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Abstract

Intracellular signalling in general or genetic regulation and enzyme kinetics in specific are processes known to be of highly non

linear nature. Yet, the idea of parsimony guides evolution of theory along the way of the simplest available models in sufficient

agreement with experimental observations. Almost Linear Systems, - i.e. systems that follow a linear dynamic for the

concentration of agents under the constraint that agent concentrations must be non-negative -, can be understood as a

null-model of observed genetic regulation processes like for instance - the recruitment of various agents into functional protein

complexes. In this way Almost Linear Systems provide a starting-point for a systematic identification of crucial non-linear agent

interactions that defy linearization or can be used to predict the dynamics of agents missing in considered assays.
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Overview

What is an Almost Nonlinear System?

What are basic properties of ALS?

Why and in which context are ALS interesting?
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Introduction
Conflicting Essays?

Genetic Regulation Networks

Who sees better?

Boolean Goggles (fluorescence microscope based essays)

– or –

Differential Equations Goggles (ChIP: promotor-protein binding)
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Introduction
Example: Nuclear Receptor

Rudolf Hanel (SSCS) Almost Linear Systems - A null model for genetic regulatory networksCOST 26-11-10 6 / 30



Nonlinear System
Example: Protein Dynamics - Estrogen Nuclear Receptor

1

1
R. Metivier et al. Cell, 115 (2003) 751-736
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Catalytic Equations
General

Let us consider the following:

ẋi = Sijνj + Ji

xi ... concentration of substance i
(mRNA, peptides/proteins, minerals, sugars, ...)

νj ... process j ,
(e.g. proteins A and B form a complex C)

Ji ... a flow of substances i into/out-of the system

Sij ... e.g. the matrix of stoichiometric coefficients
(e.g. add one complex C and subtract one protein A and one protein B to/from
the substrate)
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Catalytic Equations
Non Linear vs. Linear

Non linear systems ...

usually require a large amount of parameters

the exact form of the non-linear equations often is not exactly known

Possibility: Linearization of the Non-linear Equations ...

Problem with linear approximations: The bread and water problem, Positivity, ...
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Catalytic Equations
Nonlinearity

Note:

νi = νi(x) ... can be highly non-linear functions, depending on the set x = {xj}.

xi ≥ 0 ... The system dynamics has to guarantee this, since concentrations xi

can not become negative.
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Catalytic Equations
Linearization (1)

Suppose the dynamics has a fixed point ẋi = 0 at x∗ for some current J∗ such that one
can simplify the non-linear dynamics by linearizing around x∗.

ẋi = Sij

(
νj(x∗) +

∂νj(x)
∂xk

∣∣∣∣
x=x∗

(xk − x∗k )
)
+ Ji

Rem: If x∗ is a fixed point then 0 = Sijνj(x∗) + J∗i for all i .
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Catalytic Equations
Linearization (2)

ẋi = Sij
∂νj(x)

∂xk

∣∣∣∣
x=x∗︸ ︷︷ ︸

Aik

(xk − x∗k ) + Ji − J∗i︸ ︷︷ ︸
∆Ji

Not to forget ...
concentrations have to be non negative ... xi ≥ 0

due to possible low molecular concentrations stochastic influences may become
important ... noise contributions νi
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Catalytic Equations
Minimal Non-Linear Models make sense ...
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Minimally non-linear Model
The Almost Linear Model

If xi > 0 or if xi = 0 and ẋi = 0 then:

ẋi = Aij(xj − x∗j ) + ∆Ji + νi

If xi = 0 and ẋi < 0 (as given by the linear equation) then:

ẋi = 0 .

xi ... concentration levels of N molecular species i

Aij ... random adjacency matrix with average connectivity 〈k〉. Non-zero weights
Aij ∈ N(0, σA)

Aii = −σAD ... decay rates are identical for all i

∆Ji ... flow vector (difference to flow defining fixed-point; in the following set to ∆J = 0)

νi = ξi (t)(xi − x0
i ) + ηi ... noise term with ξi ∈ N(0, σ) and ηi ∈ N(0, σ̄)
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Chaos in ALS
Chaos or exponential growth

The positivity condition xi ≥ 0 introduces a non-linearity:

Dynamics can become chaotic:
Idea:

λ1 < 0 ... xi converges to fixed point (λ1 ∼ 0)

0 ≤ λ1 < ε ... chaotic but non-exponentially growing xi (λ1 ∼ 0)

