Entropy for complex systems Stefan Thurner & Rudolf Hanel

www.complex-systems.meduniwien.ac.at www.santafe.edu

C.E. Shannon, The Bell System Technical Journal **27**, 379-423, 623-656, 1948.

Appendix 2, Theorem 2

What are Complex Systems ?

- CS are made up from many elements
- These elements are in strong correlation/contact with each other
- CS strongly influence their own boundary conditions
- CS are often non-Markovian

Simple vs. Complex Systems ?

• Weakly interacting statistical systems: thermodynamics – given W large

• CS: long-range & strong interactions \rightarrow change macroscopic qualitative properties as a function of the number of states (system size)

 \rightarrow extremely rich behavior of complex systems: assemblies of neurons, state forming insects, societies etc.

 \rightarrow large assemblies markedly different systemic- or macro properties than those composed of a few elements

Why talking of entropy of Complex Systems ?

• The central concept: understanding macroscopic system behavior on the basis of microscopic properties \rightarrow *entropy*

• Entropy relates number of states to an extensive quantity, plays fundamental role in the thermodynamical description

- Hope: 'Thermodynamical' relations for CS, phase diagrams for CS, etc.
- \bullet Dream: some way to reduce number of parameters \rightarrow handle CS

Entropy of interacting statistical systems

Two initially isolated systems: A and B with W_A and W_B states

Additive: entropy combined system A + B: $S(W_A W_B) = S(W_A) + S(W_B)$ Extensive: entropy combined system A + B: $S(W_{A+B}) = S(W_A) + S(W_B)$

Non-interacting: states in combined system $W_{A+B} = W_A W_B$ Non-interacting: $S_{BG}[p] = -\sum_i -p_i \ln p_i$: additive and extensive Interacting: $W_{A+B} \leq W_A W_B$ (non-ergodic) In this case Boltzmann-Gibbs entropy is no longer extensive !!!

WANTED: extensive entropies

Why generalized entropies ?

To ensure extensivity of entropy in strongly interacting system

 \rightarrow find entropic form for particular system \rightarrow generalized entropies

$$S_g[p] = \sum_{i=1}^W g(p_i)$$
 W ... number of states

The Shannon-Khinchin axioms

- K1: S depends continuously on $p \rightarrow g$ is continuous
- K2: entropy maximal for equi-distribution $p_i = 1/W \rightarrow g$ is concave

• K3:
$$S(p_1, p_2, \dots, p_W) = S(p_1, p_2, \dots, p_W, \mathbf{0}) \to g(\mathbf{0}) = \mathbf{0}$$

• K4:
$$S(A + B) = S(A) + S(B|A)$$

Theorem: If K1 to K4 hold, entropy is Boltzmann-Gibbs-Shannon entropy

$$S_{\mathrm{BG}}[p] = \sum_{i=1}^{W} g_{\mathrm{BG}}(p_i) \quad \text{with} \quad g_{\mathrm{BG}}(x) = -x \ln x$$

Shannon-Khinchin axiom 4 is non-sense for CS

K4 corresponds to Markovian processes or weak interactions \rightarrow violated for most interacting systems

• Assume axioms K1, K2, K3 and $S_g = \sum g(p)$

(K1-K3 is equivalent to: g is continuous, concave and g(0) = 0)

The Complex Systems axioms

- K1 holds
- K2 holds
- K3 holds
- $S_g = \sum_i^W g(p_i)$, $W \gg 1$

Theorem: If 4 axioms hold:

(1) all systems can be uniquely classified by 2 numbers, c and d.

