Genuine multipartite entanglement in complex systems

Marcus Huber

26/10/2010 at the 7th Vienna Central European Seminar 2010

Outline

- Entanglement in multipartite systems

 k-separability of pure states
 k-separability of mixed states

 Separability criteria
 - separability w.r.t. a given partition
 - general criterion for k-nonseparability

2/16

- 3 Experimental implementation• Observables
- 4 Examples
- **5** Conclusion and Outlook

k-separability of pure states k-separability of mixed states

Introduction and motivation

Multipartite entanglement is a key resource in many fields

k-separability of pure states k-separability of mixed states

Introduction and motivation

Multipartite entanglement is a key resource in many fields

Importance of multipartite entanglement

 $\bullet\,$ In multi-party cryptography as a crucial resource for QKD a

k-separability of pure states k-separability of mixed states

Introduction and motivation

Multipartite entanglement is a key resource in many fields

- $\bullet\,$ In multi-party cryptography as a crucial resource for QKD a
- $\bullet\,$ The initial resource in measurement based quantum computing b

k-separability of pure states k-separability of mixed states

Introduction and motivation

Multipartite entanglement is a key resource in many fields

- $\bullet\,$ In multi-party cryptography as a crucial resource for QKD a
- $\bullet\,$ The initial resource in measurement based quantum computing b
- $\bullet\,$ Involved in many popular quantum algorithms c

k-separability of pure states k-separability of mixed states

Introduction and motivation

Multipartite entanglement is a key resource in many fields

- $\bullet\,$ In multi-party cryptography as a crucial resource for QKD a
- $\bullet\,$ The initial resource in measurement based quantum computing b
- $\bullet\,$ Involved in many popular quantum algorithms c
- Plays a fundamental role in quantum phase transitions d

k-separability of pure states k-separability of mixed states

Introduction and motivation

Multipartite entanglement is a key resource in many fields

- $\bullet\,$ In multi-party cryptography as a crucial resource for QKD a
- $\bullet\,$ The initial resource in measurement based quantum computing b
- $\bullet\,$ Involved in many popular quantum algorithms c
- Plays a fundamental role in quantum phase transitions d
- $\bullet\,$ It is required to understand ionization procedures e

k-separability of pure states k-separability of mixed states

Introduction and motivation

Multipartite entanglement is a key resource in many fields

- $\bullet\,$ In multi-party cryptography as a crucial resource for QKD a
- $\bullet\,$ The initial resource in measurement based quantum computing b
- \bullet Involved in many popular quantum algorithms c
- Plays a fundamental role in quantum phase transitions d
- It is required to understand ionization procedures e
- Possibly responsible for transport efficiency in biological systems ^f
- ^ae.g. D. Markham, B. C. Sanders, Physical Review A 78, 042309 (2008)
- ^be.g. R. Raussendorf and H.-J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)
- $^c e.g.$ D. Bruss and C. Macchiavello, arXiv:1007.4179
- ^de.g. S. Sachdev, Quantum Phase Transitions, (1999)
- $^{e}e.g.$ D. Akoury et al., Science ${\bf 9}$ Vol. 318. no. 5852, p. 949 -952, (2007)
- $^{f}e.g.$ M. Sarovar et al., Nature Physics, 6, 462 (2010)

k-separability of pure states k-separability of mixed states

Introduction and motivation

Foundations of physics and entanglement in HEP

Entanglement in HEP

k-separability of pure states k-separability of mixed states

Introduction and motivation

Foundations of physics and entanglement in HEP

Entanglement in HEP

 $\bullet\,$ Had an impact on foundations of physics using Kaons a

k-separability of pure states k-separability of mixed states

Introduction and motivation

Foundations of physics and entanglement in HEP

Entanglement in HEP

- $\bullet\,$ Had an impact on foundations of physics using Kaons a
- \bullet Revealed fundamental properties of neutron physics b

k-separability of pure states k-separability of mixed states

イロト イヨト イヨト イヨト 三日

Introduction and motivation

Foundations of physics and entanglement in HEP

Entanglement in HEP

- $\bullet\,$ Had an impact on foundations of physics using Kaons a
- \bullet Revealed fundamental properties of neutron physics b

• However

 $^{a}e.g.$ R. A. Bertlmann, W. Grimus and B.C. Hiesmayr, Phys. Lett. A $\mathbf{289},$ 21-26 (2001)

^be.g. H. Bartosik, J. Klepp, C. Schmitzer, S. Sponar, A. Cabello, H. Rauch, Y. Hasegawa, Phys. Rev. Lett. **103**, 040403 (2009)

k-separability of pure states k-separability of mixed states

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ つく⊙

5/16

So far only low dimensional systems (spin ¹/₂, qubits), mostly bipartite (at most tripartite).

