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One-species reaction model

o Broad class of chemical reactiodst A % &
o Particles constrained to the plane (dimengioa 2)
@ System is in contact with thermal bath (reserveir)diffusive motion

@ Basic questions:
What is a possible behaviour of the system in IR asymptoties (o) ?

What is the value of decaying exponentn(t) =% t-ap
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@ Two special limits:
(a) reaction limitedrgi < Treact
(b) diffusion limitedrgi; > Treact
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One-species reaction model

@ Two special limits:
(a) reaction limitedrgi < Treact
(b) diffusion limitedrgit > Treact
@ First case:
classical kinetic equatloﬁ'ﬁ —kn?(t) = n(t) oc t~1

@ Second case:

@ consided < 2, in this case the diffusion is recurrent (Polya theorem)
r.m.s. displacemen(t) ~ (Dt)*/? and particles “sweep* volume
V(t) ~ r(t)? completely=
n(t) ~ (Dt)~ /2 = (D) ++4)
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@ consided < 2, in this case the diffusion is recurrent (Polya theorem)
r.m.s. displacemen(t) ~ (Dt)*/? and particles “sweep* volume
V(t) ~ r(t)? completely=
n(t) ~ (Dt)~%/2 = (D)~ (++2)
deviation from the space dimension2= d — 2
Q ford>2 V({t)~t=n(t)~t1?
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Chemical reaction in turbulent environment?

o Influence of density fluctuations was studied in
Peliti, J. Phys. AL9, L365 (1986); B. P. Lee, J. Phys. 2, 2633 (1994)
How do fluctuations of velocity field influence behaviour o tthemical
reaction?

00+ (V) = DoV &
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Chemical reaction in turbulent environment?

o Influence of density fluctuations was studied in
Peliti, J. Phys. AL9, L365 (1986); B. P. Lee, J. Phys. 2, 2633 (1994)
How do fluctuations of velocity field influence behaviour o tthemical
reaction?

SO + (V)Y = DoV% (1)

@ Two models:
(a) Kraichan model with finite correlation time - statistics @locity field is
prescribed

(v) = 0 and(v;(t)v;(0)) oc exp(—Uorok?t)
(b) v(x,t) generated by stochastic Navier-Stokes equation
oV + (V.V)V = 1oV — Vp + (2)

f¥ - random force
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Outline of the field-theoretic approach

@ Field-theoretic model for chemical reaction
@ Field-theoretic model for advecting velocity field

© Models constructed in logarithmic dimension (connectietwizen IR and
UV divergences)

© Applying renormalization group technique

© Calculation of renormalization constants beta functions and anomalou:
dimensions

@ Zeros of beta functions> determination of IR fixed points
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Doi approach to the chemical reaction problems

@ 'boson’-like operators (noand#h)
[$(x), %1 (X)] = 5(x = X)) ®3)

[ (x), ¥ (x)] = [ (x), 47 (x)] = 0 (4)
$(x)|0) = 0, (04" (x) = 0,(0/0) =1 ®)
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Doi approach to the chemical reaction problems

@ 'boson’-like operators (noand#h)

[ (x), " (x)] = 6(x = X)) 3)
[ (x), ¥ (x)] = [ (x), 47 (x)] = 0 (4)
$(x)|0) = 0, (04" (x) = 0,(0/0) =1 ®)

o Information of the statistical state transfered to a 'quaritstate

=> P{AnLoHn}),  K{nd) =R 00)M0)  (6)
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Doi approach to the chemical reaction problems

@ 'boson’-like operators (noand#h)

[ (%), 9" (x)] =

3(x =X

[(%), ()] = [T (), (X )] = 0
$(x)|0) = 0, (0% (x) = 0,(00) = 1
o Information of the statistical state transfered to a 'quaritstate

= Z P({ni},)[{ni}),
{m}

[{ni}) = [Tl ()™ 0)

o Master equation rewritten in compact (operator) form

0 N
S10(0) = ~Rlo(),

H:HA-i-HD-i-HR

3)
(4)
®)

(6)

(7)
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Doi approach to the chemical reaction problems

@ 'boson’-like operators (noand#h)

[ (x), ! (X)) = 8(x — X) (3)
[W(x), »(X)] = [ (x), 4+ (x)] =0 )
$(x)|0) = 0, (041 (x) = 0,(0]0) = 1 (5)

o Information of the statistical state transfered to a 'quaritstate
=Y PUmLpInd),  {nh) =[O0 (6)
{ni} i

o Master equation rewritten in compact (operator) form
0 N N N N N
a@(t» = —Hl¢(t)), H=Ha+Hp+Hgr (7)

o Discrete model (particles on the latticd} ©™ continuous model
L. Peliti J. Physiquel6, 1469 (1985)
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Doi approach to the chemical reaction problems

@ In this formulation mean values could be obtained via
(A1) = (0] XAt ¥)eHg(0)) 8)
(Hnatich, Honkonen, PREL, 4 (2000) )

7115



Doi approach to the chemical reaction problems

o In this formulation mean values could be obtained via
(A®) = (0le ZAty)e 1t (0) 8)

