk = ideal Walking

Dietrich Sannino 06 Fukano & Sannino 10

Walking is fine tuned

iWalk = ideal Walking

Dietrich Sannino 06 Fukano & Sannino 10

Walking is fine tuned

Anomalous dimensions may be small

Appelquist, Soldate, Takeuchi and Wijewardhana, 88 Kondo, Mino, Yamawaki 89 Takeuchi 96 Yamawaki, Kurachi and Shrock 08

$$L(H) \rightarrow -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + i \bar{Q} \gamma^\mu D_\mu Q + \cdots$$

Appelquist, Soldate, Takeuchi and Wijewardhana, 88 Kondo, Mino, Yamawaki 89 Takeuchi 96 Yamawaki, Kurachi and Shrock 08

$$L(H) \rightarrow -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + i \bar{Q} \gamma^\mu D_\mu Q + \cdots$$

$$\alpha_{ab} \frac{\bar{Q} T^a Q \bar{Q} T^b Q}{\Lambda_{ETC}^2} + \beta_{ab} \frac{\bar{Q}_L T^a Q_R \bar{\psi}_R T^b \psi_L}{\Lambda_{ETC}^2} + \gamma_{ab} \frac{\bar{\psi}_L T^a \psi_R \bar{\psi}_R T^b \psi_L}{\Lambda_{ETC}^2} + \dots$$

Appelquist, Soldate, Takeuchi and Wijewardhana, 88 Kondo, Mino, Yamawaki 89 Takeuchi 96 Yamawaki, Kurachi and Shrock 08

$$L(H) \rightarrow -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + i \bar{Q} \gamma^\mu D_\mu Q + \cdots$$

$$\bar{Q} T^a Q \bar{Q} T^b Q \qquad \beta_{ab} \frac{\bar{Q}_L T^a Q_R \bar{\psi}_R T^b \psi_L}{\beta_{ab} \bar{Q}_L T^a Q_R \bar{\psi}_R T^b \psi_L} + \gamma_{ab} \frac{\bar{\psi}_L T^a \psi_R \bar{\psi}_R T^b}{\bar{\psi}_R T^b \bar{\psi}_R T^b}$$

 $\alpha_{ab} \frac{\bar{Q} T^a Q \bar{Q} T^b Q}{\Lambda_{ETC}^2} + \beta_{ab} \frac{\bar{Q}_L T^a Q_R \bar{\psi}_R T^b \psi_L}{\Lambda_{ETC}^2} + \gamma_{ab} \frac{\bar{\psi}_L T^a \psi_R \bar{\psi}_R T^b \psi_L}{\Lambda_{ETC}^2} + \dots$

Appelquist, Soldate, Takeuchi and Wijewardhana, 88 Kondo, Mino, Yamawaki 89 Takeuchi 96 Yamawaki, Kurachi and Shrock 08

Fukano & Sannino 10

Fukano & Sannino 10

• As if the number of flavors is continuous

Fukano & Sannino 10

- As if the number of flavors is continuous
- Anomalous dimensions increase

Fukano & Sannino 10

- As if the number of flavors is continuous
- Anomalous dimensions increase

• Phenomenologically viable

Fukano & Sannino 10

- As if the number of flavors is continuous
- Anomalous dimensions increase

- Phenomenologically viable
- Being tested!

Minimal Working TC

U D

Minimal Working TC

• Minimal WT $SU(2)_{TC}$ \square $\begin{bmatrix} U & N \\ D & E \end{bmatrix}$

Sannino & Tuominen 04 Dietrich, Sannino, Tuominen 05 Frandsen, Masina, Sannino 09
Minimal Working TC

• Minimal WT $SU(2)_{TC}$ \square $\begin{bmatrix} U & N \\ D & E \end{bmatrix}$

Sannino & Tuominen 04 Dietrich, Sannino, Tuominen 05 Frandsen, Masina, Sannino 09

