Entropy for complex systems

Stefan Thurner \& Rudolf Hanel

www. complex-systems.meduniwien.ac.at
www.santafe.edu

C.E. Shannon, The Bell System Technical Journal 27, 379-423, 623-656, 1948.

Appendix 2, Theorem 2

What are Complex Systems ?

- CS are made up from many elements
- These elements are in strong correlation/contact with each other
- CS strongly influence their own boundary conditions
- CS are often non-Markovian

Simple vs. Complex Systems ?

- Weakly interacting statistical systems: thermodynamics - given W large
- CS: long-range \& strong interactions \rightarrow change macroscopic qualitative properties as a function of the number of states (system size)
\rightarrow extremely rich behavior of complex systems: assemblies of neurons, state forming insects, societies etc.
\rightarrow large assemblies markedly different systemic- or macro properties than those composed of a few elements

Why talking of entropy of Complex Systems ?

- The central concept: understanding macroscopic system behavior on the basis of microscopic properties \rightarrow entropy
- Entropy relates number of states to an extensive quantity, plays fundamental role in the thermodynamical description
- Hope: 'Thermodynamical' relations for CS, phase diagrams for CS, etc.
- Dream: some way to reduce number of parameters \rightarrow handle CS

Entropy of interacting statistical systems

Two initially isolated systems: A and B with W_{A} and W_{B} states

Additive: entropy combined system $A+B: S\left(W_{A} W_{B}\right)=S\left(W_{A}\right)+S\left(W_{B}\right)$
Extensive: entropy combined system $A+B: S\left(W_{A+B}\right)=S\left(W_{A}\right)+S\left(W_{B}\right)$

Non-interacting: states in combined system $W_{A+B}=W_{A} W_{B}$
Non-interacting: $S_{\mathrm{BG}}[p]=-\sum_{i}-p_{i} \ln p_{i}$: additive and extensive Interacting: $W_{A+B} \leq W_{A} W_{B}$ (non-ergodic)

In this case Boltzmann-Gibbs entropy is no longer extensive !!!
WANTED: extensive entropies

Why generalized entropies ?

To ensure extensivity of entropy in strongly interacting system
\rightarrow find entropic form for particular system \rightarrow generalized entropies

$$
S_{g}[p]=\sum_{i=1}^{W} g\left(p_{i}\right) \quad W \quad \ldots \quad \text { number of states }
$$

The Shannon-Khinchin axioms

- K1: S depends continuously on $p \rightarrow g$ is continuous
- K2: entropy maximal for equi-distribution $p_{i}=1 / W \rightarrow g$ is concave
- K3: $S\left(p_{1}, p_{2}, \cdots, p_{W}\right)=S\left(p_{1}, p_{2}, \cdots, p_{W}, 0\right) \rightarrow g(0)=0$
- K4: $S(A+B)=S(A)+S(B \mid A)$

Theorem: If K1 to K4 hold, entropy is Boltzmann-Gibbs-Shannon entropy

$$
S_{\mathrm{BG}}[p]=\sum_{i=1}^{W} g_{\mathrm{BG}}\left(p_{i}\right) \quad \text { with } \quad g_{\mathrm{BG}}(x)=-x \ln x
$$

Shannon-Khinchin axiom 4 is non-sense for CS

K4 corresponds to Markovian processes or weak interactions
\rightarrow violated for most interacting systems

- Assume axioms K1, K2, K3 and $S_{g}=\sum g(p)$
(K1-K3 is equivalent to: g is continuous, concave and $g(0)=0$)

The Complex Systems axioms

- K1 holds
- K2 holds
- K3 holds
- $S_{g}=\sum_{i}^{W} g\left(p_{i}\right), W \gg 1$

Theorem: If 4 axioms hold:
(1) all systems can be uniquely classified by 2 numbers, c and d.
(2) for all these systems there exists a unique entropy:

$$
S_{c, d}=\frac{e}{1-c+c d}\left[\sum_{i=1}^{W} \Gamma\left(1+d, 1-c \ln p_{i}\right)-\frac{c}{e}\right] \quad e \cdots \text { Euler const }
$$

The argument

Assume no constraint on system \rightarrow equi-distribution $p_{i}=\frac{1}{W}$

$$
S_{g}=\sum_{i=1}^{W} g\left(p_{i}\right)=W g\left(\frac{1}{W}\right)
$$

Study mathematical properties of g

- Scaling transformation $W \rightarrow \lambda W$: how does entropy change ?
- A second asymptotic property from specific scaling: $\lambda \rightarrow W^{a}$

