A new approach to effective field theories for few-nucleon physics

Aleksi Vuorinen

Bielefeld University

Vienna 28.11.2009

Work in collaboration with Silas Beane (Univ. of New Hampshire) and David Kaplan (INT, Seattle); arXiv:0811.3938,...

Table of contents

Introduction

Motivation Why effective theories?

Effective field theories for few-nucleon systems

Pionless effective theory KSW expansion Adding pions into EFT

A new approach

New idea: Modification of pion propagator Results

Conclusions and outlook

(4 同) (4 回) (4 回)

Introduction

Effective field theories for few-nucleon systems A new approach Conclusions and outlook Motivation Why effective theories?

Table of contents

Introduction

Motivation Why effective theories?

Effective field theories for few-nucleon systems

Pionless effective theory KSW expansion Adding pions into EFT

A new approach

New idea: Modification of pion propagator Results

Conclusions and outlook

イロト イポト イヨト イヨト

Motivation Why effective theories?

Challenges in low energy nuclear physics

- ► Goal: Have quantitative control over interactions between a few (2-5) nucleons
 - NN and Nd scattering
 - Structure of nuclei / nuclear matter
 - Solar fusion, form factors, breakup of deuteron (radiative or neutrino), ...
- Methods: Potential models (traditional nuclear physics) vs. effective theories
 - Potential models: Fit nucleon-nucleon potential to data and apply it to *N*-body calculation
 - ▶ High precision, easy to implement but no systematic expansion

ヘロン 人間 とくほ とくほ とう

► EFT: Start from QCD, perform analysis of scale hierarchies in system and integrate out irrelevant dof's

Motivation Why effective theories?

Challenges in low energy nuclear physics

- ► Goal: Have quantitative control over interactions between a few (2-5) nucleons
 - NN and Nd scattering
 - Structure of nuclei / nuclear matter
 - Solar fusion, form factors, breakup of deuteron (radiative or neutrino), ...
- Methods: Potential models (traditional nuclear physics) vs. effective theories
 - Potential models: Fit nucleon-nucleon potential to data and apply it to N-body calculation
 - ► High precision, easy to implement but no systematic expansion

ヘロン 人間 とくほ とくほ とう

 EFT: Start from QCD, perform analysis of scale hierarchies in system and integrate out irrelevant dof's

Motivation Why effective theories?

Challenges is low energy nuclear physics

Potential models as summarized by Silas Beane:

NN phase shifts

 $\stackrel{\downarrow}{\mathsf{NN}} \mathsf{potentials}$

To date, study of Nuclear Forces has relied on modeling that is disconnected from the Standard Model of particle interactions

イロト イポト イヨト イヨト

EFT for nuclear physics — why?

- Natural framework to bridge short and long distance physics and incorporate symmetries
- Clear hierarchy of operators: Expansion in p/Λ
 - In potential models no way to determine which observables calculable to desired accuracy
- EM / weak interactions, relativistic corrections, dynamical processes, etc. easy to incorporate
- Numerical implementation straightforward
 - Bridge between lattice QCD and nuclear structure
 - N body physics via lattice implementation of EFT extremely efficient (no QCD sign and signal/noise problems!)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Motivation Why effective theories?

EFT for nuclear physics — how?

- Rules of EFT building
 - Hierarchy of energy scales: $E_{\text{interesting}} \ll m_{\text{irrelevant}}$
 - Identify symmetries and low-energy degrees of freedom
 - Devise consistent power counting scheme: Ordering of operators, estimation of errors
 - Integrate out irrelevant dof's
 - Fit parameters to data
- EFTs in nuclear physics
 - Parameters with scale: $m_N, m_\pi, a(^{2S+1}N_J), \dots$
 - Symmetries: Baryon number, Galilean, spin, isospin
 - Degrees of freedom: Nucleons, pion, ...
 - Data: Phase shifts in various channels from partial wave analysis of scattering results

イロン 不良 とくほどう

Motivation Why effective theories?

EFT for nuclear physics — how?

