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The Problem: Centralized or Decentralized? 

I. Advantage of centralized control is large-scale 
coordination

 London’s Urban Traffic Control for example. 
 holds for any transport network (a.k.a. with a flow)

• Disadvantages are due to 
• Vulnerability of the network 
• Information overload 
• Wrong selection of control parameters 
• Delays in adaptive feedback control

• Decentralized control can perform better in complex 
systems with heterogeneous elements, large degree 
of fluctuations, and short-term predictability, because 
of greater flexibility to local conditions and greater 
robustness to perturbations
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The Problem: Information and Dynamics
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The Problem: Information Dissemination 

Take a real traffic network. What is this information?
1. Traffic Bulletins
2. Traffic light sensing
3. Radio broadcasts
4. Real-time traffic routes
5. Flow data etc… 

We focus here on communication between traffic control 
devices and information collected locally. 
  e.g. junction-to-junction
               communication    

picture
from Helbing et 
al, JSTAT 2008
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Information and Traffic 

» What information is meaningful to broadcast/diffuse?

° Travel times, congestion state, failures?

» Can decentralized systems reliably propagate information on 
large networks? Does it even make sense?

» Does an optimal (or even just useful) information diffusion 
scale exist? 

° E.g. in SO traffic control how many nodes do I consider 
when optimizing a real network?

» Can we build simple models to gain insights in these problems?

 

There are a number of questions that arise… 
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What’s out there

From the perspective of network science, there are a 
number of works about related subjects:

•Internet, peer-to-peer networks, gossip-spreading on 
networks

•Navigation in Networks (e.g. Tadic et al. 2009) 

•Self organized topologies and traffic control (Kesting et al. 
2009)  

•Effects of interactions between nodes: 
• Chaotic Behaviours (e.g. Yokoya 2004)
• Phase Transitions (e.g. De Martino et al. 2009)
• Condensation/Congestion phenomena

e.g. Hub congested, rest of the networks relatively free 
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Information and Traffic: gossip-spreading on networks

It has been shown that it is possible 
to reliably transmit information over 
networks without a centralized 
control system. 

Rosvall et al. EPL 2007, Rosvall et al. , Chaos 2007 8



Continuous flow on different 
topologies with local and non 
local information

Information and Traffic:  Routing and Congestion

Different local and non-local routing mechanisms on various topologies have 
been studied:
 - many different microscopic rules
 - varied topologies
 - cooperative behaviors emerge, leading to sharp phase transitions
 - can relief/reduce congestion emergence  

De Martino et al., JSTAT 2009                                                                         

Zero-Range Process (discrete agents, variable 
turning rates,..) with varying local avoidance rules

Petri et al., EPL 2009 9



Information and Traffic: Inspirations

A local congestion-aware 
rerouting mechanism is able to 
increase network performances 
under congested conditions: 

€ 

Pn = (din + dnt )(1+ cin )
α

Scellato et al., EPJ B 2010 

€ 

Pn = (din + dnt )(1+ cin )
α

cin = congestion parameter on link i-n
alpha = congestion awareness

Increase in performance is due 
to dynamical homogenization

effects

Local  Navigation Rule

Global Navigation Rule
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The Model: Description

•Two layers:
-Primal representation of traffic network (physical)

‣ Nodes = junctions/decision points;
‣ Links= streets/connections, have a buffer B and a maximal outflow S<B; 

-Communication between nodes (informational) 
‣ Local interaction: node to node across one link;
‣ Cascading dynamics: time scale separation needed for informational avalanches;

‣Creates the non-local effects
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The Model: Definitions
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most traffic optimization scenarios or routing mechanisms a
choice of length scale for information dissemination is intrin-
sic . For example, in purely local routing, travelers are only
aware of their immediate surroundings. Indeed, local routing
mechanisms have been shown to perform well, delaying the
onset of congestion but also making it more abrupt, as they
do not in any way consider the state of the system beyond
the immediate neighborhood. On the other hand, in (prac-
tically unfeasible) global routing scenarios, each traveler has
complete information and makes decisions accordingly. How-
ever, even when fed with reliable information, global routing
scenarios tend to create strong correlations in the traffic flows
and have been shown to perform poorly in comparison to lo-
cal mechanisms [6, 7]. In this model, the length scale of the
information dissemination is not chosen a priori. Instead, the
dissemination radius is allowed to evolve in time and space,
depending on the network’s topology and traffic state. There-
fore, the model was also tested with a variety of network-types
including one based on actual urban topology (figure 1).

Description of the Model
The traffic network is composed of streets (links) and junc-
tions (nodes) equipped with traffic lights. Junctions are in-
dexed by latin letters (a, b, c, ...), while streets are identified
by an ordered pairs of letters, i.e. the street going from junc-
tion z to junction t is labeled zt. Each link ij can hold a
maximum number of cars Bij and when it is served by the
traffic lights at junction j has a maximum outflow Oij . If a
car tries to turn into an already full link, it is refused entrance
and is stuck at head of its current link. This design represents
spill-over effects and is the main cause for congestion spread-
ing through the network. Junctions are set up as fixed-cycle
lights, serving one incoming link at a time, and junctions are
processed in random order. Each timestep in the simulations
corresponds to one green phase. Turning probabilities at each
junctions are calculated individually for each traveler.
The two key elements are the travelers’ navigation rule and the
information dissemination rule. We assume travelers have a
complete knowledge of the network’s topology, in other words
they have a map. However, they only have information re-
garding the congestion on the nodes neighboring the one they
currently are at. Thus, a traveler A on route to d and cur-
rently on node i will choose one of the links outgoing from i

with a probability:

P
d
ij(A) =

βj (1− cASj(t)) /l
α
ijd�

m∈Γi
βm (1− cASm(t)) /lαimd

, [1]

where βj is the betweenness centrality of node j, cA the com-
pliance of traveler A to the received information and Sj(t)
the state at time t of node j. The quantity lijd is the shortest
path length from i to d going through j and the exponent α
is calibrated on simulation runs with vanishing population in
order to provide meaningful travel times for the travelers (see
Materials). The denominator just normalizes P

d
ij to obtain

a probability. The state Sj is the quantity that relates the
information spreading with the traffic dynamics. At time t it
is given by

Sj(t+ 1) = Θ



nj(t) +
�

m∈Γj

BjlSl(t)− τ
�

m∈Γj

Bjl



 , [2]

where τ is a parameter and the Heaviside theta function Θ
takes values Θ(x) = 1∀x > 0 and 0 elsewhere. In eq. 2 the
second term in parenthesis encodes the influence of a node’s
neighbours: if any of the neighbours of j has state S this in-
creases the chances that j itself will have S = 1 at time t+1.
In the The states of nodes are updated in two steps:

• first, we look for the nodes that satisfy nj(t) −
τ
�

m∈Γj
Bjl > 0, which we label primary critical nodes,

as they are the one that change their state independently
of their neighbors’ behaviors;

• we then check whether any of the neighbors of pri-
mary critical nodes satisfy the condition nj(t) +�

m∈Γj
BjlSl(t) − τ

�
m∈Γj

Bjl > 0. If we find any,
we set its state to 1 and label it as a secondary critical
node. Every time we find a new critical node, we repeat
the procedure. In this way the same primary critical
node may trigger an avalanche of state changes in the
system, depending on the distribution of populations in
the system and the topology of the network[8, 9]. In-
deed, it is this behavior to allow nonlocal propagation
of the information.

The above rules introduce two timescales to the dynamics,
the shortest relative to the state switching and cascade form-
ing, the longest relative to the travelers’ movement, indexed
by the time stamp t. In a realistic setting, the shortest scale
would represent electronic communications between neighbor-
ing junctions, therefore justifying the separation of timescales
between the information and physical dynamics.
If the second step is skipped, i.e. one does not look for sec-
ondary critical nodes, the state of a node does not propagate
across the system and has thus purely local effects. In the rest
of this paper, we will refer to this as local propagation.

Fig. 2. The primal graph built from the red section of figure 1.
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The congestion of a node creates 
information, that diffuses.

The diffusing information affects the 
dynamics of the moving particles/
agents/cars. 

probability of choosing exit j for an 
agent on node i on route to d

Congestion appears when a link fills up, causing upstream links to become 
congested too, etc etc...

depends on the state of 
outgoing links 



The Model: Simulations

- Simulations were performed on:
• Random graphs
• Scale-free networks
• Square Lattice graphs
• “Realistic” networks (NYC) 

- Nc  particles introduced per time step

- OD chosen randomly (uniform prob. for pair). 

- Of the incoming links on a node, only one is 
allowed to send flow through the node (similarly 
to a server queue, traffic light...)

- Compare LOCAL and NONLOCAL strategies
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Results: Signaling Threshold 

• Showing here results for NYC.

• For both local and non local information a 
an optimum τo exists. 

• τo for local information < τo for non-local 
information

» appearance of avalanches
» Sign of inefficiency of cascading model

• Local information is stable for larger 
range of values of Nc .

» information hinders transport over 
the network?

14
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Results: Network performance 

• One can measure how efficient a transport 
network by the number of delivered packets/
agents/particles

• Until critical Nc local and non-local show same
efficiency

• After critical Nc performance decays faster for
non-local.
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• Fundamental Diagram shows that local 
routing allows for larger flows at given 
densities

‣ the spreading of information constrains the 
flow

• When the avalanches grow to age they 
become counterproductive.

‣ limit the size with a “mass” term?



Results: Betweenness selection

• Betweenness = measure of “how central is a node”

• For simplicity we consider a lattice and
allow only a fraction of nodes to signal.

• For Nc small, the probability of 
congestion is very low, until most of
the nodes are not able to signal

» different from network attack resilience 
» in this case it comes from the dynamics

of spreading of congestion
» protecting the central nodes prevents

seeds of congestion to appear. 
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Concluding....

• It is possible to use cascading information 
mechanism

» naturally outperforms shortest-path mechanisms.
» however it is outperformed by a local mechanism (in this form).
» avalanches grow too large and are not effective anymore.
» rerouted agents/particles become hindrance to the others.

• Avoid congestion seeds
» protecting a few very central (dynamically), allows to avoid 

congestion development by removing the seeds.  

• Future outlook
» inhibitors for avalanches (too wide is counter productive).
» identification of sensitive nodes in heterogenous networks.
» chatting mechanism tuned by communication rate?
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BS::Results: Total Population (with no navigation)

All topologies present distinct 
transitions

Decreasing lambda values allow for 
better performances
 
A critical lambda exists where the 
system freezes. 
Critical lambda is larger for SF than 
homogeneous graphs.
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BS::Results: Stationary Critical Nodes (with no 
navigation)

Temporal correlations develop
near the phase transitions

The critical nodes total population 
remains stationary even when the 
total population drifts. 
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BS::Results: Critical Avalanches distribution (no 
navigation)

I. The size of connected components of critical nodes 
depend on the topology

I. RG: Power-law distributed, communication length on 
all scales.

II. Lattice: very flat distribution, consequence of the 
homogeneous topologies

III. SF: Hub condensation. 

• The ßij could be used as active control

      mechanisms by a modification of the 
      large scale network topology
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BS::A 2-route example: chaotic behaviors

No information With information

Good Bad 23