- So far only low dimensional systems (spin $\frac{1}{2}$, qubits), mostly bipartite (at most tripartite).
- We need criteria applicable to arbitrary dimensional systems involving many particles

- So far only low dimensional systems (spin $\frac{1}{2}$, qubits), mostly bipartite (at most tripartite).
- We need criteria applicable to arbitrary dimensional systems involving many particles
- Those criteria should be locally implementable and feasible

- So far only low dimensional systems (spin $\frac{1}{2}$, qubits), mostly bipartite (at most tripartite).
- We need criteria applicable to arbitrary dimensional systems involving many particles
- Those criteria should be locally implementable and feasible
- The more complex a system, the more important noise resistance becomes

 ${\bf k}\mbox{-separability of pure states}$ ${\bf k}\mbox{-separability of mixed states}$

イロト イヨト イヨト イヨト 三日

6/16

pure states

Consider pure states $|\psi\rangle\langle\psi|$ in $\mathcal{H} = \underbrace{\mathbb{C}_1^{d_1}}_1 \otimes \underbrace{\mathbb{C}_2^{d_2}}_2 \otimes (\cdots) \otimes \underbrace{\mathbb{C}_n^{d_n}}_n$ The state is called k-separable with respect to a given k-partition $\{\alpha_1|\alpha_2|\cdots|\alpha_k\}$ if it can be written as a product

 ${\bf k}\mbox{-separability of pure states}$ ${\bf k}\mbox{-separability of mixed states}$

pure states

Consider pure states $|\psi\rangle\langle\psi|$ in $\mathcal{H} = \underbrace{\mathbb{C}_1^{d_1}}_{1} \otimes \underbrace{\mathbb{C}_2^{d_2}}_{2} \otimes (\cdots) \otimes \underbrace{\mathbb{C}_n^{d_n}}_{n}$ The state is called *k*-separable with respect to a given *k*-partition $\{\alpha_1 | \alpha_2 | \cdots | \alpha_k\}$ if it can be written as a product

$$|\psi\rangle\langle\psi| = \underbrace{|\phi_1\rangle\langle\phi_1|}_{\mathcal{H}_{\alpha_1}} \otimes \underbrace{|\phi_2\rangle\langle\phi_2|}_{\mathcal{H}_{\alpha_2}} \otimes \cdots \otimes \underbrace{|\phi_k\rangle\langle\phi_k|}_{\mathcal{H}_{\alpha_k}}$$

 ${\bf k}\mbox{-separability of pure states}$ ${\bf k}\mbox{-separability of mixed states}$

<ロ> (四) (四) (三) (三) (三)

pure states

Consider pure states $|\psi\rangle\langle\psi|$ in $\mathcal{H} = \underbrace{\mathbb{C}_1^{d_1}}_{1} \otimes \underbrace{\mathbb{C}_2^{d_2}}_{2} \otimes (\cdots) \otimes \underbrace{\mathbb{C}_n^{d_n}}_{n}$ The state is called *k*-separable with respect to a given *k*-partition $\{\alpha_1 | \alpha_2 | \cdots | \alpha_k\}$ if it can be written as a product

$$|\psi\rangle\langle\psi| = \underbrace{|\phi_1\rangle\langle\phi_1|}_{\mathcal{H}_{\alpha_1}} \otimes \underbrace{|\phi_2\rangle\langle\phi_2|}_{\mathcal{H}_{\alpha_2}} \otimes \cdots \otimes \underbrace{|\phi_k\rangle\langle\phi_k|}_{\mathcal{H}_{\alpha_k}}$$

if k = n the state is fully separable
if k = 1 the state is genuinely multipartite entangled

 $k\mbox{-separability}$ of pure states $k\mbox{-separability}$ of mixed states

7/16

mixed states

Now consider mixed states
$$\rho$$
 in $\mathcal{H} = \underbrace{\mathbb{C}^{d_1}}_1 \otimes \underbrace{\mathbb{C}^{d_2}}_2 \otimes (\cdots) \otimes \underbrace{\mathbb{C}^{d_n}}_n$

The state is called k-separable if every decomposition element can be written as a product

k-separability of pure states k-separability of mixed states

イロト イロト イヨト イヨト 三日

7/16

mixed states

Now consider mixed states
$$\rho$$
 in $\mathcal{H} = \underbrace{\mathbb{C}^{d_1}}_{1} \otimes \underbrace{\mathbb{C}^{d_2}}_{2} \otimes (\cdots) \otimes \underbrace{\mathbb{C}^{d_n}}_{n}$

