

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Hadronic atoms

Akaki Rusetsky

Helmholtz-Institut für Strahlen- und Kernphysik Abteilung Theorie, Universität Bonn, Germany

6th Vienna Central European Seminar Vienna, November 27-29, 2009

Plan

- Introduction
- Physics background
- Systematic theory of hadronic atoms
- Isospin-breaking corrections
- Conclusions

Parapositronium

Reduced mass: $\mu = \frac{1}{2} m_e \simeq 0.26 \text{ MeV}$

Binding energy

y:
$$E_B = -\frac{1}{2} \mu \alpha^2 + O(\alpha^4)$$

 $\simeq 6.8 \text{ eV}$

Bohr radius:

$$r_B = (\alpha \mu)^{-1} \simeq 10^5 \; {\rm fm}$$

Decay width:

$$\begin{split} \Gamma &= \mu \alpha^5 + O(\alpha^6) \\ &\simeq 5.3 \cdot 10^{-6} \; \mathrm{eV} \end{split}$$

Decays:

Pionium

Observables of hadronic atoms

DGBT formulae

S. Deser, M.L. Goldberger, K. Baumann and W. Thirring, Phys. Rev. 96 (1954) 774.

Energy:
$$E = 2M_{\pi} - \frac{\mu\alpha^2}{2} - \frac{4\pi}{3} |\Psi(0)|^2 (2a_0 + a_2)/M_{\pi}^2 + \cdots$$

Width: $\Gamma_{2\pi^0} = \frac{16\pi}{9} |\Psi(0)|^2 p_1^* (a_0 - a_2)^2 / M_{\pi}^3 + \cdots$
 $|\Psi(0)|^2 = \frac{\alpha^3 \mu^3}{\pi}$, $p_1^* = \left(M_{\pi}^2 - M_{\pi^0}^2 - \frac{1}{4} M_{\pi}^2 \alpha^2\right)^{1/2}$

- ⇒ Valid in all orders in strong interactions
- ⇒ Since $R_{str}/r_B = O(\alpha) \ll 1$, short-range details of strong interactions do not matter. The final answer is written in terms of the scattering length
- \Rightarrow Can be used to extract the values of a_0, a_2 from the experiment on the pionium

Relation to Lüscher's formula

DIRAC experiment at CERN

- ⇒ Separate "atomic pairs," which emerge in result of the ionization
- ⇒ Ionization probability on different targets ⇒ lifetime C. Santamarina *et al*, J. Phys. B. At. Mol. Opt. Phys. **36** (2003) 4273

Pionium decays: physics background

- There exists a very precise prediction of a₀, a₂ within Chiral Perturbation Theory (ChPT) at two loops combined with dispersion relations
- The method assumes the standard scenario for the chiral symmetry breaking in QCD (developing a large quark condensate) [G. Colangelo, J. Gasser and H. Leutwyler, NPB 603 (2001) 125]

 $a_0 = 0.220 \pm 0.005$, $a_2 = -0.444 \pm 0.0010$

⇒ The DIRAC experiment tests the large/small condensate scenario in QCD with two flavors [J. Stern, arXiv:hep-ph/9510318]

$$M_{\pi}^2 = (m_u + m_d)B + \cdots; \quad B = -\langle \bar{u}u \rangle / F_{\pi}^2 \mid_{m_u, m_d \to 0}$$

⇒ Alternative methods to determine a_0, a_2 : cusps in $K \rightarrow 3\pi$ decays, K_{e4} decays (NA48/2 coll. at CERN)

DIRAC at CERN: $K\pi$ atom decays

• Deser-type formulae for the lifetime and the energy-level shifts

width $\Rightarrow a_{1/2} - a_{3/2}$ energy shift $\Rightarrow 2a_{1/2} + a_{3/2}$

• Large/small condensate scenario in QCD with three flavors

$$B = -\langle \bar{u}u \rangle / F_{\pi}^2$$
 at $m_u, m_d \to 0$, m_s fixed
 $B_0 = -\langle \bar{u}u \rangle / F_{\pi}^2$ at $m_u, m_d, m_s \to 0$

Flavor dependence: $B_0/B \simeq 1$ [large], $B_0/B << 1$ [small] S.Descotes and J.Stern, PLB 488 (2000) 274; B.Moussallam, EPJC 14 (2000) 111

