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What are complex networks?

Complex systems and complex networks

What are complex networks?

What are networks?
I physics: network consists of nodes and links
I mathematics: graph consists of vertices and edges

What is ‘complex’?
I ‘complex’ does not mean ‘complicated’
I complex systems: regularities, universality on the systemic level
I complexity as a system property ⇒ not to simplify, not to reduce

complex networks
I representation of complex systems
I system elements ⇒ nodes
I interactions ⇒ links
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What are complex networks?

Complex systems and complex networks

What are complex systems?

system comprised of a large number of strongly interacting
(similar) subsystems (entities, processes, or ’agents’)
I examples: brain, insect societies (ants, bees, termites), ...

, , ,- - --,, -
-,Micro Level ⇔ , , ,- - --,, -

-,Macro Level

challenge: The micro-macro link
I How are the properties of the elements and their interactions

(“microscopic” level) related to the dynamics and the properties of the
whole system (“macroscopic” level)?
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What are complex networks?

Topology of complex networks

How to describe complex networks?

complex network: agents ⇒ nodes, interactions ⇒ links
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What are complex networks?

Topology of complex networks

How to describe complex networks?

complex network: agents ⇒ nodes, interactions ⇒ links

fully connected network
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What are complex networks?

Topology of complex networks

How to describe complex networks?

complex network: agents ⇒ nodes, interactions ⇒ links

degree distribution P(k)
I count the number of links ki of each node i , do a histogram

F z = K/N: average degree

I delta-function ⇒ regular lattice ⇒ complete order

F regular network as a limiting case of complex network
F of interest: fully connected networks ⇔ mean-field approximation
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What are complex networks?

Topology of complex networks

Topologies

chain with z = 2
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What are complex networks?

Topology of complex networks

Topologies

chain with z = 4: interaction with second-nearest neighbors

⇒
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What are complex networks?

Topology of complex networks

Topologies

chain with z = 4: interaction with second-nearest neighbors

⇒

rewire links with probability p

I small-world network: low-dimensional regular lattice + randomness
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What are complex networks?

Topology of complex networks

Topologies: More heterogeneity

random network: (rewiring probability p → 1)
I P(k): Poissonian distribution around average degree z (Erdös-Reyni)

P
(k
)

k
z

scale-free network: existence of a few hubs
I P(k) ∝ k−α: Power law distribution, no average degree z defined

lo
g
(P
(k
))

log(k)
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What are complex networks?

Topology of complex networks

Topologies: Conclusions

distinct topological features
I ordered vs. small-world vs. random vs. scale-free networks
I heterogeneity: nodes have a (very!) different numbers of neighbors
I complexity ranges between order (lattice) and randomness (ER)

consequences
I average distance between any two nodes varies

clustering varies: how many of my neighbors are also neighbors
F high for regular network, low for small world network
F consequencies for e.g. information transport, infection
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What are complex networks?

Real-world examples of complex networks

Real-world examples of complex networks

regular networks:e.g. urban roads, highway systems in rual areas

Small-world networks: e.g. friendship networks

color: different races ( Yellow - White Race,
Green - Black Race, Pink - Other
top/bottom different ages (middle and high
school)
J. Moody, ASJ 107 (2001) 679-716
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What are complex networks?

Real-world examples of complex networks

Examples: Scale-free networks

World Wide Web, Wikipedia, aviation network, sexual contacts
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What are complex networks?

Weighted and directed complex networks

Weighted networks

links have a meaning
I interaction with different weights, time dependence, ...

example: Fedwire interbank payment network
I links represent transaction volumes
I existence of a backbone: involves small number of nodes

(K. Soramäki et al. Physica A 379 (2007) 317-333)
(left) Thousands of banks and tens of thousands of links representing USD 1.2 ×1012 in
daily transactions; (right) Core of the network: 66 banks accounting for 75 % of transfers,
25 banks being completely connected.
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What are complex networks?

Weighted and directed complex networks

Example: Community structure in Bats

association: measures the time indiviuals spend together

larger colony splits into communities ⇒ social units

G. Kerth, N. Perony, F.S. (2010, submitted)
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What are complex networks?