•Next to MWT

 $SU(3)_{TC} \square \begin{bmatrix} \mathbf{U} \\ \mathbf{D} \end{bmatrix}$

Sannino, Tuominen 04 Dietrich, Sannino, Tuominen 05

Minimal Working TC

• Minimal WT $SU(2)_{TC}$ \square $\begin{bmatrix} U & N \\ D & E \end{bmatrix}$

Sannino & Tuominen 04 Dietrich, Sannino, Tuominen 05 Frandsen, Masina, Sannino 09

•Next to MWT

 $SU(3)_{TC} \square \begin{bmatrix} \mathbf{U} \\ \mathbf{D} \end{bmatrix}$

Sannino, Tuominen 04 Dietrich, Sannino, Tuominen 05

•Orthogonal $SO(4)_{TC} \square \begin{matrix} \mathbf{U} \\ \mathbf{D} \end{matrix}$

Frandsen, Sannino 09

Minimal Working TC

• Minimal WT $SU(2)_{TC} \square \begin{bmatrix} \mathbf{U} & \mathbf{N} \\ \mathbf{D} & \mathbf{E} \end{bmatrix}$

Sannino & Tuominen 04 Dietrich, Sannino, Tuominen 05 Frandsen, Masina, Sannino 09

•Next to MWT

 $SU(3)_{TC} \square \begin{bmatrix} \mathbf{U} \\ \mathbf{D} \end{bmatrix}$

Sannino, Tuominen 04 Dietrich, Sannino, Tuominen 05

•Orthogonal $SO(4)_{TC} \square \begin{matrix} \mathbf{U} \\ \mathbf{D} \end{matrix}$

Frandsen, Sannino 09

•Ultra MT $SU(2)_{TC}$ \Box $\begin{bmatrix} \mathbf{U} \\ \mathbf{D} \end{bmatrix}$

Ryttov & Sannino 08

Vanilla TC

Minimal Walking Technicolor

U(I)

SU(2)

SU(3)

F.S. + Tuominen 04 Dietrich, F.S., Tuominen 05

U and D: Adj of SU(2)

S beyond TC...

$S = S_{(W)TC} + S_{NS}$

 $S = S_{(W)TC} + S_{NS}$

Offset the first term

New Leptons & Precision Data

Exotic Leptonic hypercharge Y=-3/2

Standard Model Leptonic hypercharge

• The most economical WT theory

• Compatible with precision measurements

• The most economical WT theory

• Compatible with precision measurements

• Possible DM candidates

• The most economical WT theory

• Compatible with precision measurements

• Possible DM candidates

• Under investigation on the Lattice

MWT Effective Lagrangian

 $\mathcal{L}(\text{Composites}) + \mathcal{L}(\text{Mixing with SM}) + \mathcal{L}(\text{New Leptons}) + \mathcal{L}(\text{SM} - \text{Higgs})$

MWT Effective Lagrangian

 $\mathcal{L}(\text{Composites}) + \mathcal{L}(\text{Mixing with SM}) + \mathcal{L}(\text{New Leptons}) + \mathcal{L}(\text{SM} - \text{Higgs})$

Composite Higgs

Composite Axial - Vector States

Foadi, Frandsen, Ryttov & F.S. 07

MWT Effective Lagrangian

 $\mathcal{L}(\text{Composites}) + \mathcal{L}(\text{Mixing with SM}) + \mathcal{L}(\text{New Leptons}) + \mathcal{L}(\text{SM} - \text{Higgs})$

Composite Higgs

Composite Axial - Vector States

Heavy Electron

2 Heavy Majoranas

Frandsen, Masina, Sannino 09

Hapola, Masina, Sannino 11

Foadi, Frandsen, Ryttov & F.S. 07

Constraining MWT

Constraining MWT

Belyaev, Foad, Frandsen, Jarvinen, Pukhov, Sannino 08 M_A (TeV)