Mathematical properties I: a scaling law

$$
\lim _{W \rightarrow \infty} \frac{S_{g}(W \lambda)}{S_{g}(W)}=\lim _{W \rightarrow \infty} \lambda \frac{g\left(\frac{1}{\lambda W}\right)}{g\left(\frac{1}{W}\right)}
$$

define scaling function

$$
f(z) \equiv \lim _{x \rightarrow 0} \frac{g(z x)}{g(x)} \quad(0<z<1)
$$

Theorem 1: for systems satisfying K1, K2, K3
$\rightarrow f$ can only be a power $f(z)=z^{c}$, with $0<c \leq 1$
Obviously: $\lim _{W \rightarrow \infty} \frac{S_{g}(\lambda W)}{S_{g}(W)}=\lambda^{1-c}$
Keep this in mind!

Theorem 1

Let g be a continuous, concave function on $[0,1]$ with $g(0)=0$ and let $f(z)=\lim _{x \rightarrow 0^{+}} g(z x) / g(x)$ be continuous, then f is of the form $f(z)=z^{c}$ with $c \in(0,1]$.

Proof. Note that $f(a b)=\lim _{x \rightarrow 0} g(a b x) / g(x)=$ $\lim _{x \rightarrow 0}(g(a b x) / g(b x))(g(b x) / g(x))=f(a) f(b)$. All pathological solutions are excluded by the requirement that f is continuous. So $f(a b)=f(a) f(b)$ implies that $f(z)=z^{c}$ is the only possible solution of this equation. Further, since $g(0)=0$, also $\lim _{x \rightarrow 0} g(0 x) / g(x)=0$, and it follows that $f(0)=0$. This necessarily implies that $c>0 . f(z)=z^{c}$ also has to be concave since $g(z x) / g(x)$ is concave in z for arbitrarily small, fixed $x>0$. Therefore $c \leq 1$.

Mathematical properties II: an asymptotic property

Substitute λ by $\lambda \rightarrow W^{a} \rightarrow$ identify a second asymptotic property
Define

$$
h_{c}(a) \equiv \lim _{W \rightarrow \infty} \frac{S\left(W^{1+a}\right)}{S(W)} W^{a(c-1)}=\lim _{x \rightarrow 0} \frac{g\left(x^{1+a}\right)}{x^{a c} g(x)} \quad\left(x=\frac{1}{W}\right)
$$

$h_{c}(a)$ in principle depends on c and a, BUT
Theorem 2: Under K1-K3, $h_{c}(a)$ can only be

$$
h_{c}(a)=(1+a)^{d} \quad(d \text { constant })
$$

Remarkably, this is independent of c and $h_{c}(a)$ is an asymptotic property which is independent of first scaling property!

Note that if $c=1$, concavity of g implies $d \geq 0$

Theorem 2

Let g be like in Theorem 1 and let $f(z)=z^{c}$ then h_{c} given in Eq. (8) is a constant of the form $h_{c}(a)=(1+a)^{d}$ for some constant d.

Proof. We determine $h_{c}(a)$ again by a similar trick as we have used for f.

$$
\begin{aligned}
h_{c}(a) & =\lim _{x \rightarrow 0} \frac{g\left(x^{a+1}\right)}{x^{a c} g(x)}=\frac{g\left(\left(x^{b}\right)\left(\frac{a+1}{b}-1\right)+1\right.}{\left(x^{b}\right)\left(\frac{a+1}{b}-1\right) c}{ }_{g\left(x^{b}\right)} \frac{g\left(x^{b}\right)}{x^{(b-1) c} g(x)} \\
& =h_{c}\left(\frac{a+1}{b}-1\right) h_{c}(b-1),
\end{aligned}
$$

for some constant b. By a simple transformation of variables, $a=b b^{\prime}-1$, one gets $h_{c}\left(b b^{\prime}-1\right)=h_{c}(b-1) h_{c}\left(b^{\prime}-1\right)$. Setting $H(x)=h_{c}(x-1)$ one again gets $H\left(b b^{\prime}\right)=H(b) H\left(b^{\prime}\right)$. So $H(x)=x^{d}$ for some constant d and consequently $h_{c}(a)$ is of the form $(1+a)^{d}$.