- Rules of EFT building
 - Hierarchy of energy scales: $E_{\text{interesting}} \ll m_{\text{irrelevant}}$
 - Identify symmetries and low-energy degrees of freedom
 - Devise consistent power counting scheme: Ordering of operators, estimation of errors
 - Integrate out irrelevant dof's
 - Fit parameters to data
- EFTs in nuclear physics
 - Parameters with scale: m_N , m_π , $a(^{2S+1}N_J)$, ...
 - Symmetries: Baryon number, Galilean, spin, isospin
 - Degrees of freedom: Nucleons, pion, ...
 - Data: Phase shifts in various channels from partial wave analysis of scattering results

イロン 不良 とくほどう

Motivation Why effective theories?

Rest of the talk: How to implement the above

イロト イヨト イヨト イヨト

Pionless effective theory KSW expansion Adding pions into EFT

Table of contents

Introduction

Motivation Why effective theories?

Effective field theories for few-nucleon systems

Pionless effective theory KSW expansion Adding pions into EFT

A new approach

New idea: Modification of pion propagator Results

Conclusions and outlook

イロト イポト イヨト イヨト

Pionless effective theory KSW expansion Adding pions into EFT

Pionless theory — starting point

Consider NN scattering in ${}^{1}S_{0}$ channel: S = 0 and L = 0 for the two-particle system

Pionless effective theory KSW expansion Adding pions into EFT

Pionless theory — starting point

Consider NN scattering in ${}^{1}S_{0}$ channel: S = 0 and L = 0 for the two-particle system

Assume $p \ll m_{\pi}$ and try to construct EFT expansion for scattering amplitude A with UV cutoff $\Lambda \sim m_{\pi}$...

Pionless effective theory KSW expansion Adding pions into EFT

Pionless theory — starting point

Consider NN scattering in ${}^{1}S_{0}$ channel: S = 0 and L = 0 for the two-particle system

Assume $p \ll m_{\pi}$ and try to construct EFT expansion for scattering amplitude A with UV cutoff $\Lambda \sim m_{\pi}$...

...starting from the Lagrangian for non-relativistic nucleons

$$\mathcal{L} = N^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2M} \right) N - C_0 \left(N^{\dagger} N \right)^2 - C_2 \left(N^{\dagger} \nabla^2 N \right) \left(N^{\dagger} N \right) + h.c. + \cdots$$

Pionless effective theory KSW expansion Adding pions into EFT

Pionless theory — basic setup

1. Evaluate scattering amplitude diagrammatically to get

$$S = 1 + i \frac{Mp}{2\pi} \mathcal{A},$$
$$\mathcal{A} = \frac{4\pi}{M} \frac{1}{p \cot \delta - ip}$$

2. Compare result to effective range expansion...

$$p \cot \delta = -\frac{1}{a} + \frac{1}{2} \Lambda^2 \sum_{n=0}^{\infty} r_n \left(\frac{p^2}{\Lambda^2}\right)^{n+1}$$

• $r_n \sim 1/\Lambda \sim$ range of potential, *a* arbitrary

3. ...to write diagrammatic expansion of A in terms of the r_n

$$\mathcal{A} = -\frac{4\pi a}{M} \left[1 - iap + (ar_0/2 - a^2)p^2 + \mathcal{O}\left(p^3\right) \right]$$

Pionless effective theory KSW expansion Adding pions into EFT

Pionless theory — **basic setup**

1. Evaluate scattering amplitude diagrammatically to get

$$S = 1 + i \frac{Mp}{2\pi} \mathcal{A},$$
$$\mathcal{A} = \frac{4\pi}{M} \frac{1}{p \cot \delta - ip}$$

2. Compare result to effective range expansion...

$$p \cot \delta = -\frac{1}{a} + \frac{1}{2} \Lambda^2 \sum_{n=0}^{\infty} r_n \left(\frac{p^2}{\Lambda^2}\right)^{n+1}$$

• $r_n \sim 1/\Lambda \sim$ range of potential, *a* arbitrary

3. ...to write diagrammatic expansion of \mathcal{A} in terms of the r_n

$$\mathcal{A} = -\frac{4\pi a}{M} \left[1 - iap + (ar_0/2 - a^2)p^2 + \mathcal{O}\left(p^3\right) \right]$$

Pionless effective theory KSW expansion Adding pions into EFT

Pionless theory — **basic setup**

1. Evaluate scattering amplitude diagrammatically to get

$$S = 1 + i \frac{Mp}{2\pi} \mathcal{A},$$
$$\mathcal{A} = \frac{4\pi}{M} \frac{1}{p \cot \delta - ip}$$