Dark Matter

Dark Matter

Dark Matter

Francesco Sannino

Francesco Sannino

A particle similar to the nucleon

A particle similar to the nucleon

Electrically neutral

* A particle similar to the nucleon

Electrically neutral

At most EW-type cross sections

A particle similar to the nucleon

- Electrically neutral
- At most EW-type cross sections
- Great if connected to EW (Observable at LHC)

(Un)TC Interact. Massive Particle (u)TIMP
TIMPs Masses Annih. Asymm Symm Models

TIMPs	Masses	Annih.	Asymm	Symm	Models
TC-Baryon	(I - 3)TeV	_	Х	_	Complex-Rep Traditional TC

TIMPs	Masses	Annih.	Asymm	Symm	Models
TC-Baryon	(I - 3)TeV	_	Х	-	Complex-Rep Traditional TC
TC-PGB	5 GeV5 TeV	Х	Х	Х	(Pseudo)-Real (UMT, MWT, OT)

TIMPs	Masses	Annih.	Asymm	Symm	Models
TC-Baryon	(I - 3)TeV	-	Х	-	Complex-Rep Traditional TC
TC-PGB	5 GeV5 TeV	Х	Х	Х	(Pseudo)-Real (UMT, MWT, OT)
Unbaryon	(- 0) GeV	X	X	Х	Techni-unparticle

TIMPs	Masses	Annih.	Asymm	Symm	Models
TC-Baryon	(I - 3)TeV	_	Х	-	Complex-Rep Traditional TC
TC-PGB	5 GeV5 TeV	Х	Х	Х	(Pseudo)-Real (UMT, MWT, OT)
Unbaryon	(- 0) GeV	X	X	X	Techni-unparticle

Nussinov, 86 Barr - Chivukula - Farhi 90 Sarkar 96 Gudnason - Kouvaris - F.S. 06 Foadi, Frandsen, Sannino 09 Nardi, Sannino., Strumia, 08. Sannino, 10

TC-Baryon

TC-PGB

Gudnason - Kouvaris - Sannino. 06 Ryttov - Sannino 08 Frandsen & Sannino. 09 Unbaryon

D.B. Kaplan 92 Sannino, Zwicky 09 Frandsen, Sarkar, 10

Related

Kouvaris 06,07,10 Kainulainen, Virkajarvi, Tuominen 06,09,10

Mixed TIMP DM

Belyaev, Frandsen, Sannino, Sarkar 10

Francesco Sannino

$$\frac{\Omega_{TB}}{\Omega_B} = \frac{TB}{B} \frac{m_{TB}}{m_p} \sim \mathcal{O}(1)$$

$$\frac{\Omega_{TB}}{\Omega_B} = \frac{TB}{B} \frac{m_{TB}}{m_p} \sim \mathcal{O}(1)$$

 $m_{TB} \sim 5 \,\,\mathrm{GeV}$

 $\frac{TB}{B} \approx \mathcal{O}(1)$

Francesco Sannino

 $m_{TB} \sim 5 \,\,\mathrm{GeV}$

 $m_{TB} \approx (1-3) \text{ TeV}$

 $\frac{TB}{B} \approx \mathcal{O}(1)$

 $\frac{TB}{B} \approx \exp\left[-\frac{m_{TB}}{T^*}\right]$

Gudnason, Ryttov, FS 06

Nardi, FS, Strumia, 08.

Francesco Sannino

Del Nobile, Kouvaris, Sannino II

Interfering Composite ADM

CoGeNT and DAMA

Del Nobile, Kouvaris, Sannino II

Interfering Composite ADM

CoGeNT and DAMA

Del Nobile, Kouvaris, Sannino II

• Phase Diagram of strongly interacting theories

• Phase Diagram of strongly interacting theories

• Minimal models of technicolor

• Phase Diagram of strongly interacting theories

• Minimal models of technicolor

• Composite Dark Matter

• Phase Diagram of strongly interacting theories

- Minimal models of technicolor
- Composite Dark Matter
- Composite inflation... another time