Local and NonLocal Information in Traffic Networks: how important is the horizon?

G. Petri

Centre for Transport Studies and Institute for Mathematical Sciences Imperial College London

Complex Stochastic Systems, 7th Vienna Seminar, 26-28 December 2010

Outline

- Introduction
 - The Problem: decentralized information dissemination
 - Information and Transport
 - » What's out there
 - » Inspiration for solutions
- The Model
 - Definition
 - » Navigation Rules
 - » Self-organized Information Dissemination Length Scale
 - Simulations and Results
- Conclusions and Outlook

The Problem: Centralized or Decentralized?

- I. Advantage of centralized control is large-scale coordination
 - London's Urban Traffic Control for example.
 - holds for any transport network (a.k.a. with a flow)
- Disadvantages are due to
 - Vulnerability of the network
 - Information overload
 - Wrong selection of control parameters
 - Delays in adaptive feedback control
- Decentralized control can perform better in complex systems with heterogeneous elements, large degree of fluctuations, and short-term predictability, because of greater flexibility to local conditions and greater robustness to perturbations

The Problem: Information and Dynamics

Information on Networks

Dynamics on Networks

The Problem: Information Dissemination

Take a real traffic network. What is this information?

- 1. Traffic Bulletins
- 2. Traffic light sensing
- 3. Radio broadcasts
- 4. Real-time traffic routes
- 5. Flow data etc...

We focus here on communication between traffic control devices and information collected locally.

e.g. junction-to-junction

communication

picture from Helbing et al, JSTAT 2008

Information and Traffic

There are a number of questions that arise...

» What information is meaningful to broadcast/diffuse?

° Travel times, congestion state, failures?

- » Can decentralized systems reliably propagate information on large networks? Does it even make sense?
- » Does an optimal (or even just useful) information diffusion scale exist?
 - ° E.g. in SO traffic control how many nodes do I consider when optimizing a real network?

» Can we build simple models to gain insights in these problems?

What's out there

From the perspective of *network science*, there are a number of works about related subjects:

•Internet, peer-to-peer networks, gossip-spreading on networks

•Navigation in Networks (e.g. Tadic et al. 2009)

•Self organized topologies and traffic control (Kesting et al. 2009)

- •Effects of interactions between nodes:
 - Chaotic Behaviours (e.g. Yokoya 2004)
 - Phase Transitions (e.g. De Martino et al. 2009)
 - Condensation/Congestion phenomena
 e.g. Hub congested, rest of the networks relatively free

Information and Traffic: gossip-spreading on networks

It has been shown that it is possible to reliably transmit information over networks without a centralized control system.

Rosvall et al. EPL 2007, Rosvall et al. , Chaos 2007

Information and Traffic: Routing and Congestion

Different local and non-local routing mechanisms on various topologies have been studied:

- many different microscopic rules
- varied topologies
- cooperative behaviors emerge, leading to sharp phase transitions
- can relief/reduce congestion emergence

Continuous flow on different topologies with local and non local information

De Martino et al., JSTAT 2009

Information and Traffic: Inspirations

A local congestion-aware rerouting mechanism is able to increase network performances under congested conditions:

Local Navigation Rule

$$P_{n} = (d_{in} + d_{nt})(1 + c_{in})^{\alpha}$$

Global Navigation Rule $P_n = (d_{in} + d_{nt})(1 + \langle c_{in} \rangle)^{\alpha}$

Increase in performance is due to dynamical homogenization effects

Scellato et al., EPJ B 2010

c_{in} = congestion parameter on link i-n alpha = congestion awareness

The Model: Description

- •Two layers:
 - -Primal representation of traffic network (physical)
 - Nodes = junctions/decision points;
 - Links= streets/connections, have a buffer B and a maximal outflow S<B;</p>
 - -Communication between nodes (informational)
 - Local interaction: node to node across one link;
 - Cascading dynamics: time scale separation needed for informational avalanches;
 Creates the non-local effects

Information Layer

Cascading dynamics Congestion awareness Self-organized length

The Model: Definitions

The congestion of a node creates information, that diffuses.