(2) for all these systems there exists a unique entropy:

$$S_{c,d} = \frac{e}{1-c+cd} \left[\sum_{i=1}^{W} \Gamma\left(1+d, 1-c\ln p_i\right) - \frac{c}{e} \right] \qquad e \cdots \text{Euler const}$$

The argument

Assume no constraint on system \rightarrow equi-distribution $p_i = \frac{1}{W}$

$$S_g = \sum_{i=1}^W g(p_i) = Wg\left(\frac{1}{W}\right)$$

Study mathematical properties of g

- Scaling transformation $W \rightarrow \lambda W$: how does entropy change ?
- A second asymptotic property from specific scaling: $\lambda \to W^a$

Mathematical properties I: a scaling law

$$\lim_{W \to \infty} \frac{S_g(W\lambda)}{S_g(W)} = \lim_{W \to \infty} \lambda \frac{g(\frac{1}{\lambda W})}{g(\frac{1}{W})}$$

define scaling function

$$f(z) \equiv \lim_{x \to 0} \frac{g(zx)}{g(x)} \qquad (0 < z < 1)$$

Theorem 1: for systems satisfying K1, K2, K3

 $\rightarrow f$ can only be a power $f(z) = z^c$, with $0 < c \le 1$

Obviously: $\lim_{W\to\infty} \frac{S_g(\lambda W)}{S_g(W)} = \lambda^{1-c}$ Keep this in mind!

Theorem 1

Let g be a continuous, concave function on [0,1] with g(0) = 0 and let $f(z) = \lim_{x \to 0^+} g(zx)/g(x)$ be continuous, then f is of the form $f(z) = z^c$ with $c \in (0,1]$.

Proof. Note that $f(ab) = \lim_{x\to 0} g(abx)/g(x) = \lim_{x\to 0} (g(abx)/g(bx))(g(bx)/g(x)) = f(a)f(b)$. All pathological solutions are excluded by the requirement that f is continuous. So f(ab) = f(a)f(b) implies that $f(z) = z^c$ is the only possible solution of this equation. Further, since g(0) = 0, also $\lim_{x\to 0} g(0x)/g(x) = 0$, and it follows that f(0) = 0. This necessarily implies that c > 0. $f(z) = z^c$ also has to be concave since g(zx)/g(x) is concave in z for arbitrarily small, fixed x > 0. Therefore $c \leq 1$.

Mathematical properties II: an asymptotic property

Substitute λ by $\lambda \to W^a \to {\rm identify}$ a second asymptotic property Define

$$h_c(a) \equiv \lim_{W \to \infty} \frac{S(W^{1+a})}{S(W)} W^{a(c-1)} = \lim_{x \to 0} \frac{g(x^{1+a})}{x^{ac}g(x)} \qquad (x = \frac{1}{W})$$

 $h_c(a)$ in principle depends on c and a, BUT

Theorem 2: Under K1-K3, $h_c(a)$ can only be

$$h_c(a) = (1+a)^d$$
 (d constant)

Remarkably, this is independent of c and $h_c(a)$ is an asymptotic property which is independent of first scaling property!

Note that if c = 1, concavity of g implies $d \ge 0$

Theorem 2

Let g be like in Theorem 1 and let $f(z) = z^c$ then h_c given in Eq. (8) is a constant of the form $h_c(a) = (1+a)^d$ for some constant d.

Proof. We determine $h_c(a)$ again by a similar trick as we have used for f.

$$h_{c}(a) = \lim_{x \to 0} \frac{g(x^{a+1})}{x^{ac}g(x)} = \frac{g\left((x^{b})^{\left(\frac{a+1}{b}-1\right)+1}\right)}{(x^{b})^{\left(\frac{a+1}{b}-1\right)c}g(x^{b})} \frac{g(x^{b})}{x^{(b-1)c}g(x)}$$
$$= h_{c}\left(\frac{a+1}{b}-1\right)h_{c}\left(b-1\right) ,$$

for some constant b. By a simple transformation of variables, a = bb' - 1, one gets $h_c(bb'-1) = h_c(b-1)h_c(b'-1)$. Setting $H(x) = h_c(x-1)$ one again gets H(bb') = H(b)H(b'). So $H(x) = x^d$ for some constant d and consequently $h_c(a)$ is of the form $(1+a)^d$.

