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What are Complex Systems ?

• CS are made up from many elements

• These elements are in strong correlation/contact with each other

• CS strongly influence their own boundary conditions

• CS are often non-Markovian
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Simple vs. Complex Systems ?

• Weakly interacting statistical systems: thermodynamics – given W large

• CS: long-range & strong interactions → change macroscopic qualitative
properties as a function of the number of states (system size)

→ extremely rich behavior of complex systems: assemblies of neurons, state
forming insects, societies etc.

→ large assemblies markedly different systemic- or macro properties than
those composed of a few elements
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Why talking of entropy of Complex Systems ?

• The central concept: understanding macroscopic system behavior on the
basis of microscopic properties → entropy

• Entropy relates number of states to an extensive quantity, plays funda-
mental role in the thermodynamical description

• Hope: ’Thermodynamical’ relations for CS, phase diagrams for CS, etc.

• Dream: some way to reduce number of parameters → handle CS
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Entropy of interacting statistical systems

Two initially isolated systems: A and B with WA and WB states

Additive: entropy combined system A+B: S(WAWB) = S(WA) +S(WB)

Extensive: entropy combined system A+B: S(WA+B) = S(WA)+S(WB)

Non-interacting: states in combined system WA+B = WAWB

Non-interacting: SBG[p] = −
∑
i−pi ln pi: additive and extensive

Interacting: WA+B ≤WAWB (non-ergodic)

In this case Boltzmann-Gibbs entropy is no longer extensive !!!

WANTED: extensive entropies
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Why generalized entropies ?

To ensure extensivity of entropy in strongly interacting system

→ find entropic form for particular system → generalized entropies

Sg[p] =

W∑
i=1

g(pi) W ... number of states
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The Shannon-Khinchin axioms

• K1: S depends continuously on p → g is continuous

• K2: entropy maximal for equi-distribution pi = 1/W → g is concave

• K3: S(p1, p2, · · · , pW ) = S(p1, p2, · · · , pW , 0) → g(0) = 0

• K4: S(A+B) = S(A) + S(B|A)

Theorem: If K1 to K4 hold, entropy is Boltzmann-Gibbs-Shannon entropy

SBG[p] =

W∑
i=1

gBG(pi) with gBG(x) = −x lnx
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Shannon-Khinchin axiom 4 is non-sense for CS

K4 corresponds to Markovian processes or weak interactions
→ violated for most interacting systems

• Assume axioms K1, K2, K3 and Sg =
∑
g(p)

(K1-K3 is equivalent to: g is continuous, concave and g(0) = 0)
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The Complex Systems axioms

• K1 holds

• K2 holds

• K3 holds

• Sg =
∑W
i g(pi) , W � 1

Theorem: If 4 axioms hold:

(1) all systems can be uniquely classified by 2 numbers, c and d.

(2) for all these systems there exists a unique entropy:

Sc,d =
e

1− c+ cd

[
W∑
i=1

Γ (1 + d , 1− c ln pi)−
c

e

]
e · · ·Euler const
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The argument

Assume no constraint on system → equi-distribution pi = 1
W

Sg =

W∑
i=1

g(pi) = Wg

(
1

W

)

Study mathematical properties of g

• Scaling transformation W → λW : how does entropy change ?

• A second asymptotic property from specific scaling: λ→W a
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Mathematical properties I: a scaling law

lim
W→∞

Sg(Wλ)

Sg(W )
= lim
W→∞

λ
g( 1
λW )

g( 1
W )

define scaling function

f(z) ≡ lim
x→0

g(zx)

g(x)
(0 < z < 1)

Theorem 1: for systems satisfying K1, K2, K3

→ f can only be a power f(z) = zc, with 0 < c ≤ 1

Obviously: limW→∞
Sg(λW )
Sg(W ) = λ1−c Keep this in mind!
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Theorem 1

Let g be a continuous, concave function on [0, 1] with g(0) = 0 and let
f(z) = limx→0+ g(zx)/g(x) be continuous, then f is of the form f(z) = zc

with c ∈ (0, 1].