Summary

Interacting systems \rightarrow require K1-K3 and $S=\sum g\left(p_{i}\right)$
$\rightarrow f(z)=\lim _{x \rightarrow 0} \frac{g(z x)}{g(x)}=z^{c} \quad 0 \leq c<1$
$\rightarrow h_{c}(a)=\lim _{x \rightarrow 0} \frac{g\left(x^{1+a}\right)}{x^{a c g} g(x)}=(1+a)^{d} \quad d$ real

Remarkable: all systems are characterized by a pair of 2 exponents: (c, d)

Examples

- Boltzmann-Gibbs: $g_{\mathrm{BG}}(x)=-x \ln (x)$

$$
\begin{aligned}
& f(z)=z, \text { i.e. } c=1 \\
& h_{1}(a)=1+a, \text { i.e. } d=1
\end{aligned}
$$

$\rightarrow S_{\mathrm{BG}}$ belongs to the universality class $(c, d)=(1,1)$

- Tsallis: $g_{q}(x)=\left(x-x^{q}\right) /(1-q)$

$$
\begin{aligned}
& f(z)=z^{q}, \text { i.e. } c=q \\
& h_{0}(a)=1, \text { i.e. } d=0
\end{aligned}
$$

$\rightarrow S_{q}$ belongs to the universality class $(c, d)=(q, 0)$

- etc ...

Classification

entropy		c	d
$S_{B G}=\sum_{i} p_{i} \ln \left(1 / p_{i}\right)$		1	1
$\text { - } S_{q<1}=\frac{1-\sum p_{i}^{q}}{q-1}$	$(q<1)$	$c=q<1$	0
- $S_{\kappa}=\sum_{i} p_{i}\left(p_{i}^{\kappa}-p_{i}^{-\kappa}\right) /(-2 \kappa)$	$(0<\kappa \leq 1)$	$c=1-\kappa$	0
- $S_{q>1}=\frac{1-\sum p_{i}^{q}}{q-1}$	$(q>1)$	1	0
- $S_{b}=\sum_{i}\left(1-e^{-b p_{i}}\right)+e^{-} b-1$	$(b>0)$	1	0
- $S_{E}=\sum_{i} p_{i}\left(1-e^{\frac{p_{i}-1}{p_{i}}}\right)$		1	0
- $S_{\eta}=\sum_{i} \Gamma\left(\frac{\eta+1}{\eta},-\ln p_{i}\right)-p_{i} \Gamma\left(\frac{\eta+1}{\eta}\right)$	$(\eta>0)$	1	$d=1 / \eta$
- $S_{\gamma}=\sum_{i} p_{i} \ln ^{1 / \gamma}\left(1 / p_{i}\right)$		1	$d=1 / \gamma$
- $S_{\beta}=\sum_{i} p_{i}^{\beta} \ln \left(1 / p_{i}\right)$		$c=\beta$	1

The entropy

Question: which g fulfills $f(z)=z^{c}$ and $h_{c}(a)=(1+a)^{d}$?
Answer: $g_{c, d, r}(x)=r e \Gamma(1+d, 1-c \ln x)-r c x \rightarrow$

$$
S_{c, d}=\sum_{i=1}^{W} r e \Gamma\left(1+d, 1-c \ln p_{i}\right)-r c \quad r=\frac{1}{1-c+c d}
$$

$\Gamma \ldots$ incomplete Gamma function $\Gamma(a, b)=\int_{b}^{\infty} d t t^{a-1} \exp (-t)$

Proof: see Theorem 4

Examples

- $S_{1,1}=\sum_{i} g_{1,1}\left(p_{i}\right)=-\sum_{i} p_{i} \ln p_{i}+1$ (BG entropy)
- $S_{c, 0}=\sum_{i} g_{c, 0}\left(p_{i}\right)=\frac{1-\sum_{i} p_{i}^{c}}{c-1}+1$ (Tsallis entropy)
- $S_{1, d>0}=\sum_{i} g_{1, d}\left(p_{i}\right)=\frac{e}{d} \sum_{i} \Gamma\left(1+d, 1-\ln p_{i}\right)-\frac{1}{d}$ (AP entropy)

Distribution functions of CS

Entropy \rightarrow generalized logarithm \rightarrow generalized exponential \equiv distribution function:

$$
p_{c, d}(x)=e^{-\frac{d}{1-c}\left[W_{k}\left(B\left(1+\frac{x}{r}\right)^{\frac{1}{d}}\right)-W_{k}(B)\right]} \quad B \equiv \frac{1-c}{c d} \exp \left(\frac{1-c}{c d}\right)
$$