Weighted and directed complex networks

Directed networks
links have a meaning
I asymmetry of interaction ⇒ direction
example: international trade network (ITN)
I dominant flow patterns, node importance (centrality) ⇒ integration

example: Italian overnight money market (Caldarelli, ...)
I relation between lenders/borrowers, response to exogeneous factors
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What are complex networks?

Weighted and directed complex networks

Example: Ownership in transnational companies

directed network of ownership ⇒ control

Example: International financial network
Nodes represent major financial institutions, links the strongest existing relations,

node colors different geographical areas
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What are complex networks?

Weighted and directed complex networks

Example: Network of Transnational Companies (TNCs)

Size of components scaled by (log)
number of TNC.

Largest connected component
(LCC) contains giant bow-tie:
I IN-section, strongly connected

component (SCC) core,
OUT-section,

I tubes and tendrils.

Remaining small connected
components (CC).

Numbers refer to
I percentage of contained TNC,
I total TNC operating revenue.

S. Vitali, J. Glattfelder, S. Battiston (ETH Zurich)
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What are complex networks?

Weighted and directed complex networks

Problem: Self-Ownership

Excerpt of the network of financial intermediaries in the SCC

75% of the ownership of the SCC firms stays within the SCC
I propagation of financial distress increases systemic risk
I cross-ownership decreases competition
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Growth of complex networks

Outline

1 What are complex networks?

2 Growth of complex networks

3 Dynamics on complex networks
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Growth of complex networks

Preferential attachment

How do complex network grow?

preferential attachment
I at each time step, add a new node i with m=const. links
I connect i with other nodes j with probability pj = kj/

∑
l kl

F the more links j has, the more it will get ∗

I result: emergence of hubs ⇒ scale-free network P(k) ∝ k−γ (γ = 3)

∗“Law of proportionate growth” (Gibrat, 1931)
Chair of Systems Design
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Growth of complex networks

Growth of Open Source Software

Example: Growth of Open Source Software

2003 2004 2007
Class network of JUNG, a framework for network visualization

nodes: represent Java files (classes)
links: represent dependencies ⇒ references to other classes
I Data source: 19 Java projects
I monthly snapshots of dependency network and CVS logs
I final sizes: from 1.856 to 28.898 nodes

What are the laws of network growth?
Chair of Systems Design
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Growth of complex networks

Growth of Open Source Software

Empirics: Accelerated Growth

Growth of total number of links according to K(N) ∝ Nβ
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eclipse azureus

β ≥ 1: increasing density of network
I confirmed for ’small’ network sizes → saturation? [β(t)→ 1]
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Growth of complex networks

Growth of Open Source Software

Empirics: Initial/Final Degree Distributions

(left) intitial degree: n(k0) ∝ k−α0
I highly heterogeneous (compare standard BA: k = const.)

(right) final degree: n(k) ∝ k−γ
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Data: six OSS projects: AspectJ (black), Azureus (red), Eclipse (green), Jedit (blue),

Jena (yellow), Yale (brown)

∗C.J. Tessone, M.M. Geipel, F.S., PRL (subm.)
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Growth of complex networks

Growth of Open Source Software

A Formal Approach to Network Dynamics

Aim: Relation between α, β, γ

I identify universal scaling laws for k , K , N
I more importantly: link different dimension of OSS

F software design (initial conditions ⇒ α)
F developer activities (growth dynamics ⇒ β)
F structure of final product (link dependencies ⇒ γ)

Assumption 1: nodes have an initial degree k0

I nodes are added with fixed rate: N ↔ t
I new node is linked to k0 other nodes
I k0 randomly drawn from g(k) = (α− 1)k−α

Assumption 2: preferential attachment
I new nodes link to highly connected nodes more frequently
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Growth of complex networks

Growth of Open Source Software

Results and Comparison with OSS

result for total number of links K (t) ∼ tβ

β =

{
3− α if α < 2 ⇒ accelerated growth

1 if α ≥ 2 ⇒ linear growth

result for final degree distribution n(k) ∝ k−γ

γ =

{
α if α < 3 ⇒ initial degree distribution dominates

3 if α ≥ 3 ⇒ preferential attachment dominates
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∗C.J. Tessone, M.M. Geipel, F.S., PRL (subm.)
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Dynamics on complex networks

Outline

1 What are complex networks?

2 Growth of complex networks

3 Dynamics on complex networks
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Dynamics on complex networks

What is missing?