Convergence of chiral expansion in SU(3) × SU(3) ChPT
 V. Bernard, N. Kaiser and U.-G. Meißner, NPB 357 (1991) 129
 J. Bijnens, P. Dhonte and P. Talavera, JHEP 0405 (2004) 036
 J. Schweizer, PLB 625 (2005) 217
 Roy-Steiner equations: P. Büttiker *et al*, EPJC 33 (2004) 409

πH and πd at PSI

• Output: precise values of the scattering lengths a_{0+}^+ and a_{0+}^-

- \Rightarrow Precise value of the πNN coupling constant (GMO sum rule)
- $\Rightarrow \pi N \sigma$ -term (explicit chiral symmetry breaking)

$$\sigma_{\pi N} = (m_u + m_d) \langle N | \bar{u}u + \bar{d}d | N \rangle / m_p$$

⇒ Strangeness content of the nucleon

$$y = 2\langle N|\bar{s}s|N\rangle / \langle N|\bar{u}u + \bar{d}d|N\rangle$$

KH and Kd: SIDDHARTA coll. at LNF-INFN

Determination of the S-wave $\bar{K}N$ scattering lengths a_0 and a_1 :

- a_0, a_1 are *complex:* inelastic thresholds (e.g., $\pi\Sigma$) lie below
 - \Rightarrow Need *both* kaonic hydrogen and kaonic deuterium data are necessary to extract a_0 and a_1 separately
- a_0, a_1 are *large:* $\Lambda(1405)$ lies in the vicinity of threshold
 - ⇒ Multiple-scattering series for the kaonic deuterium are non-perturbative
- Confronting the theory with the experiment:
 - ⇒ Compare with the theoretical calculations carried out in coupled-channel unitarized ChPT
 - ⇒ Preliminary DEAR/SIDDHARTA result: not compatible with the scattering data
 - ⇒ Useful input for the theory of antikaon interaction with nuclear medium

Extraction of the scattering lengths

$$E = 2M_{\pi} - \frac{\mu\alpha^2}{2} - \frac{1}{6}\alpha^3 M_{\pi} \left(2a_0 + a_2\right) + O(\alpha^4, \alpha^3 (m_d - m_u)^2)$$

$$\Gamma = \frac{2}{9}\alpha^3 p_1^* \left(a_0 - a_2\right)^2 + O(\alpha^{9/2}, \alpha^{7/2} (m_d - m_u)^2)$$

• a_0, a_2 are defined in pure QCD with $\alpha = 0$ and $m_u = m_d$, hadronic atoms exist in the real world $\alpha \neq 0$ and $m_u \neq m_d$. How are the parameters of these two theories related?

In QFT, this relation is ambiguous!

- How does one evaluate isospin-breaking corrections in a systematic manner?
- In case of pionic/kaonic deuterium: three-body dynamics

... the biggest theoretical challenge at present

Theory of hadronic atoms: essentials		
Characteristic momenta in the atom:		
$\langle p \rangle \sim r_B^{-1} \sim \alpha \mu \simeq 0.5 \; {\rm MeV} \ll M_\pi$		
\hookrightarrow The non-relativistic expansion in $\langle p \rangle / M_{\pi}$ translates into the expansion in the fine structure constant α		
→ NR EFT: no massive particle creation/annihilation		
→ All dynamics from higher energy scales is hidden in the couplings of the NR effective Lagrangian		
Scale hierarchy		
NR EFT	ChPT	QCD+QED
strong widthbinding energymass splittings $\alpha^3 p_1^{\star} M_{\pi}^4 / \Lambda^4$ $\alpha^2 M_{\pi}$ $\alpha \Lambda, \ (m_d - m_u)^2$	chiral M_{π}	hard $\Lambda \sim 1 \; {\rm GeV}$

Hadronic atoms in NR EFT: latest work

- P. Labelle and K. Buckley, arXiv:hep-ph/9804201
- D. Eiras and J. Soto, PRD 61 (2000) 114027
- B.R. Holstein, PRD 60 (1999) 114030
- X. Kong and F. Ravndal, PRD 59 (1999) 014031; PRD 61 (2000) 077506
- A. Gall, J. Gasser, V.E. Lyubovitskij and A. Rusetsky, PLB 462 (1999) 335
- J. Gasser, V.E. Lyubovitskij and A. Rusetsky, PLB 471 (1999) 244
- V.E. Lyubovitskij and A. Rusetsky, PLB 494 (2000) 9
- J. Gasser, V.E. Lyubovitskij, A. Rusetsky and A. Gall, PRD 64 (2001) 016008
- J. Gasser, M.A. Ivanov, E. Lipartia, M. Mojžiš and A. Rusetsky, EPJC 26 (2002) 13
- J. Schweizer, PLB 587 (2004) 33; EPJC 36 (2004) 483
- P. Zemp, *Pionic Hydrogen in QCD+QED: Decay width at NNLO*, PhD thesis, Univ. Bern, 2004. U.-G. Meißner, U. Raha and A. Rusetsky, EPJC 35 (2004) 349; EPJC 41 (2005) 213; PLB 639 (2006) 478; EPJC 47 (2006) 473

Reviews:

. . .

