Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	1 / 38

Complex Networks

Frank Schweitzer

fschweitzer@ethz.ch

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	2 / 38
What are complex netwo	orks?			

Outline

What are complex networks?

• What are networks?

- physics: network consists of nodes and links
- mathematics: graph consists of vertices and edges

Complex Networks Frank Schweitzer University of Vienna · Austria 26 November 2010 3 / 38 What are complex networks? Complex systems and complex networks

What are complex networks?

What are networks?

- physics: network consists of nodes and links
- mathematics: graph consists of vertices and edges

• What is 'complex'?

- 'complex' does not mean 'complicated'
- complex systems: regularities, universality on the systemic level
- ► *complexity as a system property* ⇒ not to simplify, not to reduce

What are complex networks?

• What are networks?

- physics: network consists of nodes and links
- mathematics: graph consists of vertices and edges

• What is 'complex'?

- 'complex' does not mean 'complicated'
- complex systems: regularities, universality on the systemic level
- ► complexity as a system property ⇒ not to simplify, not to reduce

complex networks

ische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

- representation of complex systems
- ► system elements ⇒ nodes
- ▶ interactions ⇒ links

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	4 / 38
What are complex netwo	orks?			
Complex systems and	complex networks			

What are complex systems?

- system comprised of a *large* number of *strongly* interacting (similar) subsystems (entities, processes, or '*agents*')
 - ▶ examples: brain, insect societies (ants, bees, termites), ...

What are complex systems?

- system comprised of a *large* number of *strongly* interacting (similar) subsystems (entities, processes, or '*agents*')
 - examples: brain, insect societies (ants, bees, termites), ...

What are complex systems?

- system comprised of a *large* number of *strongly* interacting (similar) subsystems (entities, processes, or '*agents*')
 - examples: brain, insect societies (ants, bees, termites), ...

- challenge: The micro-macro link
 - How are the properties of the elements and their interactions ("microscopic" level) related to the dynamics and the properties of the whole system ("macroscopic" level)?

• complex network: agents ⇒ *nodes*, interactions ⇒ *links*

fully connected network

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	5 / 38
What are complex	networks?			
└─ Topology of con	nplex networks			

• complex network: agents ⇒ *nodes*, interactions ⇒ *links*

• complex network: agents ⇒ *nodes*, interactions ⇒ *links*

- degree distribution P(k)
 - count the number of links k_i of each node i, do a histogram
 - * z = K/N: average degree

complex network: agents ⇒ nodes, interactions ⇒ links

k

- degree distribution P(k)
 - count the number of links k_i of each node i, do a histogram
 - * z = K/N: average degree

complex network: agents ⇒ nodes, interactions ⇒ links

- degree distribution P(k)
 - count the number of links k_i of each node i, do a histogram
 - * z = K/N: average degree
 - ▶ delta-function ⇒ regular lattice ⇒ complete order
 - ★ regular network as a limiting case of complex network
 - ★ of interest: fully connected networks \Leftrightarrow mean-field approximation

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	6 / 38
What are complex netwo	orks?			
└─ Topology of complex	networks			

Topologies

• chain with z = 2

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	6 / 38
What are complex	networks?			
Topology of co	mplex networks			

Topologies

• chain with z = 4: interaction with second-nearest neighbors

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	6 / 38
What are complex ne	etworks?			
└─ Topology of comp	lex networks			

Topologies

• chain with z = 4: interaction with second-nearest neighbors

small-world network: low-dimensional regular lattice + randomness

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	7 / 38
What are complex netwo	orks?			
└─ Topology of complex	networks			

Topologies: More heterogeneity

- random network: (rewiring probability $p \rightarrow 1$)
 - ▶ *P*(*k*): Poissonian distribution around average degree *z* (Erdös-Reyni)

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	7 / 38
What are complex netwo	orks?			
└─ Topology of complex	networks			

Topologies: More heterogeneity

- random network: (rewiring probability $p \rightarrow 1$)
 - ▶ *P*(*k*): Poissonian distribution around average degree *z* (Erdös-Reyni)

- scale-free network: existence of a few hubs
 - $P(k) \propto k^{-\alpha}$: Power law distribution, no average degree z defined

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	8 / 38
What are complex net	works?			
└─ Topology of comple	× networks			

