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What are Complex Systems ?

e CS are made up from many elements
e These elements are in strong correlation/contact with each other
e CS strongly influence their own boundary conditions

e CS are often non-Markovian
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Simple vs. Complex Systems ?

e Weakly interacting statistical systems: thermodynamics — given W large

e CS: long-range & strong interactions — change macroscopic qualitative
properties as a function of the number of states (system size)

— extremely rich behavior of complex systems: assemblies of neurons, state
forming insects, societies etc.

— large assemblies markedly different systemic- or macro properties than
those composed of a few elements
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Why talking of entropy of Complex Systems ?

e The central concept: understanding macroscopic system behavior on the
basis of microscopic properties — entropy

e Entropy relates number of states to an extensive quantity, plays funda-
mental role in the thermodynamical description

e Hope: "Thermodynamical’ relations for CS, phase diagrams for CS, etc.

e Dream: some way to reduce number of parameters — handle CS
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Entropy of interacting statistical systems

Two initially isolated systems: A and B with W, and Wp states

Additive: entropy combined system A+ B: S(WaWpg) = S(Wa)+S(Wpg)

Extensive: entropy combined system A+ B: S(Wayip) = S(W4)+S(Wp)

Non-interacting: states in combined system W .5 = WaWp
Non-interacting: Ssc|p] = — ), —piInp;: additive and extensive
Interacting: Wa,p < WAWp (non-ergodic)

In this case Boltzmann-Gibbs entropy is no longer extensive !!!

WANTED: extensive entropies
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Why generalized entropies ?

To ensure extensivity of entropy in strongly interacting system

— find entropic form for particular system — generalized entropies

Sg[p]:Zg(pi) W ... number of states

CEsY Iy
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The Shannon-Khinchin axioms

e K1: S depends continuously on p — ¢ is continuous

e K2: entropy maximal for equi-distribution p;, = 1/W — ¢ is concave

o K3: S(p17p27°"7pW) — S(p17p27'”7pW70) — g(O) =0

o K4 S(A+ B) = S(A) + S(B|A)

Theorem: If K1 to K4 hold, entropy is Boltzmann-Gibbs-Shannon entropy

W
Sealpl = ZQBG(Z%) with gpa(z) = —zlnw
i=1

CESY
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Shannon-Khinchin axiom 4 is non-sense for CS

K4 corresponds to Markovian processes or weak interactions
— violated for most interacting systems

e Assume axioms K1, K2, K3 and S, = g(p)

(K1-K3 is equivalent to: g is continuous, concave and g(0) = 0)
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The Complex Systems axioms

e K1 holds
e K2 holds

e K3 holds
e Sy=Y glpi), W1
Theorem: If 4 axioms hold:

(1) all systems can be uniquely classified by 2 numbers, ¢ and d.

(2) for all these systems there exists a unique entropy:

1%
e c
Seq = I'l4+d,1—clnp;) — - e - - - Euler const
“T 1 _c+ed ; (1+ clnp;) e
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The argument

Assume no constraint on system — equi-distribution p; = 7

Study mathematical properties of ¢
e Scaling transformation W — AW: how does entropy change 7

e A second asymptotic property from specific scaling: A — W*?
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Mathematical properties I: a scaling law

1
im SfVN g 9Gor)
W — 00 Sg(W) W — 00 Q(W)

define scaling function

f(z) = lim 9(zr) 0<z<1)

Theorem 1: for systems satisfying K1, K2, K3

— f can only be a power f(z) = 2¢ with 0 <c <1

SQ(AW) _ )\1—0

S = Keep this in mind!

Obviously: limyy oo
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Theorem 1

Let g be a continuous, concave function on [0,1] with ¢g(0) = 0 and let
f(z) =lim,_, g+ g(zx)/g(x) be continuous, then f is of the form f(z) = z¢
with ¢ € (0, 1].