- J. Gasser, V. E. Lyubovitskij and A. Rusetsky, Phys. Rept. 456 (2008) 167
- J. Gasser, V. E. Lyubovitskij and A. Rusetsky, Ann. Rev. Part. Nucl. Sci. (in print)

Strong non-relativistic Lagrangian and Feynman rules

A. Gall, J. Gasser, V.E. Lyubovitskij and AR,

PLB 462 (1999) 335; PLB 471 (1999) 244; PRD 64 (2001) 016008

$$\mathcal{L}_0 = \sum_{i=\pm,0} \Phi_i^{\dagger} \left(i\partial_t - M_{\pi^i} + \frac{\Delta}{2M_{\pi^i}} + \frac{\Delta^2}{8M_{\pi^i}^3} + \cdots \right) \Phi_i$$

$$i\langle 0|T\Phi_{\pm}(x)\Phi_{\pm}^{\dagger}(0)|0\rangle = \int \frac{d^4p}{(2\pi)^4} \frac{\mathbf{e}^{-ipx}}{M_{\pi} + \mathbf{p}^2/2M_{\pi} - p^0 - i0}$$

4-pion interactions:

$$\mathcal{L}_{I} = c_{1} \Phi_{+}^{\dagger} \Phi_{-}^{\dagger} \Phi_{+} \Phi_{-} + c_{2} \left(\Phi_{+}^{\dagger} \Phi_{-}^{\dagger} \Phi_{0} \Phi_{0} + \mathsf{h.c.} \right) + c_{3} \Phi_{0}^{\dagger} \Phi_{0}^{\dagger} \Phi_{0} \phi_{0}$$

+ derivative terms

- Power counting: $\mathbf{p}/M_{\pi} \iff \nabla/M_{\pi}$
- Particle number is conserved by construction

Loops

- \longrightarrow NR EFT = effective-range expansion
 - Compare with ChPT: expansion in powers of the quark mass!

Relativistic QFT to one loop

$$T_{\mathsf{R}}(s, \cos \theta) = \lambda_r - \frac{\lambda_r^2}{16\pi^2} \left(\bar{J}(s) + \bar{J}(t) + \bar{J}(u) \right)$$

$$\bar{J}(s) = \int_{0}^{1} d\tau \ln \frac{M^{2} - s\tau(1 - \tau)}{M^{2}} = -i\pi\sigma - \sigma \ln \frac{1 - \sigma}{1 + \sigma} - 2, \quad \sigma^{2} = 1 - \frac{4M^{2}}{s}$$
$$T_{\mathsf{R}}^{l}(s) = \frac{1}{64\pi} \int_{-1}^{1} d\cos\theta P_{l}(\cos\theta) T_{\mathsf{R}}(s, \cos\theta)$$

Same analytic structure as in the NR amplitude for $|s - 4M^2| \le 4M^2$

$$T_{\mathsf{R}}^{0}(s) = \left[\lambda_{r} + \frac{\lambda_{r}^{2}}{16\pi^{2}} \left(2 - \frac{5\mathbf{p}^{2}}{3M^{2}}\right)\right] + \frac{i\lambda_{r}^{2}|\mathbf{p}|}{16\pi M} \left(1 - \frac{\mathbf{p}^{2}}{2M^{2}}\right) + \cdots$$

 $T_{\mathsf{R}}(p_1, p_2; p_3, p_4) = (2w_a(\mathbf{p}_1))^{1/2} \cdots (2w_d(\mathbf{p}_4))^{1/2} T_{\mathsf{NR}}(p_1, p_2; p_3, p_4)$

• Fixes the couplings c_1, c_2, c_3, \cdots in the non-relativistic Lagrangian (polynomial part)

In the
$$\phi^4$$
 theory: $c_1 = \frac{1}{(2M)^2} \left(\lambda_r + \frac{\lambda_r^2}{8\pi^2} + O(\lambda_r^3) \right)$