So far: the links
I topologies of networks: structure and dynamics
I ‘the art of drawing lines between nodes’

what about the nodes?
I agents have their own internal dynamics
I strategically decide about link formation (humans, firms, ...)

feedback between nodes and links

influences

agent dynamics network dynamics

influences

Chair of Systems Design
http://www.sg.ethz.ch/



Complex Networks Frank Schweitzer University of Vienna · Austria 26 November 2010 25 / 38

Dynamics on complex networks

What is missing?

So far: the links
I topologies of networks: structure and dynamics
I ‘the art of drawing lines between nodes’

what about the nodes?
I agents have their own internal dynamics
I strategically decide about link formation (humans, firms, ...)

feedback between nodes and links

influences

agent dynamics network dynamics

influences

Chair of Systems Design
http://www.sg.ethz.ch/



Complex Networks Frank Schweitzer University of Vienna · Austria 26 November 2010 26 / 38

Dynamics on complex networks

Convergence toward shared behavior

Example: Convergence toward shared behavior

agent i : social behavior xi (t) ∈ [0, ..., 1]
I utility from social interaction with agents j :

utilityi (t) =
∑

j
benefitsij(t)− costsij(t)

1 assumption: utility increases if everyone shares same behavior
I benefit: b = const., costs: ∼ ∆x

ui (t) =
∑

j
b − c |xi − xj |

2 assumption: interaction ij occurs only iff uij(t) > uthr

|xi − xj | < ε = (b − uthr)/c

I possibility of interaction depends on ’open-mindedness’ ε
3 assumption: interaction leads to more similar behavior of i and j

xi (t + 1) = xi (t) + µ [xj(t)− xi (t)]

I µ = 0.5: both agents adopt the ’mean’ behavior
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Dynamics on complex networks

Influence of emerging in-groups

Influence of emerging in-groups

interacting agents added to each other’s in-group Ii and Ij
I partnership relations from past interactions
I effective behaviour xeff

i considers mean in-group behaviour x̄ I
i

xeff
i = (1− αi )xi + αi x̄

I
i

I group influence αi increases with group size

permanent influence of in-group on interaction:
∣∣∣xeff

i − xeff
j

∣∣∣ < ε

I search for new partners is costly → keep past partners
I keep behavior close to past partners to allow further interaction
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Dynamics on complex networks

Influence of emerging in-groups

Co-evolution of social network and behavior

randomly choose agents i , j at time t

1 link dynamics (considers existing in-group)
I ∆xeff(t) < ε ⇒ link formation (interaction)
I ∆xeff(t) > ε ⇒ no link created or existing link is removed

2 dynamics in individual behavior (considers xi (t), xj(t))
I interacting agents become more similar

3 adjustment of effective behavior
I agent i , j : xi → xeff

i , xj → xeff
j

I in-groups of i and j : xeff
i , xeff

j affected by changed x̄ Ii (t), x̄ Ij (t)

Result: feedback between agents’ behavior and their in-group
structure ⇒ Computer simulation
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Dynamics on complex networks

Influence of emerging in-groups

Group Influence: two nearly separated components...

t = 300 t = 350

50 agents, ε = 0.3
I green link: agents would not interact without group influence
I red link: agents would not interact anymore
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Dynamics on complex networks

Influence of emerging in-groups

... finally united

t = 400
t = 500

group influence (on average and a large range of ε)
I fosters coalescence of components
I increases maximum component size
⇒ consensus toward a common behavior
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Dynamics on complex networks

Systemic Risk

Systemic Risk

risk that whole system (of many interacting agents) fails
I financial sector (banks, companies),
I power grids (blackout due to overload)
I material science (bundles of fibers)

common features
I failure of few agents is amplified ⇒ system failure
I individual agent dynamics: fragility, threshold for failure
I interaction: network topology
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Systemic Risk