Proof. Note that f(ab) = limx→0 g(abx)/g(x) =
limx→0(g(abx)/g(bx))(g(bx)/g(x)) = f(a)f(b). All pathological solutions
are excluded by the requirement that f is continuous. So f(ab) = f(a)f(b)
implies that f(z) = zc is the only possible solution of this equation. Further,
since g(0) = 0, also limx→0 g(0x)/g(x) = 0, and it follows that f(0) = 0.
This necessarily implies that c > 0. f(z) = zc also has to be concave since
g(zx)/g(x) is concave in z for arbitrarily small, fixed x > 0. Therefore
c ≤ 1.
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Mathematical properties II: an asymptotic property

Substitute λ by λ→W a → identify a second asymptotic property

Define

hc(a) ≡ lim
W→∞

S(W 1+a)

S(W )
W a(c−1) = lim

x→0

g(x1+a)

xacg(x)
(x =

1

W
)

hc(a) in principle depends on c and a, BUT

Theorem 2: Under K1-K3, hc(a) can only be

hc(a) = (1 + a)d (d constant)

Remarkably, this is independent of c and hc(a) is an asymptotic property
which is independent of first scaling property!

Note that if c = 1, concavity of g implies d ≥ 0
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Theorem 2

Let g be like in Theorem 1 and let f(z) = zc then hc given in Eq. (8) is a
constant of the form hc(a) = (1 + a)d for some constant d.

Proof. We determine hc(a) again by a similar trick as we have used for f .

hc(a) = limx→0
g(xa+1)
xacg(x) =

g

(
(xb)(

a+1
b
−1)+1

)
(xb)(

a+1
b
−1)cg(xb)

g(xb)

x(b−1)cg(x)

= hc
(
a+1
b − 1

)
hc (b− 1) ,

for some constant b. By a simple transformation of variables, a = bb′ − 1,
one gets hc(bb

′ − 1) = hc(b− 1)hc(b
′ − 1). Setting H(x) = hc(x− 1) one

again gets H(bb′) = H(b)H(b′). So H(x) = xd for some constant d and
consequently hc(a) is of the form (1 + a)d.

vienna nov 26 2010 14



Summary

Interacting systems → require K1-K3 and S =
∑
g(pi)

→ f(z) = limx→0
g(zx)
g(x) = zc 0 ≤ c < 1

→ hc(a) = limx→0
g(x1+a)
xacg(x) = (1 + a)d d real

Remarkable: all systems are characterized by a pair of 2 exponents: (c, d)
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Examples

• Boltzmann-Gibbs: gBG(x) = −x ln(x)

f(z) = z, i.e. c = 1

h1(a) = 1 + a, i.e. d = 1

→ SBG belongs to the universality class (c, d) = (1, 1)

• Tsallis: gq(x) = (x− xq)/(1− q)

f(z) = zq, i.e. c = q

h0(a) = 1, i.e. d = 0

→ Sq belongs to the universality class (c, d) = (q, 0)

• etc ...
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Classification

entropy c d
SBG =

∑
i pi ln(1/pi) 1 1

• Sq<1 =
1−
∑
p
q
i

q−1 (q < 1) c = q < 1 0

• Sκ =
∑

i pi(p
κ
i − p

−κ
i )/(−2κ) (0 < κ ≤ 1) c = 1− κ 0

• Sq>1 =
1−
∑
p
q
i

q−1 (q > 1) 1 0

• Sb =
∑

i(1− e
−bpi) + e−b− 1 (b > 0) 1 0

• SE =
∑

i pi(1− e
pi−1
pi ) 1 0

• Sη =
∑

i Γ(η+1
η ,− ln pi)− piΓ(η+1

η ) (η > 0) 1 d = 1/η

• Sγ =
∑

i pi ln
1/γ(1/pi) 1 d = 1/γ

• Sβ =
∑

i p
β
i ln(1/pi) c = β 1

Sc,d =
∑

i erΓ(d+ 1, 1− c ln pi)− cr c d
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−1 0 1 2

0

1

violates K2 

violates K2 Stretched exponentials − asymptotically stable 

(c,d)−entropy, d>0
Lambert W0 exponentials

q−entropy, 0<q<1 

compact support
of distr. function 

BG−entropy

violates K3

(1,0)

(c,0)

(0,0)

d

c (c,d)−entropy, d<0
Lambert W−1 exponentials
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The entropy

Question: which g fulfills f(z) = zc and hc(a) = (1 + a)d ?