Summary

Interacting systems \rightarrow require K1-K3 and $S = \sum g(p_i)$

$$\rightarrow f(z) = \lim_{x \to 0} \frac{g(zx)}{g(x)} = z^{c} \qquad 0 \le c < 1$$
$$\rightarrow h_{c}(a) = \lim_{x \to 0} \frac{g(x^{1+a})}{x^{ac}g(x)} = (1+a)^{d} \qquad d \text{ real}$$

Remarkable: all systems are characterized by a pair of 2 exponents: (c, d)

Examples

• Boltzmann-Gibbs:
$$g_{BG}(x) = -x \ln(x)$$

$$f(z) = z$$
, i.e. $c = 1$

$$h_1(a) = 1 + a$$
, i.e. $d = 1$

 $\rightarrow S_{\rm BG}$ belongs to the universality class (c,d) = (1,1)

• Tsallis:
$$g_q(x) = (x - x^q)/(1 - q)$$

 $f(z) = z^q$, i.e. $c = q$
 $h_0(a) = 1$, i.e. $d = 0$

 $\rightarrow S_q$ belongs to the universality class (c,d)=(q,0)

• etc ...

Classification

entropy		С	d
$S_{BG} = \sum_{i} p_i \ln(1/p_i)$		1	1
• $S_{q<1} = rac{1-\sum p_i^q}{q-1}$	(q < 1)	c = q < 1	0
• $S_{\kappa} = \sum_{i} p_i (p_i^{\kappa} - p_i^{-\kappa}) / (-2\kappa)$	$(0 < \kappa \le 1)$	$c = 1 - \kappa$	0
• $S_{q>1} = \frac{1-\sum p_i^q}{q-1}$	(q > 1)	1	0
• $S_b = \sum_i (1 - e^{-bp_i}) + e^{-b} - 1$	(b > 0)	1	0
• $S_E = \sum_i p_i (1 - e^{\frac{p_i - 1}{p_i}})$		1	0
• $S_{\eta} = \sum_{i} \Gamma(\frac{\eta+1}{\eta}, -\ln p_i) - p_i \Gamma(\frac{\eta+1}{\eta})$	$(\eta > 0)$	1	$d = 1/\eta$
• $S_{\gamma} = \sum_{i} p_i \ln^{1/\gamma} (1/p_i)$		1	$d = 1/\gamma$
• $S_{\beta} = \sum_{i} p_{i}^{\beta} \ln(1/p_{i})$		$c = \beta$	1

The entropy

Question: which g fulfills $f(z) = z^c$ and $h_c(a) = (1+a)^d$? Answer: $g_{c,d,r}(x) = re \Gamma (1+d, 1-c \ln x) - rcx \rightarrow$

$$S_{c,d} = \sum_{i=1}^{W} re \Gamma (1+d, 1-c \ln p_i) - rc \qquad r = \frac{1}{1-c+cd}$$

 Γ ... incomplete Gamma function $\Gamma(a,b) = \int_b^\infty dt \, t^{a-1} \exp(-t)$

Proof: see Theorem 4

Examples

•
$$S_{1,1} = \sum_{i} g_{1,1}(p_i) = -\sum_{i} p_i \ln p_i + 1$$
 (BG entropy)
• $S_{c,0} = \sum_{i} g_{c,0}(p_i) = \frac{1 - \sum_{i} p_i^c}{c - 1} + 1$ (Tsallis entropy)
• $S_{1,d>0} = \sum_{i} g_{1,d}(p_i) = \frac{e}{d} \sum_{i} \Gamma (1 + d, 1 - \ln p_i) - \frac{1}{d}$ (AP entropy)
• ...