The state is called k-separable if every decomposition element can be written as a product

$$\rho = \sum_{i} p_{i} \underbrace{|\phi_{1}^{i}\rangle\langle\phi_{1}^{i}|}_{\mathcal{H}_{\alpha_{1}^{i}}} \otimes \underbrace{|\phi_{2}^{i}\rangle\langle\phi_{2}^{i}|}_{\mathcal{H}_{\alpha_{2}^{i}}} \otimes \cdots \otimes \underbrace{|\phi_{k}^{i}\rangle\langle\phi_{k}^{i}|}_{\mathcal{H}_{\alpha_{k}^{i}}}$$

k-separability of pure states k-separability of mixed states

イロト イロト イヨト イヨト 三日

7/16

mixed states

Now consider mixed states
$$\rho$$
 in $\mathcal{H} = \underbrace{\mathbb{C}^{d_1}}_1 \otimes \underbrace{\mathbb{C}^{d_2}}_2 \otimes (\cdots) \otimes \underbrace{\mathbb{C}^{d_n}}_n$

The state is called k-separable if every decomposition element can be written as a product

$$\begin{split} \rho &= \sum_{i} p_{i} \underbrace{|\phi_{1}^{i}\rangle \langle \phi_{1}^{i}|}_{\mathcal{H}_{\alpha_{1}^{i}}} \otimes \underbrace{|\phi_{2}^{i}\rangle \langle \phi_{2}^{i}|}_{\mathcal{H}_{\alpha_{2}^{i}}} \otimes \cdots \otimes \underbrace{|\phi_{k}^{i}\rangle \langle \phi_{k}^{i}|}_{\mathcal{H}_{\alpha_{k}^{i}}} \\ k\text{-separable w.r.t. a given } k\text{-partition } \{\alpha_{1}|\alpha_{2}|\cdots|\alpha_{k}\} \text{ if every decomposition element is } k\text{-separable w.r.t. the } k\text{-partition } \\ \{\alpha_{1}|\alpha_{2}|\cdots|\alpha_{k}\} \end{split}$$

 ${\bf k}\mbox{-separability}$ of pure states ${\bf k}\mbox{-separability}$ of mixed states

mixed states

Now consider mixed states
$$\rho$$
 in $\mathcal{H} = \underbrace{\mathbb{C}^{d_1}}_1 \otimes \underbrace{\mathbb{C}^{d_2}}_2 \otimes (\cdots) \otimes \underbrace{\mathbb{C}^{d_n}}_n$

The state is called k-separable if every decomposition element can be written as a product

$$\begin{split} \rho &= \sum_{i} p_{i} \underbrace{|\phi_{1}^{i}\rangle \langle \phi_{1}^{i}|}_{\mathcal{H}_{\alpha_{1}^{i}}} \otimes \underbrace{|\phi_{2}^{i}\rangle \langle \phi_{2}^{i}|}_{\mathcal{H}_{\alpha_{2}^{i}}} \otimes \cdots \otimes \underbrace{|\phi_{k}^{i}\rangle \langle \phi_{k}^{i}|}_{\mathcal{H}_{\alpha_{k}^{i}}} \\ k\text{-separable w.r.t. a given } k\text{-partition } \{\alpha_{1}|\alpha_{2}|\cdots|\alpha_{k}\} \text{ if every decomposition element is } k\text{-separable w.r.t. the } k\text{-partition } \\ \{\alpha_{1}|\alpha_{2}|\cdots|\alpha_{k}\} \end{split}$$

- if k = n the state is fully separable
- if k = 1 the state is genuinely multipartite entangled

 $k\mbox{-separability}$ of pure states $k\mbox{-separability}$ of mixed states

The convex structure of separable states

k-separability of pure states k-separability of mixed states

Separability criteria

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 9 へ (* 9 / 16

separability w.r.t. a given partition general criterion for k-nonseparability

イロト イロト イヨト イヨト 三日

10/16

Inequality I^{*}

We present an experimentally measurable quantity requiring 3 Observables for any bipartition $P_2 = \{\alpha_1 | \alpha_2\}$

separability w.r.t. a given partition general criterion for k-nonseparability

イロト イロト イヨト イヨト 三日

10/16

Inequality I^{*}

We present an experimentally measurable quantity requiring 3 Observables for any bipartition $P_2 = \{\alpha_1 | \alpha_2\}$

