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One-species reaction model

Broad class of chemical reactionsA + A
λ0−→ ∅

Particles constrained to the plane (dimensiond = 2)

System is in contact with thermal bath (reservoir)→ diffusive motion

Basic questions:
What is a possible behaviour of the system in IR asymptotics (t → ∞) ?
What is the value of decaying exponentα, n(t)

t→∞
−→ t−α?
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One-species reaction model

Two special limits:
(a) reaction limitedτdif ≪ τreact

(b) diffusion limitedτdif ≫ τreact
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First case:
classical kinetic equationdn(t)

dt = −kn2(t) → n(t) ∝ t−1
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1 considerd ≤ 2, in this case the diffusion is recurrent (Pólya theorem)
r.m.s. displacementr(t) ∼ (Dt)1/2 and particles “sweep“ volume
V(t) ∼ r(t)d completely⇒
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V(t) ∼ r(t)d completely⇒
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deviation from the space dimension 2∆ = d − 2
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Chemical reaction in turbulent environment?

Influence of density fluctuations was studied in
Peliti, J. Phys. A19, L365 (1986); B. P. Lee, J. Phys. A27, 2633 (1994)
How do fluctuations of velocity field influence behaviour of the chemical
reaction?

∂

∂t
ψ(t) + (v.∇)ψ = D0∇

2ψ (1)
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Influence of density fluctuations was studied in
Peliti, J. Phys. A19, L365 (1986); B. P. Lee, J. Phys. A27, 2633 (1994)
How do fluctuations of velocity field influence behaviour of the chemical
reaction?

∂

∂t
ψ(t) + (v.∇)ψ = D0∇

2ψ (1)

Two models:
(a) Kraichan model with finite correlation time - statistics of velocity field is

prescribed
〈v〉 = 0 and〈vi(t)vj(0)〉 ∝ exp(−u0ν0k2t)

(b) v(x, t) generated by stochastic Navier-Stokes equation

∂tv + (v.∇)v = ν0∇
2v −∇p + fv (2)

fv - random force
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Outline of the field-theoretic approach

1 Field-theoretic model for chemical reaction
2 Field-theoretic model for advecting velocity field
3 Models constructed in logarithmic dimension (connection between IR and

UV divergences)
4 Applying renormalization group technique
5 Calculation of renormalization constants⇒ beta functions and anomalous

dimensions
6 Zeros of beta functions⇒ determination of IR fixed points
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Doi approach to the chemical reaction problems

’boson’-like operators (noi and~)

[ψ(x), ψ†(x
′

)] = δ(x − x
′

) (3)

[ψ(x), ψ(x
′

)] = [ψ+(x), ψ+(x
′

)] = 0 (4)

ψ(x)|0〉 = 0, 〈0|ψ†(x) = 0, 〈0|0〉 = 1 (5)
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Master equation rewritten in compact (operator) form

∂

∂t
|Φ(t)〉 = −Ĥ|φ(t)〉, Ĥ = ĤA + ĤD + ĤR (7)

Discrete model (particles on the lattice)
Doi formalism

=⇒ continuous model
L. Peliti J. Physique46, 1469 (1985)
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Doi approach to the chemical reaction problems

In this formulation mean values could be obtained via

〈A(t)〉 = 〈0|e
R

dxA(ψ+ψ)e−Ĥt|φ(0)〉 (8)

(Hnatich, Honkonen, PRE61, 4 (2000) )
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〈A(t)〉 = 〈0|e
R

dxA(ψ+ψ)e−Ĥt|φ(0)〉 (8)

(Hnatich, Honkonen, PRE61, 4 (2000) )
Expectation values⇒ path integral formulation (over classical fields !)
(A. N. Vasiliev, Functional Methods in Quantum Field Theory and
Statistical Physics)

〈A(t)〉 =

∫
Dψ+Dψ Â eS1 (9)

Action S1 is given as

S1 = −

∫ ∞

0
dt

∫
dx {ψ+∂tψ + ψ+∇(vψ) − D0ψ

+∇2ψ +

λ0D0[2ψ
+ + (ψ+)2]ψ2} + n0

∫
dx ψ+(x,0) (10)
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Perturbative expansion forΓψ+ψ2

Power counting shows that the model is multiplicatively renormalizable
(divergences in〈ψ+ψ〉1-ir, 〈ψ+ψ2〉1-ir and〈(ψ+)2ψ2〉1-ir )

1 / 2 1 / 4

1 / 2

+
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Kraichnan model with finite correlation time

Describes advection of the passive scalarψ(t, x)