Micro Dynamics: Individual Agent

node i with interaction matrix A
I state si (t) ∈ {0, 1}: ’healthy’, ’failed’
I fragility φi (t) > 0: susceptibility to fail, may depend on other nodes
I (individual) threshold θi for failure

key variable: net fragility:

zi (t) = φi (t, s,A)− θi
deterministic dynamics

si (t + 1) = Θ[zi (t)]

I si = 1 if zi (t) ≥ 0; si = 0 if zi (t) < 0

global fraction of failed nodes ⇒ prediction

X (t) =
1

n

n∑
i=1

si (t)

I systemic risk: X (t →∞) = X ? → 1
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Systemic Risk

Models with constant load

fragility φi of agent i depends on failure of neigbors, sj

(i) ’inward’ variant: increase of fragility depends on in-degree

φi (t) =
1

k in
i

∑
j∈nbin(i ,A)

sj(t)

(ii) ’outward variant’: increase of fragility depends on out-degree

I load of failing node (i.e. 1) is shared equally among neighbors

φi (t) =
∑

j∈nbin(i ,A)

sj(t)

kout
j
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Systemic Risk

Example: Inward variant - node C fails
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Example: Inward variant - node C fails
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Systemic Risk

Example: Inward variant - node C fails
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low degree node ⇒ high vulnerability to fail
I failure causes little damage, cascade stops after 2 steps
⇒ no ’systemic risk’

Chair of Systems Design
http://www.sg.ethz.ch/



Complex Networks Frank Schweitzer University of Vienna · Austria 26 November 2010 35 / 38

Dynamics on complex networks

Systemic Risk

Example: Inward variant - node E fails
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Example: Inward variant - node E fails
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Example: Inward variant - node E fails
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Example: Inward variant - node E fails
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Systemic Risk

Example: Inward variant - node E fails
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high degree node ⇒ low vulnerability to fail
I failure causes big damage (to low degree nodes), cascade involves all

nodes ⇒ ’systemic risk’
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Systemic Risk

Example: Outward variant - node C fails
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Example: Outward variant - node C fails
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Example: Outward variant - node C fails
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Example: Outward variant - node C fails
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low degree node causes more damage than in ’inward’ variant
I ’systemic risk’ strongly depends on initial position, distributions
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Dynamics on complex networks

Systemic Risk

Systemic risk as a phase transition

initial conditions normally distributed: θ ∼ N (−µ, σ),
I σ: measure of initial heterogeneity in θ across nodes
I initial failure: X (0) = Φµ,σ(0) (cumulative normal distribution)
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1 First-order phase transition:
small variations in initial
conditions lead to complete
failure

non-monotonous behavior:
intermediate σ most dangerous

(right) systemic risk resulting
from cascades only

∗J. Lorenz, S. Battiston, F.S. Eur Phys J B 71 (2009) 441-460

Chair of Systems Design
http://www.sg.ethz.ch/



Complex Networks Frank Schweitzer University of Vienna · Austria 26 November 2010 38 / 38

Conclusions

Conclusions

Conclusions
What did we learn about complex networks?

distinct topologies and growth mechanisms
I statistical regularities exist (degree distribution, ...)

real networks: weighted, directed, time dependent
I backbones of few nodes account for most of properties

Challenges for research on complex networks

feedback between agent and link dynamics
I policy implications: how to regulate network structures

emergence of systemic properties (→ systemic risk)
I relations between topology, susceptibility, redistribution mechanisms?

understand deviations from universality
I agents: strategic link formation/deletion → suboptimal solutions?
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What did we learn about complex networks?

distinct topologies and growth mechanisms
I statistical regularities exist (degree distribution, ...)

real networks: weighted, directed, time dependent
I backbones of few nodes account for most of properties

Challenges for research on complex networks

feedback between agent and link dynamics
I policy implications: how to regulate network structures

emergence of systemic properties (→ systemic risk)
I relations between topology, susceptibility, redistribution mechanisms?

understand deviations from universality
I agents: strategic link formation/deletion → suboptimal solutions?
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