Inequality I*

$$\sqrt{\langle \Phi | \rho^{\otimes 2} \mathcal{P}_n | \Phi \rangle} - \sqrt{\langle \Phi | \mathcal{P}_{\alpha_1}^{\dagger} \rho^{\otimes 2} \mathcal{P}_{\alpha_1} | \Phi \rangle} \leq 0 \ ,$$

separability w.r.t. a given partition general criterion for k-nonseparability

Inequality I*

We present an experimentally measurable quantity requiring 3 Observables for any bipartition $P_2 = \{\alpha_1 | \alpha_2\}$

Inequality I*

$$\sqrt{\langle \Phi | \rho^{\otimes 2} \mathcal{P}_n | \Phi \rangle} - \sqrt{\langle \Phi | \mathcal{P}_{\alpha_1}^{\dagger} \rho^{\otimes 2} \mathcal{P}_{\alpha_1} | \Phi \rangle} \leq 0 \ ,$$

where \mathcal{P}_{α_i} is the cyclic permutation operator acting on $\mathcal{H}_{\alpha_i}^{\otimes 2}$, *i.e.*

$$\mathcal{P}_{lpha_i} \ket{arphi_1} \otimes \ket{arphi_2} = \ket{arphi_2} \otimes \ket{arphi_1} \;,$$

 \mathcal{P}_n is the cyclic permutation operator acting on $\mathcal{H}^{\otimes 2}$ and $|\Phi\rangle$ is an arbitrary fully separable state, e.g. $|\Phi\rangle = |000111\rangle$

separability w.r.t. a given partition general criterion for k-nonseparability

Inequality II

As the LHS of inequality I is convex we can derive a criterion fulfilled by all k-separable states

Inequality II

1

$$\sqrt{\langle \Phi | \rho^{\otimes 2} \mathcal{P}_n | \Phi \rangle} - \sum_{P_k} \prod_{i=1}^k (\langle \Phi | \mathcal{P}_{\alpha_i}^{\dagger} \rho^{\otimes 2} \mathcal{P}_{\alpha_i} | \Phi \rangle)^{\frac{1}{2k}} \leq 0 \ ,$$

¹ in A. Gabriel, B.C. Hiesmayr and M, Huber, QIC **10**, 0829-0836 (2010) $\sim = -9 \circ (2010)$

separability w.r.t. a given partition general criterion for k-nonseparability

Inequality II

As the LHS of inequality I is convex we can derive a criterion fulfilled by all k-separable states

Inequality II

$$\sqrt{\langle \Phi | \rho^{\otimes 2} \mathcal{P}_n | \Phi \rangle} - \sum_{P_k} \prod_{i=1}^k (\langle \Phi | \mathcal{P}_{\alpha_i}^{\dagger} \rho^{\otimes 2} \mathcal{P}_{\alpha_i} | \Phi \rangle)^{\frac{1}{2k}} \leq 0 \ ,$$

¹ Any violation of this inequality implies genuine k-nonseparability

¹ in A. Gabriel, B.C. Hiesmayr and M, Huber, QIC **10**, 0829-0836 (2010) = $\Im \circ \circ \circ$

11 / 16

 $\bullet\,$ Classify genuine multipartite entanglement a

- $\bullet\,$ Classify genuine multipartite entanglement a
- Develop criteria for all known existing classes of genuinely multipartite entangled sates (e.g. all Dicke states) b

- Classify genuine multipartite entanglement ^a
- Develop criteria for all known existing classes of genuinely multipartite entangled sates (e.g. all Dicke states) b
- $\bullet\,$ Study the effect of Lorentz transformations on multipartite entanglement classification c

- Classify genuine multipartite entanglement ^a
- Develop criteria for all known existing classes of genuinely multipartite entangled sates (e.g. all Dicke states) b
- Study the effect of Lorentz transformations on multipartite entanglement classification c
- Provide security proofs in multipartite quantum cryptography d

 ^{a}in M. Huber, H. Schimpf, A. Gabriel, Ch. Spengler, D. Bruß, B.C. Hiesmayr arXiv:1011.4087

 ^{b}in M. Huber, P. Erker, H. Schimpf, A. Gabriel, B.C. Hiesmayr, arXiv:1011.4579

 ^{c}in M. Huber, N.
Friis, A. Gabriel, Ch. Spengler, B.C. Hiesmayr arXiv:1011.3374

^din S. Schauer, M. Huber, B.C. Hiesmayr arXiv:1009.4796

Observables

Observables

As the previous inequalities decompose into products of density matrix elements no full state tomography is required.

Properties

• full state tomography requires all $\prod_{i=1}^n d_i^2$ d.m.e. to be measured, i.e. scales with $\mathcal{O}(d^{2n})$

Observables

Observables

As the previous inequalities decompose into products of density matrix elements no full state tomography is required.