∂tψ + (v.∇)ψ = D0∂
2ψ + f

(L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil’ev, PRE58, 1823 (1998))
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∂tψ + (v.∇)ψ = D0∂
2ψ + f

(L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil’ev, PRE58, 1823 (1998))
Statistical properties are as follows

〈v(x)〉 = 0, ∇.v = 0, m ∼ 1/L, L − integral scale

〈vi(x)vj(x
′)〉 =

1
(2π)d

∫
dk Pij(k)Dv(t − t′, k)eik.(x−x′)

Dv(t − t′, k) = g0
D2

0

2u0

1
kd−2+2ǫ

exp[−u0D0k2(t − t′)]
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〈vi(x)vj(x
′)〉 =

1
(2π)d

∫
dk Pij(k)Dv(t − t′, k)eik.(x−x′)

Dv(t − t′, k) = g0
D2

0

2u0

1
kd−2+2ǫ

exp[−u0D0k2(t − t′)]

The total action

S = S1 + Sv

where Sv = −

∫ ∫
dxdt dx′dt′

v(x, t)D−1
v v(x′, t′)
2
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Stochastic Navier-Stokes equations

Equation for fluctuating part of the velocity field (ρ = 1)

∂tv + (v.∇)v = ν0∇
2v −∇p + fv (11)
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Stochastic Navier-Stokes equations

Equation for fluctuating part of the velocity field (ρ = 1)

∂tv + (v.∇)v = ν0∇
2v −∇p + fv (11)

Random forcefv responsible for stochasticity and input of energy
incompressible fluid∇.v = 0 (low Mach numberV0/Vsound ≪ 1)

Action SNS for Navier-Stokes equations

SNS =
1
2

∫
dt dx dx′ ṽ(x, t).ṽ(x′, t)df (|x − x′|) +

∫
dt dx ṽ.[−∂tv − (v.∇)v + ν0∇

2v] (12)

correlator in the Fourier representationdf (k) = g10ν
3k4−d−2ǫ + g20ν

3k2

(ǫ is a deviation from the Kolmogorov scaling)
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Renormalization of the models

Power counting and analysis of possible divergences

Both models are multiplicatively renormalizable

Calculation of the renormalization constantsZα ⇒ beta functions
βg = Dµg and anomalous dimensionsγα ≡ Dµ ln Zα, whereDµ = µ∂µ

Fixed points and corresponding critical indices
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Stochastic Navier-Stokes equations

In the minimal subtraction scheme with double(ǫ,∆)-expansion the
relations between bare and renormalized paramaters (in MS scheme) are

g10 = g1µ
2ǫZ−3

1 , g20 = g2µ
−2∆Z−3

1 Z3,

λ0 = λµ−2∆Z−1
2 Z4, ν0 = νZ1, u0 = uZ−1

1 Z2

No renormalization of the fieldsψ,ψ+, v, ṽ is needed

Anomalous dimensionsγa = µ∂ ln Za
∂µ |0 and beta functionsβg = µ ∂g

∂µ |0,
g = {g1, g2, u, λ}

The beta functions could be directly obtained from definition

βg1 = g1(−2ǫ+ 3γ1), βg2 = (2∆ + 3γ1 − γ3)

βλ = λ(2∆ − γ4 + γ2), βu = u(γ1 − γ2)
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Fixed points of the model

α - decaying exponent of the particle concentration (n(t) ∝ t−α)

2∆ = d − 2, ∆ = O(ǫ) ⇒ ∆ = ξǫ

g∗α = g∗α1ǫ+ g∗α2ǫ
2

λ
∗

= λ
∗
1ǫ+ λ

∗
2ǫ

2

Fixed point α Region of stability
Gaussian 1 ǫ < 0,∆ > 0
Driftless 1+ ∆ unstable

Thermal 1+ ∆
2 2ǫ+ 3∆ < 3∆2

2 ,∆ < 0, (R + 1
2)∆2 > ∆

Anomalous kinetics 1+∆
1−ǫ/3 ǫ > 0,−2ǫ/3 < ∆ < −ǫ/3

Normal kinetics 1 ǫ > 0,∆ > −ǫ/3
R = −0.168
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Conclusions

Construction of the field-theoretic model of the annihilation reaction
A + A → ∅

Calculation of the renormalization constants and RG functions to the
two-loop order

Kraichnan model was studied and compared with the model based on
stochastic Navier-Stokes equations

Callan-Symanzik equation forn(t) = 〈ψ(t)〉 was solved and decaying
exponent at one-loop order was obtained
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Thank you for your attention
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