Distribution functions of CS

Entropy \rightarrow generalized logarithm \rightarrow generalized exponential \equiv distribution function:

$$p_{c,d}(x) = e^{-\frac{d}{1-c} \left[\frac{W_k \left(B(1+\frac{x}{r})^{\frac{1}{d}} \right) - W_k(B)}{cd} \right]} \qquad B \equiv \frac{1-c}{cd} \exp\left(\frac{1-c}{cd}\right)$$

 W_k ... k'th branch of Lambert-W function: solution to $x = W(x)e^{W(x)}$ only branch k = 0 and k = -1 have real solutions

 $d \ge 0 \rightarrow$ take branch k = 0

 $d < 0 \rightarrow$ take branch k = -1

Distribution functions of CS

- $(c,d) = (1,1) \rightarrow \text{Boltzmann distribution}$
- $(c,d) = (q,0) \rightarrow \text{power-laws} (q-\text{exponentials})$
- (c,d) = (1,d), for $d > 0 \rightarrow$ stretched exponentials
- (c,d) all others \rightarrow Lambert-W exponentials

NO OTHER POSSIBILITIES

Streched Exponential: c = 1, d > 0

q-exponentials: $0 < c \leq 1$, d = 0

Lambert-W

Example: a physical system

equation of motion for particle i in system of N overdamped particles

$$\mu \vec{v}_{i} = \sum_{j \neq i} \vec{J}(\vec{r}_{i} - r_{j}) + \vec{F}(\vec{r}_{i}) + \eta(\vec{r}_{i}, t)$$

 $v_i \dots$ velocity of i th particle $\mu \dots$ viscosity of medium $F \dots$ external force $\vec{J}(\vec{r}) = G\left(\frac{|\vec{r}|}{\lambda}\right)\hat{r} \dots$ repulsive particle-particle interaction $\eta \dots$ uncorrelated thermal noise $\langle \eta \rangle = 0$ and $\langle \eta^2 \rangle = \frac{kT}{\mu}$ $\lambda \dots$ characteristic length of short range pairwise interaction

Shown with FP approach and simulation (arXiv: 1008.1421v1)

- low temperature: Tsallis system (c,d) = (q,0)
- high temperature limit \rightarrow BG system (c,d) = (1,1)

A note on Rényi entropy

It is it not sooo relevant for CS. Why?

• Relax Khinchin axiom 4:

 $S(A+B)=S(A)+S(B|A) \rightarrow S(A+B)=S(A)+S(B) \rightarrow \mathsf{R\acute{e}nyi} \text{ entropy } A \in \mathcal{S}(A)$

•
$$S_R = \frac{1}{\alpha - 1} \ln \sum_i p_i^{\alpha}$$
 violates our $S = \sum_i g(p_i)$

But: our above argument also holds for Rényi-type entropies !!!

$$S = G\left(\sum_{i=1}^{W} g(p_i)\right)$$

$$\lim_{W \to \infty} \frac{S(\lambda W)}{S(W)} = \lim_{R \to \infty} \frac{G\left(\frac{f_g(z)}{z}G^{-1}(R)\right)}{R} = [\text{for } G \equiv \ln] = 1$$

Bonus track: A note on finite systems

Told you: $r = \frac{1}{1-c+cd}$. This is not the most general case ! Can pick r freely – as long as

$$d > 0: \quad r < \frac{1}{1-c} \\ d = 0: \quad r = \frac{1}{1-c} \\ d < 0: \quad r > \frac{1}{1-c}$$

then the corresponding generalized logarithms $\Lambda(p(-x))=x$ have the usual properties: $\Lambda(1)=0$ and $\Lambda'(1)=1$

- every choice of r gives a representative of the equivalence class (c, d)
- r encodes finite-size characteristics of distribution

Conclusions

- Interpret CS as those where Khinchin axioms 1-3 hold and $S = \sum g$
- Showed: macroscopic statistical systems can be uniquely classified in terms of their asymptotic $(W \gg 1)$ properties
- Systems classified by two exponents (c, d) analogy to critical exponents
- (c,d) define equivalence relations on entropic forms
- Single entropy covers all systems: $S_{c,d} = re \sum_{i} \Gamma \left(1 + d, 1 c \ln p_i\right) rc$
- All known entropies of admissible systems are special cases
- \bullet Distribution functions of *all* systems belong to class of Lambert-W exponentials. There are no other options
- Remarkable: Tsallis case sandwiched between the 2 Lambert solutions