- Non-analytic part $\sim |\mathbf{p}|$ is reproduced by loops
- Matching to ChPT: the couplings c_1, c_2, c_3, \cdots are given as an expansion in the quark mass

Electromagnetic interactions: Lagrangian

- Guiding principles: *C*, *P*, *T*, gauge invariance, rotational invariance
- Write down all possible terms allowed by symmetries at a given order

$$\mathcal{L} = \sum_{\pm} \Phi_{\pm}^{\dagger} (iD_t - M_{\pi} + \frac{\mathbf{D}^2}{2M_{\pi}} + \frac{\mathbf{D}^4}{8M_{\pi}^3} + \dots \mp \frac{e\kappa_1(\mathbf{DE} - \mathbf{ED})}{6M_{\pi}^2})\Phi_{\pm}$$

+
$$\frac{1}{2} (\mathbf{E}^2 - \mathbf{B}^2) + c_1(\Phi_{\pm}^{\dagger}\Phi_{\pm}^{\dagger})(\Phi_{\pm}\Phi_{\pm}) + \dots$$

+ space derivatives+nonminimal terms with **E**, **B**+neutral pions+...

$$D_t \Phi_{\pm} = \partial_t \Phi_{\pm} \mp i e A_0 \Phi_{\pm}; \qquad \mathbf{D} \Phi_{\pm} = \nabla \Phi_{\pm} \pm i e \mathbf{A} \Phi_{\pm}$$
$$\mathbf{E} = -\nabla A_0 - i \partial_t \mathbf{A}; \qquad \mathbf{B} = \operatorname{rot} \mathbf{A}$$

Matching in the presence of photons at O(lpha)

• Attach 1 photon in all possible ways to the "strong" diagrams

Bound states

- Bound states in the NR EFT are described by the Schrödinger equation
- Predominately Coulomb bound states:

$$H_0 + H_C |\Psi_{nl}\rangle = E_n |\Psi_{nl}\rangle, \qquad H_C = -\frac{4\pi\alpha}{|\mathbf{p} - \mathbf{q}|^2}$$

 $E_n = 2M_\pi - \frac{M_\pi \alpha^2}{4n^2}, \quad n = 1, 2, \cdots$

• The strong interactions are included perturbatively. The shift of the pole position in the scattering matrix is calculated by using the Feshbach formalism: Master equation

$$z - E_n = \langle \Psi_{nl} | \bar{\tau}_{nl}(E_n) | \Psi_{nl} \rangle + O(\alpha^5)$$

$$\bar{\tau}_{nl}(E_n) = H_I + \sum_{\{ml\}\neq\{nl\}} H_I \frac{|\Psi_{ml}\rangle\langle\Psi_{ml}|}{E_n - E_m} H_I + \cdots$$

The pionium decay at lowest order

$$\Delta E_1 = \operatorname{\mathsf{Re}} z = -|\Psi_{10}(\mathbf{r}=0)|^2 \, \mathbf{c_1} = \frac{\alpha^3 M_\pi^3}{8\pi} \, \mathbf{c_1}$$

$$-\frac{\Gamma_1}{2} = \operatorname{Im} z = -|\Psi_{10}(\mathbf{r}=0)|^2 c_2^2 \frac{M_\pi}{2\pi} \sqrt{2M_\pi (M_\pi - M_{\pi^0})}$$
$$= \frac{\alpha^3 M_\pi^4}{16\pi^2} c_2^2 \sqrt{2M_\pi (M_\pi - M_{\pi^0})}$$

The pole automatically emerges on the second Riemann sheet

Ground-state width at NLO

Counting of the isospin-breaking corrections: $\alpha \sim (m_d - m_u)^2 \sim \delta$

$$c_i = \bar{c}_i + \alpha c_i^{(1)} + (m_d - m_u)^2 c_i^{(2)} + O(\delta^2)$$

$$\Gamma_{2\pi0} = -\frac{\alpha^3 M_\pi^3}{4\pi} X \left\{ 1 - 2c_1 \cdot \underbrace{\overbrace{\overbrace{}}}_{\pi^+}^{\pi^-} \right\} + O(\delta^5)$$

$$X = -\frac{M_{\pi^0}}{2\pi} \rho^{1/2} \left(1 + \frac{5\rho}{8M_{\pi^0}^2} \right) c_2^2 \left(1 - \rho \frac{M_{\pi^0}^2}{4\pi^2} c_3^2 \right) + O(\delta^{5/2})$$

$$\rho = 2M_{\pi^0}(M_{\pi} - M_{\pi^0} - M_{\pi}\alpha^2/8)$$

- \hookrightarrow Perform matching of c_1, c_2, c_3 to the <u>relativistic</u> threshold $\pi\pi$ amplitudes, calculated at a pertinent order in δ
- \longrightarrow Substitute in the expression of the decay width