Answer: gc,d,r(x) = reΓ (1 + d , 1− c lnx)− rcx →

Sc,d =

W∑
i=1

reΓ (1 + d , 1− c ln pi)− rc r =
1

1− c+ cd

Γ ... incomplete Gamma function Γ(a, b) =
∫∞
b
dt ta−1 exp(−t)

Proof: see Theorem 4
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Examples

• S1,1 =
∑
i g1,1(pi) = −

∑
i pi ln pi + 1 (BG entropy)

• Sc,0 =
∑
i gc,0(pi) =

1−
∑
i p
c
i

c−1 + 1 (Tsallis entropy)

• S1,d>0 =
∑
i g1,d(pi) = e

d

∑
i Γ (1 + d , 1− ln pi)− 1

d (AP entropy)

• ...
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Distribution functions of CS

Entropy → generalized logarithm → generalized exponential ≡ distribution
function:

pc,d(x) = e
− d

1−c

[
Wk

(
B(1+x

r )
1
d

)
−Wk(B)

]
B ≡ 1− c

cd
exp

(
1− c
cd

)

Wk... k’th branch of Lambert-W function: solution to x = W (x)eW (x)

only branch k = 0 and k = −1 have real solutions

d ≥ 0 → take branch k = 0

d < 0 → take branch k = −1
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Distribution functions of CS

• (c, d) = (1, 1) → Boltzmann distribution

• (c, d) = (q, 0) → power-laws (q-exponentials)

• (c, d) = (1, d), for d > 0 → stretched exponentials

• (c, d) all others → Lambert-W exponentials

NO OTHER POSSIBILITIES

vienna nov 26 2010 22



Streched Exponential: c = 1, d > 0

100 105

10−5

100

x

−l
og
(p
(x
))

(a)

c=0.99999

r=0.0001

d=0.5 0.75 1.0 1.33 2.0
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q-exponentials: 0 < c ≤ 1, d = 0

100 105

10−30

10−20

10−10

100

x

p(
x)

(b)   d=0.025, r=0.9/(1−c)

c=0.2
c=0.4

c=0.6

c=0.8
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Lambert-W
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(c)      r=exp(−d/2)/(1−c)

(0.3,−4)
(0.3,−2)
(0.3, 2)
(0.3, 4)
(0.7,−4)
(0.7,−2)
(0.7, 2)
(0.7, 4)

vienna nov 26 2010 25



−1 0 1 2

0

1

violates K2 

violates K2 Stretched exponentials − asymptotically stable 

(c,d)−entropy, d>0
Lambert W0 exponentials

q−entropy, 0<q<1 

compact support
of distr. function 

BG−entropy

violates K3

(1,0)

(c,0)

(0,0)

d

c (c,d)−entropy, d<0
Lambert W−1 exponentials

vienna nov 26 2010 26



Example: a physical system

equation of motion for particle i in system of N overdamped particles

µ~vi =
∑
j 6=i

~J(~ri − rj) + ~F (~ri) + η(~ri, t)

vi ... velocity of i th particle µ ... viscosity of medium F ... external force
~J(~r) = G

(
|~r|
λ

)
r̂ ... repulsive particle-particle interaction

η ... uncorrelated thermal noise 〈η〉 = 0 and 〈η2〉 = kT
µ

λ ... characteristic length of short range pairwise interaction

Shown with FP approach and simulation (arXiv: 1008.1421v1)

• low temperature: Tsallis system (c, d) = (q, 0)

• high temperature limit → BG system (c, d) = (1, 1)
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A note on Rényi entropy

It is it not sooo relevant for CS. Why?

• Relax Khinchin axiom 4:

S(A+B) = S(A)+S(B|A)→ S(A+B) = S(A)+S(B)→ Rényi entropy

• SR = 1
α−1 ln

∑
i p
α
i violates our S =

∑
i g(pi)

But: our above argument also holds for Rényi-type entropies !!!

S = G

(
W∑
i=1

g(pi)

)

lim
W→∞

S(λW )

S(W )
= lim
R→∞

G
(
fg(z)
z G−1(R)

)
R

= [for G ≡ ln] = 1
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Bonus track:
A note on finite systems

Told you: r = 1
1−c+cd. This is not the most general case !

Can pick r freely – as long as

d > 0 : r < 1
1−c

d = 0 : r = 1
1−c

d < 0 : r > 1
1−c

then the corresponding generalized logarithms Λ(p(−x)) = x have the usual
properties: Λ(1) = 0 and Λ′(1) = 1

• every choice of r gives a representative of the equivalence class (c, d)

• r encodes finite-size characteristics of distribution
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Conclusions

• Interpret CS as those where Khinchin axioms 1-3 hold and S =
∑
g

• Showed: macroscopic statistical systems can be uniquely classified in
terms of their asymptotic (W �1) properties

• Systems classified by two exponents (c, d) – analogy to critical exponents

• (c, d) define equivalence relations on entropic forms

• Single entropy covers all systems: Sc,d = re
∑
i Γ (1 + d , 1− c ln pi)− rc

• All known entropies of admissible systems are special cases

• Distribution functions of all systems belong to class of Lambert-W
exponentials. There are no other options

• Remarkable: Tsallis case sandwiched between the 2 Lambert solutions
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