2. Compare result to effective range expansion...

$$p \cot \delta = -\frac{1}{a} + \frac{1}{2} \Lambda^2 \sum_{n=0}^{\infty} r_n \left(\frac{p^2}{\Lambda^2}\right)^{n+1}$$

• $r_n \sim 1/\Lambda \sim$ range of potential, *a* arbitrary

3. ...to write diagrammatic expansion of A in terms of the r_n

$$\mathcal{A} = -rac{4\pi a}{M}\left[1 - iap + (ar_0/2 - a^2)p^2 + \mathcal{O}\left(p^3
ight)
ight]$$

Pionless effective theory KSW expansion Adding pions into EFT

Basic setup — pionless theory

Problem: Scattering lengths anomalously large

$$a({}^{1}S_{0}) = -23.7 \,\text{fm} \sim (8 \,\text{MeV})^{-1},$$

 $a({}^{3}S_{1}) = 5.4 \,\text{fm} \sim (35 \,\text{MeV})^{-1}$

- : Nuclear EFT must be non-perturbative!!
- Resolution: Must sum powers of (ap) to all orders to extend validity of EFT to Λ ~ m_π

Pionless effective theory KSW expansion Adding pions into EFT

Basic setup — pionless theory

Problem: Scattering lengths anomalously large

$$a({}^{1}S_{0}) = -23.7 \,\text{fm} \sim (8 \,\text{MeV})^{-1},$$

 $a({}^{3}S_{1}) = 5.4 \,\text{fm} \sim (35 \,\text{MeV})^{-1}$

- : Nuclear EFT must be non-perturbative!!
- Resolution: Must sum powers of (ap) to all orders to extend validity of EFT to Λ ~ m_π

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Two approaches to pionless EFT

Weinberg's proposal

- 1. Compute NN potential in a derivative expansion
- 2. Solve Schrödinger eq. numerically
- **3.** Match C_{2n} 's to phase shift data

KSW (Kaplan, Savage, Wise) power counting

- 1. Introduce physical subtraction scheme
- **2.** Sum C_0 to all orders
- **3.** Expand amplitude in p/Λ and fit *a* and r_n

• □ ▶ • • □ ▶ • • □ ▶ • • □ ▶ •

Two approaches to pionless EFT

Weinberg's proposal

- 1. Compute NN potential in a derivative expansion
- 2. Solve Schrödinger eq. numerically
- **3.** Match C_{2n} 's to phase shift data

KSW (Kaplan, Savage, Wise) power counting

- 1. Introduce physical subtraction scheme
- **2.** Sum C_0 to all orders
- **3.** Expand amplitude in p/Λ and fit *a* and r_n

 \approx Expand theory around $a = \infty$

• □ ▶ • • □ ▶ • • □ ▶ • • □ ▶ •

Pionless effective theory KSW expansion Adding pions into EFT

KSW power counting

▶ Want to expand A in powers of p while retaining (ap) to all orders:

$$\mathcal{A} = -\frac{4\pi}{M} \frac{1}{(1/a+ip)} \left[1 + \frac{r_0/2}{(1/a+ip)} p^2 + \frac{(r_0/2)^2}{(1/a+ip)^2} p^4 + \frac{(r_1/2\Lambda^2)}{(1/a+ip)} p^4 + \dots \right]$$

• How? Sum C_0 to all orders and expand in C_{2n} , $n \ge 1$!

$$\mathcal{L} = \cdots - C_0 \left(N^{\dagger} N \right)^2 - C_2 \left(N^{\dagger} \nabla^2 N \right) \left(N^{\dagger} N \right) + h.c. + \cdots$$

► The bubble in PDS (power divergence subtraction) scheme

$$I_0 = \left(\frac{\mu}{4}\right)^{4-d} \int \frac{\mathrm{d}^{d-1}q}{(2\pi)^{d-1}} \frac{1}{E - q^2/M + i\epsilon} \to -\frac{M}{4\pi} \ (\mu + ip)$$

PDS = Subtract also power law divergences

• Leads to $C_0 = 4\pi/(M(-\mu + 1/a)), \ \mu \sim p$

Pionless effective theory KSW expansion Adding pions into EFT

KSW power counting

▶ Want to expand A in powers of p while retaining (ap) to all orders:

$$\mathcal{A} = -\frac{4\pi}{M} \frac{1}{(1/a+ip)} \left[1 + \frac{r_0/2}{(1/a+ip)} p^2 + \frac{(r_0/2)^2}{(1/a+ip)^2} p^4 + \frac{(r_1/2\Lambda^2)}{(1/a+ip)} p^4 + \dots \right]$$