Topologies: Conclusions

distinct topological features

- ordered vs. small-world vs. random vs. scale-free networks
- heterogeneity: nodes have a (very!) different numbers of neighbors
- complexity ranges between order (lattice) and randomness (ER)

Topologies: Conclusions

distinct topological features

- ordered vs. small-world vs. random vs. scale-free networks
- heterogeneity: nodes have a (very!) different numbers of neighbors
- complexity ranges between order (lattice) and randomness (ER)

consequences

- average distance between any two nodes varies clustering varies: how many of my neighbors are also neighbors
 - * high for regular network, low for small world network
 - $\star\,$ consequencies for e.g. information transport, infection

Chair of Systems Design http://www.sg.ethz.ch/

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Real-world examples of complex networks

• regular networks:e.g. urban roads, highway systems in rual areas

Real-world examples of complex networks

• regular networks:e.g. urban roads, highway systems in rual areas

• Small-world networks: e.g. friendship networks

ische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

color: different races (Yellow - White Race, Green - Black Race, Pink - Other top/bottom different ages (middle and high school) J. Moody, ASJ 107 (2001) 679-716

Examples: Scale-free networks

• World Wide Web, Wikipedia, aviation network, sexual contacts

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	11 / 38
What are complex ne	tworks?			
└─ Weighted and dire	cted complex networks			

Weighted networks

Iinks have a meaning

interaction with different weights, time dependence, ...

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	11 / 38
What are complex ne	etworks?			
└─ Weighted and dire	cted complex networks			

Weighted networks

links have a meaning

interaction with different weights, time dependence, ...

• example: Fedwire interbank payment network

- links represent transaction volumes
- existence of a backbone: involves small number of nodes

(K. Soramäki et al. Physica A 379 (2007) 317-333)

(left) Thousands of banks and tens of thousands of links representing USD 1.2 $\times 10^{12}$ in daily transactions; (right) Core of the network: 66 banks accounting for 75 % of transfers, 25 banks being completely connected.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	12 / 38
What are complex n	etworks?			
Weighted and dire	ected complex networks			

Example: Community structure in Bats

- association: measures the time indiviuals spend together
- larger colony splits into communities ⇒ social units

G. Kerth, N. Perony, F.S. (2010, submitted)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	13 / 38
What are complex ne	tworks?			
Weighted and dire	cted complex networks			

Directed networks

links have a meaning

• asymmetry of interaction \Rightarrow direction

• example: international trade network (ITN)

• dominant flow patterns, node importance (centrality) \Rightarrow integration

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	13 / 38
What are complex ne	etworks?			
Weighted and dire	cted complex networks			

Directed networks

Iinks have a meaning

• asymmetry of interaction \Rightarrow direction

• example: international trade network (ITN)

- dominant flow patterns, node importance (centrality) \Rightarrow integration
- example: Italian overnight money market (Caldarelli, ...)
 - ▶ relation between lenders/borrowers, response to exogeneous factors

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	14 / 38
What are complex netw	vorks?			
Weighted and direct	ed complex networks			

Example: Ownership in transnational companies

● directed network of ownership ⇒ *control*

Example: International financial network Nodes represent *major* financial institutions, links the strongest existing relations, node colors different geographical areas

ETH	
Eidgenössische Technische Hochschule Züric Swiss Federal Institute of Technology Zurich	h

 Complex Networks
 Frank Schweitzer
 University of Vienna · Austria
 26 November 2010
 15 / 38

 What are complex networks?
 Weighted and directed complex networks

Example: Network of Transnational Companies (TNCs)

Size of components scaled by (log) number of TNC.

- Largest connected component (LCC) contains giant bow-tie:
 - IN-section, strongly connected component (SCC) core, OUT-section,
 - tubes and tendrils.
- Remaining small connected components (CC).
- Numbers refer to
 - percentage of contained TNC,
 - total TNC operating revenue.