Proof. Note that f(ab) = lim,_,¢ g(abx)/g(x) =

lim, o(g(abx)/g(bx))(g(bx)/g(x)) = f(a)f(b). All pathological solutions
are excluded by the requirement that f is continuous. So f(ab) = f(a)f(b)
implies that f(z) = z¢ is the only possible solution of this equation. Further,
since g(0) = 0, also lim,_,qg(0x)/g(x) = 0, and it follows that f(0) = 0.
This necessarily implies that ¢ > 0. f(z) = 2¢ also has to be concave since

g(zz)/g(x) is concave in z for arbitrarily small, fixed x > 0. Therefore
c < 1. [ ]
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Mathematical properties Il: an asymptotic property

Substitute A by A — W® — identify a second asymptotic property
Define

_ 1 S(wl—l—a) a(c—1) . g(xl—i—a) 1
hela) = sy T I ey (ay

he(a) in principle depends on ¢ and a, BUT
Theorem 2: Under K1-K3, h.(a) can only be

he(a) = (1 +a)® (d constant)

Remarkably, this is independent of ¢ and h.(a) is an asymptotic property
which is independent of first scaling property!

Note that if ¢ = 1, concavity of g implies d > 0
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Theorem 2

Let g be like in Theorem 1 and let f(z) = z¢ then h. given in Eq. (8) is a
constant of the form h.(a) = (1 + a)¢ for some constant d.

Proof. We determine h.(a) again by a similar trick as we have used for f.

o (B 1)+
g@ﬁh_gc s ) o(zh)

zCg(z) atl_, a:(b_l)cg(az)

(@) )ty
= he (T D) he(b-1)

he(a) = limg g

for some constant b. By a simple transformation of variables, a = bb’ — 1,
one gets h.(bb' — 1) = he(b— 1)ho(b' — 1). Setting H(x) = h.(x — 1) one
again gets H(bb') = H(b)H (V). So H(x) = % for some constant d and
consequently h.(a) is of the form (1 + a)?. (]
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Summary

Interacting systems — require K1-K3 and S = ) g(p;)

= f(2) = limg o 42 = »¢ 0<c<1

— he(a) = lim,_q a(@ ™) _

t%q(z) (]- + a)d d real

Remarkable: all systems are characterized by a pair of 2 exponents: (¢, d)
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Examples

e Boltzmann-Gibbs: gpg(x) = —x In(x)
f(z) =2z ie c=1
hi(fa)=14+a,ie d=1
— Spq belongs to the universality class (¢,d) = (1,1)
e Tsallis: g,(z) = (x —29)/(1 —q)
f(z) =24, ie. c=q
ho(a) =1, i.e. d=0
— S, belongs to the universality class (¢, d) = (g, 0)

e ctc ...
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Classification

entropy C d
Spa = >, piIn(1/p:) 1 1
I—qu
e (4<1) |e=qg<1| 0
e Sy =2 ;pilp; —p;")/(=2kK) (O<k<1) |c=1—k 0
1-> p?
¢ Sq>1 — qézlpl (q > 1) 1 0
oSy =>.(1—e™)4+eb—1 (b > 0) 1 0
pi—1
QSE:Zipi(l—epi) 1 0
Sy = Zir(nTH, —Inp;) — Pz‘r(nTH) (n > 0) 1 d=1/n
S, =3, p;In'7(1/p;) 1 d=1/v
S5 =3 ,p; In(1/p:) c=p 1
Sea=>_erI'(d+ 1,1 —clnp;) —cr c d
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violates K2

(c,d)—entropy, d<0
Lambert W__ exponentials

cev [

violates K2

compact support BG—entropy
(1,0) / of distr. function /

Stretched exponentials — asymptotically stable

(c,d)—entropy, d>0
Lambert W0 exponentials

<— (g-entropy, 0<qg<1



The entropy

Question: which g fulfills f(z) = 2¢ and h.(a) = (1 +a)? ?