▶ How? Sum C_0 to all orders and expand in C_{2n} , $n \ge 1$!

$$\mathcal{L} = \cdots - C_0 \left(N^{\dagger} N \right)^2 - C_2 \left(N^{\dagger} \nabla^2 N \right) \left(N^{\dagger} N \right) + h.c. + \cdots$$

▶ The bubble in PDS (power divergence subtraction) scheme

$$I_0 = \left(\frac{\mu}{4}\right)^{4-d} \int \frac{\mathrm{d}^{d-1}q}{(2\pi)^{d-1}} \frac{1}{E - q^2/M + i\epsilon} \to -\frac{M}{4\pi} \ (\mu + ip)$$

PDS = Subtract also power law divergences

• Leads to $C_0 = 4\pi/(M(-\mu + 1/a)), \ \mu \sim p$

Pionless effective theory KSW expansion Adding pions into EFT

KSW power counting

Expansion of the amplitude:

イロン 不良 とくほどう

臣

Pionless effective theory KSW expansion Adding pions into EFT

KSW power counting

► Want to expand A in powers of p while retaining (ap) to all orders:

$$\mathcal{A} = -\frac{4\pi}{M} \frac{1}{(1/a+ip)} \left[1 + \frac{r_0/2}{(1/a+ip)} p^2 + \frac{(r_0/2)^2}{(1/a+ip)^2} p^4 + \frac{(r_1/2\Lambda^2)}{(1/a+ip)} p^4 + \dots \right]$$

▶ How? Sum C_0 to all orders and expand in C_{2n} , $n \ge 1$!

$$\mathcal{L} = \cdots - C_0 \left(N^{\dagger} N \right)^2 - C_2 \left(N^{\dagger} \nabla^2 N \right) \left(N^{\dagger} N \right) + h.c. + \cdots$$

► The bubble in PDS (power divergence subtraction) scheme

$$I_0 = \left(\frac{\mu}{4}\right)^{4-d} \int \frac{\mathrm{d}^{d-1}q}{(2\pi)^{d-1}} \frac{1}{E - q^2/M + i\epsilon} \to -\frac{M}{4\pi} \ (\mu + ip)$$

- PDS = Subtract also power law divergences
- Leads to $C_0 = 4\pi/(M(-\mu + 1/a)), \ \mu \sim p$

• □ ▶ • • □ ▶ • • □ ▶ • • □ ▶ •

Pionless effective theory KSW expansion Adding pions into EFT

KSW power counting

• Running of dimensionless coupling $\hat{C}_0 \equiv -\frac{M\mu}{4\pi} C_0 = \mu/(\mu + 1/a)$:

► KSW expansion = Expansion around non-trivial UV fixed point $\hat{C}_0 = 1!$

Pionless effective theory KSW expansion Adding pions into EFT

Limitations of pionless EFT

Pionless EFT a'la KSW a success...

ヘロン 人間 とくほ とくほ とう

크

Pionless effective theory KSW expansion Adding pions into EFT

Limitations of pionless EFT

Pionless EFT a'la KSW a success...

イロト イポト イヨト イヨト

Pionless effective theory KSW expansion Adding pions into EFT

Limitations of pionless EFT

Pionless EFT a'la KSW a success...

Phillips line: ³H binding energy - Nd scattering length correlation

< □ > < □ > < □ > < □ >

-

Pionless effective theory KSW expansion Adding pions into EFT

Limitations of pionless EFT

...but clearly we want to go beyond that:

- To describe scattering for $p \gtrsim 100 \text{ MeV}$
- ► To describe nuclei heavier than ³H and ³He

... Try including pions into EFT

イロト イポト イヨト イヨト

Pionless effective theory KSW expansion Adding pions into EFT

Pionful EFTs

Again two approaches... Weinberg and KSW

ヘロン 人間 とくほ とくほ とう

크

Pionless effective theory KSW expansion Adding pions into EFT

Pionful EFTs

Weinberg's proposal:

- **1.** Perform χ expansion of NN potential V
- 2. Solve Schrödinger equation for nucleons with V
- **3.** Obtain phase shift from the above

KSW approach:

- 1. Start from pionless KSW counting expand around non-trivial fixed point
- 2. Include one pion exchange *perturbatively* at the same order as C_2

Pionless effective theory KSW expansion Adding pions into EFT

Pionful EFT a'la Weinberg

Virtues:

- Pion exchange correctly incorporated in EFT
- Systematically improvable scheme
- Extendable to high orders and accuracies: Now at NNNLO

イロト イポト イヨト イヨト

Pionless effective theory KSW expansion Adding pions into EFT

Pionful EFT a'la Weinberg

イロト イポト イモト イモト

Pionless effective theory KSW expansion Adding pions into EFT

Pionful EFT a'la Weinberg

Virtues:

- Pion exchange correctly incorporated in EFT
- Systematically improvable scheme
- ► Extendable to high orders and accuracies: Now at NNNLO

Vices:

- ► Inconsistent power counting: Higher order counter terms needed
 - ► Non-renormalizable EFT: Cannot remove cutoff!
- Tensor potential singular
- Typically close to 10 free parameters per channel
- Numerical calculations show no advantage to potential models

• □ • • □ • • □ • • □ •

Pionless effective theory KSW expansion Adding pions into EFT

Pionful EFT a'la KSW

Virtues:

- Consistent power counting: Renormalizable scheme
- Very few fit parameters
- Also systematically improvable: Calculations up to NNLO

イロト イヨト イヨト イヨト

Pionless effective theory KSW expansion Adding pions into EFT

Pionful EFT a'la KSW

イロト イヨト イヨト イヨト

Pionless effective theory KSW expansion Adding pions into EFT

Pionful EFT a'la KSW

Virtues:

- Consistent power counting: Renormalizable scheme
- Very few fit parameters
- ► Also systematically improvable: Calculations up to NNLO

Vices:

- Does not converge for ${}^{3}S_{1}$ and ${}^{3}D_{1}!$
 - Reason: $1/r^3$ pion exchange potential in tensor channel
 - Singular short distance physics screws up expansion

$$V_C(r) = -\frac{\alpha_{\pi}}{r} m_{\pi}^2 e^{-m_{\pi}r},$$

$$V_T(r) = -\frac{\alpha_{\pi}}{r} m_{\pi}^2 e^{-m_{\pi}r} \left(1 + \frac{3}{m_{\pi}r} + \frac{3}{m_{\pi}^2 r^2}\right)$$

(4 同) (4 回) (4 回)

Pionless effective theory KSW expansion Adding pions into EFT

Pionful EFT a'la KSW

イロト イヨト イヨト イヨト

New idea: Modification of pion propagator Results

Table of contents

Introduction

Motivation Why effective theories?

Effective field theories for few-nucleon systems

Pionless effective theory KSW expansion Adding pions into EFT

A new approach

New idea: Modification of pion propagator Results

Conclusions and outlook

Introducing PV fields (Beane, Kaplan, AV, 0812:3938)

New idea: Modify pion propagator by adding new fields that

- ► Regulate singular short distance potential...
- ...but leave correct long distance behavior unaffected

Introducing PV fields (Beane, Kaplan, AV, 0812:3938)

New idea: Modify pion propagator by adding new fields that

- Regulate singular short distance potential...
- ...but leave correct long distance behavior unaffected

$$G_{\pi}(q,m) = i\frac{g_A^2}{4f_{\pi}^2} \frac{(\mathbf{q} \cdot \boldsymbol{\sigma}_1)(\mathbf{q} \cdot \boldsymbol{\sigma}_2)(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)}{\mathbf{q}^2 + m^2} \quad \text{pion, I=J=1, mass } m$$

$$G_{(1,0)}(q,\boldsymbol{\lambda}) = -i\frac{g_A^2}{4f_{\pi}^2} \frac{\boldsymbol{\lambda}^2}{\mathbf{q}^2 + \boldsymbol{\lambda}^2} (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \quad \text{I=1, J=0, mass } \boldsymbol{\lambda}$$

$$I = 1, J = 0, \text{ mass } \boldsymbol{\lambda}$$

$$I = 1, J = 0, \text{ mass } \boldsymbol{\lambda}$$

$$G_{\pi}(q,m_{\pi}) - G_{\pi}(q,\boldsymbol{\lambda}) + G_{(1,0)}(q,\boldsymbol{\lambda})$$