The diffusing information affects the dynamics of the moving particles/ agents/cars.

NODE STATE $S_{j}(t+1) = \Theta \left(n_{j}(t) + \sum_{m \in \Gamma_{j}} B_{jl} S_{l}(t) - \tau \sum_{m \in \Gamma_{j}} B_{jl} \right) \qquad \boxed{S=1 \text{ Critical Node}}$ depends on the state of outgoing links

TURNING RATES

$$P_{ij}^{d}(A) = \frac{\beta_j \left(1 - c_A S_j(t)\right) / l_{ijd}^{\alpha}}{\sum_{m \in \Gamma_i} \beta_m \left(1 - c_A S_m(t)\right) / l_{imd}^{\alpha}},$$

probability of choosing exit j for an agent on node i on route to d

Congestion appears when a link fills up, causing upstream links to become congested too, etc etc...

The Model: Simulations

- Simulations were performed on:
 - Random graphs
 - Scale-free networks
 - Square Lattice graphs
 - "Realistic" networks (NYC)
- Nc particles introduced per time step
- OD chosen randomly (uniform prob. for pair).
- Of the incoming links on a node, only one is allowed to send flow through the node (similarly to a server queue, traffic light...)
- Compare LOCAL and NONLOCAL strategies

Results: Signaling Threshold

- Showing here results for NYC. •
- For both local and non local information a
- τ_{0} for local information $< \tau_{0}$ for non-local information
 - » appearance of avalanches
 - » Sign of inefficiency of cascading model
- Local information is stable for larger range of values of Nc.
 - » information hinders transport over the network?

Results: Network performance

- One can measure how efficient a transport network by the number of delivered packets/ agents/particles
- Until critical Nc local and non-local show same efficiency
- After critical Nc performance decays faster for non-local.

- Fundamental Diagram shows that local routing allows for larger flows at given densities
 - the spreading of information constrains the flow
- When the avalanches grow to age they become counterproductive.
 - Imit the size with a "mass" term?

Results: Betweenness selection

• Betweenness = measure of "how central is a node"

- For simplicity we consider a lattice and allow only a fraction of nodes to signal.
- For N_c small, the probability of congestion is very low, until most of the nodes are not able to signal
 - » different from network attack resilience
 - » in this case it comes from the dynamics of spreading of congestion
 - » protecting the central nodes prevents seeds of congestion to appear.

Concluding....

It is possible to use cascading information mechanism

» naturally outperforms shortest-path mechanisms.

- » however it is outperformed by a local mechanism (in this form).
- » avalanches grow too large and are not effective anymore.
- » rerouted agents/particles become hindrance to the others.

Avoid congestion seeds

» protecting a few very central (dynamically), allows to avoid congestion development by removing the seeds.

• Future outlook

- » inhibitors for avalanches (too wide is counter productive).
- » identification of sensitive nodes in heterogenous networks.
- » chatting mechanism tuned by communication rate?

Acknowledgements

• Most of this work was done together with...

Tracey McDole

Leif Karlstrom

Sam Scarpino

Kang Zhao

Drew Levin

BACKUP SLIDES

HIC SUNT LEONES!

BS::Results: Total Population (with no navigation)

BS::Results: Stationary Critical Nodes (with no navigation)

10

The critical nodes total population remains stationary even when the total population drifts.

10

Frequency (t⁻¹_{abox})

10

SF

ER Lattice

Imperial College

BS::Results: Critical Avalanches distribution (no navigation)

- I. The size of connected components of critical nodes depend on the topology
 - I. RG: Power-law distributed, communication length on all scales.
 - II. Lattice: very flat distribution, consequence of the homogeneous topologies
 - III. SF: Hub condensation.
- The ß_{ij} could be used as active control^{*} mechanisms by a modification of the ^{10*} large scale network topology ^{10*}

BS::A 2-route example: chaotic behaviors