λ1 > ε ... exponentially growing xi
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Chaos in ALS
A weakly strange attractor of a 5-node network
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Chaos
Submatrices and Stability
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The edge of chaos
Lyapunov spectrum

Largest ten Lyapunov exponents (λp , p = 1, . . . , 10) of the Lyapunov spectrum (N = 500). The two black dashed lines are

theoretical curves – based on Girko’s law – approximating λ1(〈k〉) in the areas A and C. The intersection of these curves with

the x-axis, λ1(〈k〉) = 0, estimate the beginning and end of the λ1(〈k〉) ∼ 0 plateau (area B).
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The edge of chaos
Range of decay rate

While the decay rate rises some xi become instable and are stopped at xi = 0.

The dynamics then is governed by the submatrix A′ ⊂ A which does not contain the rows and columns i for which
xi = 0.
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Conclusions

ALS seem to provide a promising first approach to Genetic Regulation Networks.

ALS possess an inflated edge of chaos.

ALS are weakly chaotic.

The dynamics of oscillating systems is governed by sequnces of submatrices
AI ⊂ A. AI contains only indices I ⊂ {1, . . . , n}.
Stability can be understood by the alternating eigenvalue spectra of the AI .
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The End

FIN
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Multistability
Noise and Shocks

Typical time-serie; x-axis: time; y-axis: concentrations ( N = 30, σ = 0.005 and 0.001, dt = 0.1, 〈k〉 = 5, D = 0.85 ). Upper

image: multi-stability; fluctuations occasionally causes mode-switching. Lower image: resilience of modes to random shocks;

Shocks – just as fluctuations – switch modes by chance. Possibility: designing shocks for mode-switching.
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Dynamic Topology
The full and the active network

In a network of size N there are Nzero nodes that always have
xi = 0.
The active network only consists of Non (active) nodes with
non-zero xi . Active links are links between active nodes.

Non = Npos + Nalt

N = Npos + Nalt + Nzero
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Stability
Node classes

Average fractions of xi : positive (npos), zero (nzero), or alternating (nalt). Averages are taken over 1000 realizations, time interval,

[500, 1000], N = 500, D = 4, σ = σ̄ = 0, σA = 1, x0 = 1000.
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Stability
Fractions

Fraction of realizations which lead to exponentially growing (λ1 > 0.1), decaying (λ1 < −0.1) and stable time series

(|λ1| ≤ 0.1) computed from 100 realizations, N = 500, D = 4, time interval, [200, 1000], σ = σ̄ = 0.1, σA = 1, and

x0=1000.
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Oscillatory Dynamics
Frequencies

(a) Probability of finding oscillating realizations: existing fundamental frequency ω∗1 (blue) both, existing ω∗1 and ω∗2 (green). (b)

Average ω∗1 as a function of 〈k〉. (c) Standard deviation of ω∗1 . N = 500, time interval, [1000 , 3000], D = 4, σ = σ̄ = 0,

σA = 1, x0 = 1000. In (b) and (c) N = 500, D = 6, (green circles) and N = 200, D = 4 (red squares) are shown for

comparison.
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Active Network
Degree distributions

(a) Unweighted in- and out-degree distributions of the active regulatory sub-network for various 〈k〉. Active in- and out-degree,

pon
in/out(k), are practically indistinguishable. (b) Weighted in- and out-degree distributions. In- and out-weight distributions,

ρon
in/out(φ), of active weights are clearly distinguishable. φ =

∑
Aij and the sum runs over i or j for in- and out-weight

distribution, respectively.

Rudolf Hanel (SSCS) Almost Linear Systems - A null model for genetic regulatory networksCOST 26-11-10 27 / 30



Active Network
Degree distributions

(c) Mean, (d) standard deviation, (e) skewness and (f) kurtosis of the in/out-weight distributions. Differences between in- and

out-weight distributions are found in the standard deviation and the skewness. Averages are taken over 50 realizations, N = 500,

time interval, [500, 1300], D = 4, σ = σ̄ = 0.1, σA = 1, x0 = 1000.
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Conclusions

Stable (non-exponentially growing) dynamics dominant in plateau
region and coincides with dominating number of alternating nodes

Fundamental frequency almost certainly exists in plateau region

Symmetry breaking in the in- and out- weight distributions exist.
Yet, effect is not strong enough to explain topological differences
of in- and out- degree distributions in real genetic regulatory
networks alone
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The End

FIN
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