S. Vitali, J. Glattfelder, S. Battiston (ETH Zurich)

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	16 / 38
What are complex netw	orks?			
Weighted and directe	ed complex networks			

Problem: Self-Ownership

Excerpt of the network of financial intermediaries in the SCC

- 75% of the ownership of the SCC firms stays within the SCC
 - propagation of financial distress increases systemic risk
 - cross-ownership decreases competition

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	17 / 38
Growth of complex net	works			

Outline

Con	nplex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	18 / 38
	Growth of complex netw	vorks			
	-Preferential attachme	nt			

How do complex network grow?

preferential attachment

- at each time step, add a new node i with m=const. links
- ► connect *i* with other nodes *j* with probability $p_j = k_j / \sum_l k_l$
 - \star the more links *j* has, the more it will get *
- ▶ result: emergence of hubs \Rightarrow scale-free network $P(k) \propto k^{-\gamma}$ ($\gamma = 3$)

* "Law of proportionate growth" (Gibrat, 1931)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Complex Networks

Frank Schweitzer

University of Vienna · Austria

Growth of complex networks

Growth of Open Source Software

Example: Growth of Open Source Software

2003

2004

2007

Class network of JUNG, a framework for network visualization

- nodes: represent Java files (classes)
- *links:* represent dependencies \Rightarrow references to other classes
 - Data source: 19 Java projects
 - monthly snapshots of dependency network and CVS logs
 - final sizes: from 1.856 to 28.898 nodes
- What are the laws of network growth?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	20 / 38
Growth of complex netw	orks			
Growth of Open Sour	ce Software			

Empirics: Accelerated Growth

Growth of total number of links according to $K(N) \propto N^{\beta}$

• $\beta \ge 1$: increasing density of network

• confirmed for 'small' network sizes \rightarrow saturation? [$\beta(t) \rightarrow 1$]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	21 / 38
Growth of complex n	etworks			
Growth of Open S	ource Software			

Empirics: Initial/Final Degree Distributions

- (left) intitial degree: $n(k_0) \propto k_0^{-\alpha}$
 - highly heterogeneous (compare standard BA: k = const.)
- (right) final degree: $n(k) \propto k^{-\gamma}$

Data: six OSS projects: AspectJ (black), Azureus (red), Eclipse (green), Jedit (blue), Jena (yellow), Yale (brown)

*C.J. Tessone, M.M. Geipel, F.S., PRL (subm.)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	22 / 38
Growth of complex netw	vorks			
Growth of Open Sou	rce Software			

A Formal Approach to Network Dynamics

• Aim: Relation between α , β , γ

- identify universal scaling laws for k, K, N
- more importantly: link different dimension of OSS
 - ***** software design (initial conditions $\Rightarrow \alpha$)
 - * developer activities (growth dynamics $\Rightarrow \beta$)
 - * structure of final product (link dependencies $\Rightarrow \gamma$)

A Formal Approach to Network Dynamics

• Aim: Relation between α , β , γ

- ▶ identify universal scaling laws for k, K, N
- more importantly: link different dimension of OSS
 - ***** software design (initial conditions $\Rightarrow \alpha$)
 - * developer activities (growth dynamics $\Rightarrow \beta$)
 - * structure of final product (link dependencies $\Rightarrow \gamma$)

• Assumption 1: nodes have an initial degree k_0

- \blacktriangleright nodes are added with fixed rate: $\mathit{N}\leftrightarrow t$
- new node is linked to k₀ other nodes
- k_0 randomly drawn from $g(k) = (\alpha 1)k^{-\alpha}$
- Assumption 2: preferential attachment
 - new nodes link to highly connected nodes more frequently

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	23 / 38
Growth of complex n	etworks			
Growth of Open S	ource Software			

Results and Comparison with OSS

• result for total number of links $K(t) \sim t^{eta}$

 $\beta = \begin{cases} 3 - \alpha & \text{if } \alpha < 2 \implies \text{accelerated growth} \\ 1 & \text{if } \alpha \ge 2 \implies \text{linear growth} \end{cases}$

• result for final degree distribution $n(k) \propto k^{-\gamma}$

 $\gamma = \begin{cases} \alpha & \text{if } \alpha < 3 \Rightarrow \text{initial degree distribution dominates} \\ 3 & \text{if } \alpha \ge 3 \Rightarrow \text{preferential attachment dominates} \end{cases}$

*C.J. Tessone, M.M. Geipel, F.S., PRL (subm.)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	24 / 38
Dynamics on complex	networks			

Outline

What is missing?

• So far: the links

- topologies of networks: structure and dynamics
- 'the art of drawing lines between nodes'

What is missing?

• So far: the links

- topologies of networks: structure and dynamics
- 'the art of drawing lines between nodes'

what about the nodes?