Final result for the width at NLO in isospin breaking

$$\Gamma_{2\pi^0} = \frac{2}{9} \,\alpha^3 p_1^* \mathcal{A}^2 (1+K) + O(\delta^{11/2})$$

$$p_1^* = (\Delta M_\pi^2 - M_\pi^2 \alpha^2 / 4)^{1/2}$$
 : phase space

 $\mathcal{A} = a_0 - a_2 + O(\delta)$: threshold amplitude

$$K = \frac{\Delta M_{\pi}^2}{9M_{\pi}^2} (a_0 + 2a_2)^2 - \frac{2\alpha}{3} (\ln \alpha - 1)(2a_0 + a_2) + O(\delta)$$

bound-state correction factor

$$\Delta M_\pi^2 \quad = \quad M_\pi^2 - M_{\pi^0}^2$$

- No reference to NF EFT after matching
- \mathcal{A} is the <u>relativistic</u> threshold amplitude for $\pi^+\pi^- \to \pi^0\pi^0$

Isospin breaking corrections: the definition

Quantum mechanics:

$$i\frac{\partial\Psi}{\partial t} = (\hat{H}_0 + \hat{V})\Psi, \qquad \hat{V} = \hat{V}_{str} - \underbrace{\frac{\alpha}{r}}_{switch off}$$

The procedure is ambiguous in Quantum Field Theory, due to the presence of UV divergences

$$\begin{array}{lll} {\rm QCD+QED} & : & \mu \frac{dg}{d\mu} = \beta_g(g,e) \,, & \mu \frac{de}{d\mu} = \beta_e(g,e) \\ \\ {\rm pure \ QCD} & : & \mu \frac{d\bar{g}}{d\mu} = \beta_g(\bar{g},0) \end{array}$$

What is the relation of $g(\mu)$ to $\bar{g}(\mu)$ defined at $\alpha = 0$ and $m_d = m_u$? In QCD, the answer is convention dependent

J. Gasser, AR and I. Scimemi, EPJC 32 (2003) 97

Isospin-breaking corrections in ChPT

Definition of the isospin-symmetric world:

 $M_{\pi} = M_{\pi^+} = 139.57 \text{ MeV} \longrightarrow \text{fixes quark mass } \hat{m}$ $F_{\pi} = 92.4 \text{ MeV} \longrightarrow \text{fixes } \Lambda_{QCD}$

Isospin-breaking corrections to the $\pi^+\pi^- \rightarrow \pi^0\pi^0$ amplitude:

$$\mathcal{A} = \underbrace{a_0 - a_2}_{\text{symmetric}} + \epsilon + O(\delta^2)$$

$$O(p^2) \quad : \quad \mathcal{A} = \frac{3}{32\pi F^2} \left(4M_\pi^2 - M_{\pi^0}^2 \right) = a_0 - a_2 + \frac{3\Delta M_\pi^2}{32\pi F^2}$$

$$O(p^4) \quad : \quad \Gamma_{2\pi^0} = \frac{2}{9} \,\alpha^3 p_1^* (a_0 - a_2)^2 (1 + \delta) \,, \quad \delta = (5.8 \pm 1.2) \times 10^{-2}$$

$$\tau = \Gamma_{2\pi^0}^{-1} = (2.9 \pm 0.1) \times 10^{-15} \text{ s}$$
 (standard scenario)

Conclusions

- Experiments on hadronic atoms enable one to extract the values of hadronic scattering lengths in QCD
- In order to ensure that the accuracy of the theoretical description of the atoms matches with the theoretical precision, the isospin-breaking corrections to the leading-order DGBT formula should be evaluated
 - Definition of the isospin-symmetry limit in QCD is convention-dependent
- Due to a huge difference between the atomic and strong energy scales, the NR EFT provides a systematic framework to investigate this sort of the bound states
 - ⇒ This approach is universal and applies to all known hadronic atoms $\pi^+\pi^-$, πK , πH , πd , KH, Kd, ..., despite their physically very different nature