(Hnatich, Honkonen, PREL, 4 (2000) )

@ Expectation values> path integral formulation (over classical fields !)
(A. N. Vasiliev, Functional Methods in Quantum Field Theory and
Satistical Physics)

(AM) = / Dy Dy Aes (©)

7115



Doi approach to the chemical reaction problems

@ In this formulation mean values could be obtained via
(A) = (0l *A(T ¥)e|¢(0)) (8)
(Hnatich, Honkonen, PREL, 4 (2000) )

@ Expectation values> path integral formulation (over classical fields !)
(A. N. Vasiliev, Functional Methods in Quantum Field Theory and
Satistical Physics)

) = [ DDwAe ©)

@ Action § is given as

S = — /OO dt/dx {Yt oy 4+ TV (vip) — Dot V) +
0
AoDol2¢ + ()02} + 1o / dX ¢t (x,0)  (10)
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Perturbative expansion fi,,

Power counting shows that the model is multiplicativelyaenalizable

(divergences ify ™ y)vir, (7% 1ir and{(¥F)*?)1.ir )
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Kraichnan model with finite correlation time

@ Describes advection of the passive scalér, x)
o + (V.V)tp = Dod?ep + f
(L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, PREB, 1823 (1998))
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@ Describes advection of the passive scalér, x)
o + (V.V)tp = Dod?ep + f

(L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, PREB, 1823 (1998))
o Statistical properties are as follows

(v(x)) =0, V.w=0, m~1/L, L—integralscale
M0} = sy [ AP~ ek 0

2
Do

Dy(t —t',k) = gOZUO Kd—2+2

eXd—UoDokz(t —t)]
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Kraichnan model with finite correlation time

@ Describes advection of the passive scalér, x)
o + (V.V)tp = Dod?ep + f

(L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, PREB, 1823 (1998))
o Statistical properties are as follows

(v(x)) =0, V.w=0, m~1/L, L—integralscale
M0} = sy [ AP~ ek 0

D2
Dy(t —t', k) = QOT.J%W exp/—UoDok?(t — t')]
@ The total action
S=5+S

v(x,t)Dytv(x/, 1)
2

where S, =-— / / dxdt dx’dt’
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Stochastic Navier-Stokes equations

e Equation for fluctuating part of the velocity field & 1)

v+ (V.V)V = 19V — Vp+ ' (11)
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Stochastic Navier-Stokes equations

e Equation for fluctuating part of the velocity field & 1)
v+ (V.V)V = 19V — Vp+ ' (11)

@ Random forcd" responsible for stochasticity and input of energy
incompressible fluid/.v = 0 (low Mach numbeNy/Vsung < 1)

@ Action Sys for Navier-Stokes equations
S — %/dt dx A V(x, 1) 9(X, t)dk (| — X|) +

/dt dx V.[— 3V — (V.V)V + 1pV?V] (12)

correlator in the Fourier representatidi{k) = g10v°k*~9-2¢ + goor/°k?
(e is a deviation from the Kolmogorov scaling)
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Renormalization of the models

@ Power counting and analysis of possible divergences
o Both models are multiplicatively renormalizable

@ Calculation of the renormalization constad@ts=- beta functions
Bg = D,g9 and anomalous dimensiong = D, InZ,, whereD,, = 10,

@ Fixed points and corresponding critical indices
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Stochastic Navier-Stokes equations

@ In the minimal subtraction scheme with doulfée A)-expansion the
relations between bare and renormalized paramaters (inchSe) are

g0 = 01p*Z %, Qoo = Qop 207 %7,
Ao = )\,LL_ZAZZ_124, vg=vZy, U= Uzl_lzz

@ No renormalization of the fieldg, /™, v, V is needed

@ Anomalous dimensions, = ua'”2a|o and beta functiongy = ug—glo,
9= {01, 02, U, \}

@ The beta functions could be directly obtained from definitio

Bg = 91(—2¢ +371), By, = (2A+ 371 —3)
Br =A2A —v4+72), Bu=u(r1—72)
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Fixed points of the model

« - decaying exponent of the particle concentratioft)(oc t=<)

2A=d—-2, A=0(e) = A =¢&e
T, = Ghae + Gho€”
X = Xet ne?

Fixed point o Region of stability
Gaussian 1 e<0,A>0
Driftless 1+ A unstable
Thermal 1+5 20430 <32 A<0,(R+1HAZ>A
Anomalous kinetics 11_+$3 €>0,-2/3< A< —¢€/3
Normal kinetics 1 e>0,A>—¢/3

R=-0.168
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Conclusions

@ Construction of the field-theoretic model of the annihdatreaction
A+A—o

@ Calculation of the renormalization constants and RG fomstito the
two-loop order

@ Kraichnan model was studied and compared with the modeHoase
stochastic Navier-Stokes equations

@ Callan-Symanzik equation far(t) = (¢(t)) was solved and decaying
exponent at one-loop order was obtained
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Thank you for your attention

15/15



