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The Problem: Centralized or Decentralized?

Advantage of centralized control is large-scale
coordination

» London’s Urban Traffic Control for example.
= holds for any transport network (a.k.a. with a flow)
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Disadvantages are due to 8 E
e Vulnerability of the network = %
e Information overload éo-é
e Wrong selection of control parameters - ©
e Delays in adaptive feedback control Q’o)
Decentrali;ed control can perform better in complex - . no;ny of control
systems with heterogeneous elements, large degree Level of auto
of fluctuations, and short-term predictability, because _ ) N
of greater flexibility to local conditions and greater (Windt, Bose, Philipp, 2006)

robustness to perturbations
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The Problem: Information and Dynamics

Information on Networks
oS

Dynamics on Networks

Information

Layer
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The Problem: Information Dissemination

Take a real traffic network. What is this information?
1. Traffic Bulletins
2. Traffic light sensing
3. Radio broadcasts
4. Real-time traffic routes
5. Flow data etc...

We focus here on communication between traffic control
devices and information collected locally.

e.g. junction-to-junction

communication

Measurement

picture
from Helbing et
al, JSTAT 2008



Imperial College

London

Information and Traffic

There are a number of questions that arise...

» What information is meaningful to broadcast/diffuse?
° Travel times, congestion state, failures?

» Can decentralized systems reliably propagate information on
large networks? Does it even make sense?

» Does an optimal (or even just useful) information diffusion
scale exist?

° E.g. in SO traffic control how many nodes do | consider
when optimizing a real network?

» Can we build simple models to gain insights in these problems?
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What’s out there

From the perspective of network science, there are a
number of works about related subjects:

eInternet, peer-to-peer networks, gossip-spreading on
networks

eNavigation in Networks (e.g. Tadic et al. 2009)

*Self organized topologies and traffic control (Kesting et al.
2009)

eEffects of interactions between nodes:
e Chaotic Behaviours (e.g. Yokoya 2004)
e Phase Transitions (e.g. De Martino et al. 2009)

e Condensation/Congestion phenomena
e.g. Hub congested, rest of the networks relatively free
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Information and Traffic: gossip-spreading on networks

It has been shown that it is possible
to reliably transmit information over
networks without a centralized
control system.

Reliability

Rosvall et al. EPL 2007, Rosvall et al. , Chaos 2007
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Information and Traffic: Routing and Congestion

Different local and non-local routing mechanisms on various topologies have
been studied:

- many different microscopic rules
- varied topologies
- cooperative behaviors emerge, leading to sharp phase transitions

- can relief/reduce congestion emergence

Continuous flow on different

topologies with local and non

local information
Zero-Range Process (discrete agents, variable e — —m

turning rates,..) with varying local avoidance rules e, o
| —— ] — -T
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De Martino et al., JSTAT 2009 Petri et al., EPL 2009 9
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Information and Traffic: Inspirations

A local congestion-aware
rerouting mechanism is able to
increase network performances

under congested conditions: ¢, = congestion parameter on link i-n
alpha = congestion awareness

Local Navigation Rule
P =(d, +d )1+c, )

Global Navigation Rule

P =(d,+d,)1+(c,)"

y . y
et
Increase in performance is due . .:3:”:3:;;.. 12t |
to dynamical homogenization - AT el - Rt
effects S e
e AN AT

Scellato et al., EPJ B 2010 T ®)
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The Model: Description

*Two layers:

-Primal representation of traffic network (physical)

» Nodes = junctions/decision points;
» Links= streets/connections, have a buffer B and a maximal outflow S<B;

-Communication between nodes (informational)

» Local interaction: node to node across one link;

» Cascading dynamics: time scale separation needed for informational avalanches;
»Creates the non-local effects

Physical

Layer

Cars/particles moving

among nodes

Information
Layer

Cascading dynamics
Congestion awareness
Self-organized length

11
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The Model: Definitions

The congestion of a node creates
information, that diffuses.

The diffusing information affects the
dynamics of the moving particles/
agents/cars.