- agents have their own internal dynamics
- strategically decide about *link formation* (humans, firms, ...)
- feedback between nodes and links

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	26 / 38
Dynamics on complex	networks			
Convergence toward	shared behavior			

Example: Convergence toward shared behavior

- agent *i*: social behavior $x_i(t) \in [0, ..., 1]$
 - utility from social interaction with agents j:

 $ext{utility}_i(t) = \sum_j ext{benefits}_{ij}(t) - ext{costs}_{ij}(t)$

 Complex Networks
 Frank Schweitzer
 University of Vienna · Austria
 26 November 2010
 26 / 38

 Dynamics on complex networks
 Convergence toward shared behavior
 26 / 38

Example: Convergence toward shared behavior

- agent i: social behavior $x_i(t) \in [0,...,1]$
 - utility from social interaction with agents j:

 $\text{utility}_i(t) = \sum_j \text{benefits}_{ij}(t) - \text{costs}_{ij}(t)$

assumption: utility increases if everyone shares same behavior

• benefit:
$$b = \text{const.}$$
, costs: $\sim \Delta x$

 $u_i(t) = \sum_i b - c |x_i - x_j|$

assumption: interaction *ij* occurs only iff $u_{ij}(t) > u_{thr}$

 $|x_i - x_j| < \varepsilon = (b - u_{\mathrm{thr}})/c$

- \blacktriangleright possibility of interaction depends on 'open-mindedness' ε
- assumption: interaction leads to more similar behavior of i and j

 $x_i(t+1) = x_i(t) + \mu [x_j(t) - x_i(t)]$

• $\mu = 0.5$: both agents adopt the 'mean' behavior

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	27 / 38
Dynamics on complex r	networks			
Influence of emerging	g in-groups			

Influence of emerging in-groups

- interacting agents added to each other's in-group I_i and I_j
 - partnership relations from past interactions
 - effective behaviour x_i^{eff} considers mean in-group behaviour \bar{x}_i^I

 $x_i^{\text{eff}} = (1 - \alpha_i)x_i + \alpha_i \bar{x}_i^I$

- group influence α_i increases with group size
- permanent influence of in-group on interaction: $\left|x_{i}^{\text{eff}} x_{j}^{\text{eff}}\right| < \varepsilon$
 - \blacktriangleright search for new partners is costly \rightarrow keep past partners
 - keep behavior close to past partners to allow further interaction

Co-evolution of social network and behavior

- randomly choose agents *i*, *j* at time *t*
- Iink dynamics (considers existing in-group)
 - $\Delta x^{\text{eff}}(t) < \varepsilon \Rightarrow \text{link formation (interaction)}$
 - $\Delta x^{\text{eff}}(t) > \varepsilon \Rightarrow$ no link created or *existing link is removed*
- **Q** dynamics in individual behavior (considers $x_i(t)$, $x_j(t)$)
 - interacting agents become more similar
- adjustment of effective behavior
 - agent *i*, *j*: $x_i \rightarrow x_i^{\text{eff}}$, $x_j \rightarrow x_j^{\text{eff}}$
 - ▶ in-groups of *i* and *j*: x_i^{eff} , x_j^{eff} affected by changed $\bar{x}^{l_i(t)}$, $\bar{x}^{l_j(t)}$

Result: feedback between agents' behavior and their in-group structure \Rightarrow Computer simulation

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	29 / 38
Dynamics on comple	× networks			
Influence of emerg	ging in-groups			

Group Influence: two nearly separated components...

• 50 agents, $\varepsilon = 0.3$

- green link: agents would not interact without group influence
- red link: agents would not interact anymore

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	30 / 38
Dynamics on complex	: networks			
Influence of emergi	ing in-groups			

... finally united

• group influence (on average and a large range of ε)

- fosters coalescence of components
- increases maximum component size
- ⇒ consensus toward a common behavior

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	31 / 38
Dynamics on complex	< networks			
Systemic Risk				

Systemic Risk

- risk that whole system (of many interacting agents) fails
 - financial sector (banks, companies),
 - power grids (blackout due to overload)
 - material science (bundles of fibers)

common features

- failure of few agents is amplified \Rightarrow system failure
- individual agent dynamics: fragility, threshold for failure
- interaction: network topology

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	32 / 38
Dynamics on complex	< networks			
Systemic Risk				