$W_{k} \ldots k$ 'th branch of Lambert- W function: solution to $x=W(x) e^{W(x)}$ only branch $k=0$ and $k=-1$ have real solutions
$d \geq 0 \rightarrow$ take branch $k=0$
$d<0 \rightarrow$ take branch $k=-1$

Distribution functions of CS

- $(c, d)=(1,1) \rightarrow$ Boltzmann distribution
- $(c, d)=(q, 0) \rightarrow$ power-laws (q-exponentials)
- $(c, d)=(1, d)$, for $d>0 \rightarrow$ stretched exponentials
- (c, d) all others \rightarrow Lambert- W exponentials

NO OTHER POSSIBILITIES

Streched Exponential: $c=1, d>0$

q-exponentials: $0<c \leq 1, d=0$

Lambert-W

Example: a physical system

equation of motion for particle i in system of N overdamped particles

$$
\mu \vec{v}_{i}=\sum_{j \neq i} \vec{J}\left(\vec{r}_{i}-r_{j}\right)+\vec{F}\left(\vec{r}_{i}\right)+\eta\left(\vec{r}_{i}, t\right)
$$

$v_{i} \ldots$ velocity of i th particle $\quad \mu \ldots$ viscosity of medium $\quad F \ldots$ external force $\vec{J}(\vec{r})=G\left(\frac{|\vec{r}|}{\lambda}\right) \hat{r} \ldots$ repulsive particle-particle interaction
$\eta \ldots$ uncorrelated thermal noise $\langle\eta\rangle=0$ and $\left\langle\eta^{2}\right\rangle=\frac{k T}{\mu}$
λ... characteristic length of short range pairwise interaction

Shown with FP approach and simulation (arXiv: 1008.1421v1)

- low temperature: Tsallis system $(c, d)=(q, 0)$
- high temperature limit $\rightarrow \mathrm{BG}$ system $(c, d)=(1,1)$

A note on Rényi entropy

It is it not sooo relevant for CS. Why?

- Relax Khinchin axiom 4:
$S(A+B)=S(A)+S(B \mid A) \rightarrow S(A+B)=S(A)+S(B) \rightarrow$ Rényi entropy
- $S_{R}=\frac{1}{\alpha-1} \ln \sum_{i} p_{i}^{\alpha}$ violates our $S=\sum_{i} g\left(p_{i}\right)$

But: our above argument also holds for Rényi-type entropies !!!

$$
\begin{gathered}
S=G\left(\sum_{i=1}^{W} g\left(p_{i}\right)\right) \\
\lim _{W \rightarrow \infty} \frac{S(\lambda W)}{S(W)}=\lim _{R \rightarrow \infty} \frac{G\left(\frac{f_{g}(z)}{z} G^{-1}(R)\right)}{R}=[\text { for } G \equiv \ln]=1
\end{gathered}
$$

Bonus track:

A note on finite systems

Told you: $r=\frac{1}{1-c+c d}$. This is not the most general case!
Can pick r freely - as long as

$$
\begin{array}{ll}
d>0: & r<\frac{1}{1-c} \\
d=0: & r=\frac{1}{1-c} \\
d<0: & r>\frac{1}{1-c}
\end{array}
$$

then the corresponding generalized logarithms $\Lambda(p(-x))=x$ have the usual properties: $\Lambda(1)=0$ and $\Lambda^{\prime}(1)=1$

- every choice of r gives a representative of the equivalence class (c, d)
- r encodes finite-size characteristics of distribution

Conclusions

- Interpret CS as those where Khinchin axioms 1-3 hold and $S=\sum g$
- Showed: macroscopic statistical systems can be uniquely classified in terms of their asymptotic $(W \gg 1)$ properties
- Systems classified by two exponents (c, d) - analogy to critical exponents
- (c, d) define equivalence relations on entropic forms
- Single entropy covers all systems: $S_{c, d}=r e \sum_{i} \Gamma\left(1+d, 1-c \ln p_{i}\right)-r c$
- All known entropies of admissible systems are special cases
- Distribution functions of all systems belong to class of Lambert- W exponentials. There are no other options
- Remarkable: Tsallis case sandwiched between the 2 Lambert solutions