NODE STATE

Si(t+1) =0 [n;(t)+ > BuSi(t)—7 > _ By S=1 Critical Node

mel; mel'; depends on the state of
outgoing links

TURNING RATES

pe ( A) — p J (1 —cA Sj (t)) / l?jd probability of choosing exit j for an

¢ - Z r Bm (1 —CASm(t)) /lq p ’ agent on node i on route to d
mel; m

Congestion appears when a link fills up, causing upstream links to become
congested too, etc etc... .
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The Model: Simulations
Simulations were performed on:
« Random graphs
» Scale-free networks

« Square Lattice graphs
- “Realistic” networks (NYC)

Nc particles introduced per time step
OD chosen randomly (uniform prob. for pair).

Of the incoming links on a node, only one is

allowed to send flow through the node (similarly

to a server queue, traffic light...)

Compare LOCAL and NONLOCAL strategies

13
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Results: Signaling Threshold

Showing here results for NYC. Non local information

For both local and non local information a .

. " z
an optimum T, exists. 2
5
.
To for local information < T, for non-local
information - - T - :
» appearance of avalanches Signaling Threshold 1
» Sign of inefficiency of cascading model Local information x10
ls
Local information is stable for larger E
range of values of Nc. = T
s
» information hinders transport over § N
[
the network? R
o 02 04 06 08 £ h

Signaling Threshold 1 14
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Results: Network performance

.. b) ;x 1o’

* One can measure how efficient a transport

network by the number of delivered packets/ ,

agents/particles ;f 5.
* Until critical Nc local and non-local show same 3 *

efficiency s

., -

» After critical Nc performance decays faster for 2

non-local. i

00 5 10 15 2C 25 30 35 40
e éﬂcﬂest Path Fo{c'ng NC

Non Local  Fundamental Diagram shows that local
— routing allows for larger flows at given
densities

015

» the spreading of information constrains the
flow

005

 When the avalanches grow to age they
become counterproductive.

0 02 0.4 06 08 1 » limit the size with a “mass” term?
Density ¢ 15
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Results: Betweenness selection

Betweenness = measure of “how central is a node”

10

For simplicity we consider a lattice and
allow only a fraction of nodes to signal.

os

o8

For Nc small, the probability of
congestion is very low, until most of
the nodes are not able to signal

» different from network attack resilience

» in this case it comes from the dynamics
of spreading of congestion

» protecting the central nodes prevents
seeds of congestion to appear.

P{congestion)
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Concluding....

* It is possible to use cascading information

mechanism

» naturally outperforms shortest-path mechanisms.

» however it is outperformed by a local mechanism (in this form).
» avalanches grow too large and are not effective anymore.

» rerouted agents/particles become hindrance to the others.

* Avoid congestion seeds
» protecting a few very central (dynamically), allows to avoid
congestion development by removing the seeds.

 Future outlook

» inhibitors for avalanches (too wide is counter productive).
» identification of sensitive nodes in heterogenous networks.
» chatting mechanism tuned by communication rate?

17
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BS::Results: Total Population (with no navigation)

All topologies present distinct
transitions

Decreasing lambda values allow for
better performances

A critical lambda exists where the
system freezes.

Critical lambda is larger for SF than
homogeneous graphs.

——
QS

SF :
Lattice -
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BS::Results: Stationary Critical Nodes (with no
navigation)

The critical nodes total population
remains stationary even when the
total population drifts.

v 2 : Tl M N .'.'.-,_,~-.'- \“‘\4. 3
Temporal correlations develop .. =~ ke
near the phase transitions | “"‘“W ?

0° T ; o Tt 21
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BS::Results: Critical Avalanches distribution (no

navigation)

|. The size of connected components of critical nodes
depend on the topology

|. RG: Power-law distributed, communication length on

all scales.

Il. Lattice: very flat distribution, consequence of the
homogeneous topologies

.
10

[1l. SF: Hub condensation.

.0‘ [
« The ; could be used as active controt}

mechanisms by a modification of the '}
large scale network topology o' |
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Size (# of critical nodes)
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BS::A 2-route example: chaotic behaviors
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