Micro Dynamics: Individual Agent

• node *i* with interaction matrix A

- state $s_i(t) \in \{0,1\}$: 'healthy', 'failed'
- *fragility* $\phi_i(t) > 0$: susceptibility to fail, may depend on other nodes
- (individual) *threshold* θ_i for failure
- key variable: *net fragility*:

 $z_i(t) = \phi_i(t, \mathbf{s}, \mathbf{A}) - \theta_i$

• deterministic dynamics

 $s_i(t+1) = \Theta[z_i(t)]$

•
$$s_i = 1$$
 if $z_i(t) \ge 0$; $s_i = 0$ if $z_i(t) < 0$

● global fraction of failed nodes ⇒ *prediction*

$$X(t) = \frac{1}{n} \sum_{i=1}^{n} s_i(t)$$

• systemic risk: $X(t \to \infty) = X^* \to 1$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	33 / 38
Dynamics on complex	< networks			
Systemic Risk				

Models with constant load

- fragility ϕ_i of agent *i* depends on failure of neigbors, s_j
- (i) 'inward' variant: increase of fragility depends on in-degree

$$\phi_i(t) = rac{1}{k_i^{ ext{in}}} \sum_{j \in ext{nb}_{ ext{in}}(i, A)} s_j(t)$$

- (ii) 'outward variant': increase of fragility depends on out-degree
 - ▶ load of failing node (i.e. 1) is shared equally among neighbors

$$\phi_i(t) = \sum_{j \in \operatorname{nb}_{\operatorname{in}}(i,A)} \frac{s_j(t)}{k_j^{\operatorname{out}}}$$

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	34 / 38
Dynamics on complex n	ietworks			
Systemic Risk				

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	34 / 38
Dynamics on complex n	ietworks			
Systemic Risk				

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	34 / 38
Dynamics on complex	networks			
Systemic Risk				

- low degree node \Rightarrow high vulnerability to fail
 - ▶ failure causes little damage, cascade stops after 2 steps ⇒ no 'systemic risk'

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	35 / 38
Dynamics on complex r	etworks			
Systemic Risk				

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	35 / 38
Dynamics on complex r	networks			
Systemic Risk				

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	35 / 38
Dynamics on complex n	ietworks			
Systemic Risk				

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	35 / 38
Dynamics on complex n	ietworks			
Systemic Risk				

0.55

0.7

Example: Inward variant - node *E* fails

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	35 / 38
Dynamics on complex	networks			
Systemic Risk				

• high degree node \Rightarrow low vulnerability to fail

▶ failure causes big damage (to low degree nodes), cascade involves all nodes ⇒ 'systemic risk'

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	36 / 38
Dynamics on complex r	networks			
Systemic Risk				

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	36 / 38
Dynamics on complex n	ietworks			
Systemic Risk				

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	36 / 38
Dynamics on complex r	networks			
Systemic Risk				

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	36 / 38
Dynamics on complex r	etworks			
Systemic Risk				

- low degree node causes more damage than in 'inward' variant
 - 'systemic risk' strongly depends on initial position, distributions

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	37 / 38
Dynamics on complex	networks			
└─ Systemic Risk				

Systemic risk as a phase transition

- initial conditions normally distributed: $\theta \sim \mathcal{N}(-\mu, \sigma)$,
 - σ : measure of *initial heterogeneity* in θ across nodes
 - ▶ initial failure: $X(0) = \Phi_{\mu,\sigma}(0)$ (cumulative normal distribution)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	38 / 38
Conclusions				
Conclusions				

Conclusions

What did we learn about complex networks?

- distinct topologies and growth mechanisms
 - statistical regularities exist (degree distribution, ...)
- real networks: weighted, directed, time dependent
 - backbones of few nodes account for most of properties

Complex Networks	Frank Schweitzer	University of Vienna · Austria	26 November 2010	38 / 38
Conclusions				
Conclusions				

Conclusions

What did we learn about complex networks?

- distinct topologies and growth mechanisms
 - statistical regularities exist (degree distribution, ...)
- real networks: weighted, directed, time dependent
 - backbones of few nodes account for most of properties

Challenges for research on complex networks

- feedback between agent and link dynamics
 - policy implications: how to regulate network structures
- emergence of systemic properties (\rightarrow systemic risk)
 - relations between topology, susceptibility, redistribution mechanisms?
- understand deviations from universality
 - \blacktriangleright agents: strategic link formation/deletion \rightarrow suboptimal solutions?