Answer: gcgr(x) =rel'(1+d,1—clnz) —rczx —

W
1
Sc7d:;7~ef(1+d,1—clnpi)—7“0 T:1—0+cd

[ ... incomplete Gamma function I'(a,b) = [, dtt*~! exp(—t)

Proof: see Theorem 4

CESY
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Examples

511 = ZZ 91,1(2%‘) = — Zipz' Inp; +1 (BG entropy)
® Sco=>_.9c0pi) = %ﬁpg + 1 (Tsallis entropy)

® S1,d4>0 = ZZ gl,d(pi) — %Zz I'(1+d,1—1Inp;) — % (AP entropy)
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Distribution functions of CS

Entropy — generalized logarithm — generalized exponential = distribution
function:

Pe,d(T) = e_lgc {W’“ <B(1+%)%>_W’“(B)] B = 1(;Zcexp <1c_dc)

Wip... k'th branch of Lambert-W function: solution to & = W (z)e"V(®)
only branch £ = 0 and £ = —1 have real solutions
d > 0 — take branch &£ =0

d < (0 — take branch £ = —1
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Distribution functions of CS

e (¢,d) = (1,1) — Boltzmann distribution

e (¢c,d) = (q,0) — power-laws (g-exponentials)

e (c,d) = (1,d), for d > 0 — stretched exponentials
e (c,d) all others — Lambert-W exponentials

NO OTHER POSSIBILITIES

COSY -
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Streched Exponential: ¢ =1, d >0

(@)
c=0.99999
r=0.0001

d=0.5 0.75 1.0  1.33




g-exponentials: 0 <c<1,d=0

(b) d=0.025, r=0.9/(1—c)
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violates K2

(c,d)—entropy, d<0
Lambert W__ exponentials

cev [

violates K2

compact support BG—entropy
(1,0) / of distr. function /

Stretched exponentials — asymptotically stable

(c,d)—entropy, d>0
Lambert W0 exponentials

<— (g-entropy, 0<qg<1



Example: a physical system

equation of motion for particle ¢ in system of N overdamped particles

pv; = Z J(7, + F(7) + (7, t)
J#i

Vi ...
_’( ) =G (ﬂ) 7 ... repulsive particle-particle interaction

J

)
7 ... uncorrelated thermal noise (n) = 0 and (n*) = kTT
AL

. characteristic length of short range pairwise interaction

velocity of ¢ th particle W ... viscosity of medium F' ... external force

Shown with FP approach and simulation (arXiv: 1008.1421v1)
e low temperature: Tsallis system (¢,d) = (¢, 0)
e high temperature limit — BG system (¢,d) = (1,1)
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A note on Rényi entropy

It is it not sooo relevant for CS. Why?

e Relax Khinchin axiom 4:
S(A+B)=5(A)+S(B|A) — S(A+B) = S(A)+S(B) — Rényi entropy

e Sp=--In) . p¥ violates our S =", g(p;)

But: our above argument also holds for Rényi-type entropies !!!

S=G <§: g(pz-))

):[foerln]zl
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Bonus track:
A note on finite systems

1
l—c+ed:

Told you: r = This is not the most general case !

Can pick r freely — as long as

, 1
d>0: r <=
d=20: rzlic

1
d<0: >3

then the corresponding generalized logarithms A(p(—x)) = = have the usual
properties: A(1) =0 and A’'(1) =1

e every choice of r gives a representative of the equivalence class (¢, d)

e r encodes finite-size characteristics of distribution

COSY -
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Conclusions

e Interpret CS as those where Khinchin axioms 1-3 hold and S =) ¢

e Showed: macroscopic statistical systems can be uniquely classified in
terms of their asymptotic (W >>1) properties

e Systems classified by two exponents (¢, d) — analogy to critical exponents
e (c,d) define equivalence relations on entropic forms

e Single entropy covers all systems: S.g=re) . I'(1+d,1—clnp;)—rc
e All known entropies of admissible systems are special cases

e Distribution functions of all systems belong to class of Lambert-W
exponentials. There are no other options

e Remarkable: Tsallis case sandwiched between the 2 Lambert solutions
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