Properties

- full state tomography requires all $\prod_{i=1}^n d_i^2$ d.m.e. to be measured, i.e. scales with $\mathcal{O}(d^{2n})$
- Inequality I requires 3k d.m.e., but detects only separability w.r.t. certain k-partitions

Observables

Observables

As the previous inequalities decompose into products of density matrix elements no full state tomography is required.

Properties

- full state tomography requires all $\prod_{i=1}^n d_i^2$ d.m.e. to be measured, i.e. scales with $\mathcal{O}(d^{2n})$
- Inequality I requires 3k d.m.e., but detects only separability w.r.t. certain k-partitions
- Inequality II requires $2^n 1$ d.m.e., so it scales at least as the square root of system size

Observables

Observables

As the previous inequalities decompose into products of density matrix elements no full state tomography is required.

Properties

- full state tomography requires all $\prod_{i=1}^n d_i^2$ d.m.e. to be measured, i.e. scales with $\mathcal{O}(d^{2n})$
- Inequality I requires 3k d.m.e., but detects only separability w.r.t. certain k-partitions
- Inequality II requires $2^n 1$ d.m.e., so it scales at least as the square root of system size
- The derived inequalities even scale polynomially

Noise resistance

Consider the generalized d-dimensional n-partite GHZ state $|\psi_{dn}\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |i\rangle^{\otimes n}$ with additional isotropic (white) noise: $\rho = p |\psi_{dn}\rangle \langle \psi_{dn}| + (1-p) \frac{1}{d^n} \mathbb{1}$

14/16

Noise resistance

Consider the generalized d-dimensional n-partite GHZ state $|\psi_{dn}\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |i\rangle^{\otimes n}$ with additional isotropic (white) noise: $\rho = p |\psi_{dn}\rangle \langle \psi_{dn}| + (1-p) \frac{1}{d^n} \mathbb{1}$

With inequality II we can show analytically that these states are genuinely multipartite entangled for $p > \frac{3}{d^{n-1}+3}$

Conclusion and Outlook

Conclusion

• Experimentally implementable criteria for genuine multipartite entanglement

Conclusion and Outlook

Conclusion

- Experimentally implementable criteria for genuine multipartite entanglement
- Inequalities scale favorably with system size

Conclusion and Outlook

Conclusion

- Experimentally implementable criteria for genuine multipartite entanglement
- Inequalities scale favorably with system size
- Arbitrary spin and particle number enable testing in complex systems

Conclusion and Outlook

Conclusion

- Experimentally implementable criteria for genuine multipartite entanglement
- Inequalities scale favorably with system size
- Arbitrary spin and particle number enable testing in complex systems

Outlook

• Entanglement quantification?

Conclusion and Outlook

Conclusion

- Experimentally implementable criteria for genuine multipartite entanglement
- Inequalities scale favorably with system size
- Arbitrary spin and particle number enable testing in complex systems

Outlook

- Entanglement quantification?
- Experimental implementation in complex systems?

The End

References:

- M. Huber, F.Mintert, A. Gabriel and B.C. Hiesmayr, Detection of High-Dimensional Genuine Multipartite Entanglement of Mixed States, Phys. Rev. Lett. 104, 210501 (2010)
- A. Gabriel, B.C. Hiesmayr and M. Huber, Criterion for k-separability in mixed multipartite states, QIC 10, 0829-0836 (2010)
- C. Spengler, M. Huber and B.C. Hiesmayr, A composite parameterization of unitary groups, density matrices and subspaces, J. Phys. A: Math. Theor. 43 (2010) 385306.
- M. Huber, H. Schimpf, A. Gabriel, Ch. Spengler, D. Bruß, B.C. Hiesmayr, Experimentally implementable criteria revealing substructures of genuine multipartite entanglement arXiv:1011.4087
- M. Huber, P. Erker, H. Schimpf, A. Gabriel, B.C. Hiesmayr, Experimentally feasible set of criteria detecting genuine multipartite entanglement in n-qubit Dicke states and in higher dimensional systems, arXiv:1011.4579
- M. Huber, N.Friis, A. Gabriel, Ch. Spengler, B.C. Hiesmayr, *Lorentz invariance of entanglement classes in multipartite systems*, arXiv:1011.3374
- S. Schauer, M. Huber, B.C. Hiesmayr, Experimentally Feasible Security Check for n-qubit Quantum Secret Sharing, arXiv:1009.4796

Thank you!

・ロン ・四 と ・ 日 ・ ・ 日 ・