イロト イヨト イヨト イヨト

Introducing PV fields (Beane, Kaplan, AV, 0812:3938)

New idea: Modify pion propagator by adding new fields that

- Regulate singular short distance potential...
- ...but leave correct long distance behavior unaffected

Interpretation of λ :

- Extra mass scale counted as $\lambda \sim m_{\pi}$
 - But $\lambda \geq 2\Lambda_{NN}!$
- Regain KSW expansion as $\lambda \to \infty$
- Roughly analogous to renormalization scale in pQCD

New idea: Modification of pion propagator Results

イロト イポト イヨト イヨト

Э

Now perform some straightforward algebra...

$$\begin{split} F_{1}(x_{1},x_{2}) &= \frac{1}{8} \mathrm{Tr} \left[P_{\tau} \tau^{l} \tau^{j} \left(P_{\tau} \right)^{*} \left(\tau^{j} \right)^{T} \left(\tau^{i} \right)^{T} \right] \\ &\times \int_{k} \int_{l} \int_{r} \frac{\mathrm{Tr} \left[P_{\sigma} \, \vec{\sigma} \cdot \mathbf{k} \, \vec{\sigma} \cdot \mathbf{1} (P_{\sigma})^{*} \, \vec{\sigma}^{T} \cdot \mathbf{1} \, \vec{\sigma}^{T} \cdot \mathbf{k} \right]}{(\mathbf{k} + \mathbf{r})^{2} - p^{2})((\mathbf{k} + \mathbf{l} + \mathbf{r})^{2} + x_{1}^{2})(r^{2} + x_{2}^{2})(k^{2} + m_{1}^{2})(l^{2} + m_{2}^{2})} \\ &= -\frac{(d-2)^{2}}{2} \int_{k} \int_{l} \int_{r} \int_{r} \frac{1}{((\mathbf{k} + \mathbf{r})^{2} - p^{2})((\mathbf{k} + \mathbf{l} + \mathbf{r})^{2} + x_{1}^{2})(r^{2} + x_{2}^{2})}{(k^{2} + m_{1}^{2})(l^{2} + m_{2}^{2})} \\ &\times \left\{ 1 - \frac{m_{1}^{2}}{k^{2} + m_{1}^{2}} - \frac{m_{2}^{2}}{l^{2} + m_{2}^{2}} + \frac{m_{1}^{2}m_{2}^{2}}{(k^{2} + m_{1}^{2})(l^{2} + m_{2}^{2})} \right\}, \quad (7) \\ F_{2}(x_{1}, x_{2}) &= \frac{m_{2}^{2}}{8} \mathrm{Tr} \left[P_{\tau} \tau^{i} \tau^{j} \left(P_{\tau} \right)^{*} \left(\tau^{j} \right)^{T} \left(\tau^{i} \right)^{T} \right] \\ &\times \int_{k} \int_{l} \int_{l} \int_{r} \frac{\mathrm{Tr} \left[P_{\sigma} \, \vec{\sigma} \cdot \mathbf{1} (P_{\sigma})^{*} \, \vec{\sigma}^{T} \cdot \mathbf{1} \right]}{(\mathbf{k} + \mathbf{r})^{2} - p^{2})((\mathbf{k} + \mathbf{l} + \mathbf{r})^{2} + x_{2}^{2})(k^{2} + m_{2}^{2})(l^{2} + m_{1}^{2})} \\ &= \frac{(d-2)^{2}m_{2}^{2}}{2} \int_{k} \int_{l} \int_{l} \int_{r} \frac{\mathrm{Tr} \left[P_{\sigma} \, \vec{\sigma} \cdot \mathbf{1} (P_{\sigma})^{*} \, \vec{\sigma}^{T} \cdot \mathbf{1} \right]}{(\mathbf{k} + \mathbf{r})^{2} - p^{2})((\mathbf{k} + \mathbf{l} + \mathbf{r})^{2} + x_{1}^{2})(r^{2} + x_{2}^{2})(k^{2} + m_{1}^{2})} \\ &\times \left\{ 1 - \frac{m_{1}^{2}}{l^{2} + m_{1}^{2}} \right\}, \quad (8) \end{split}$$

$$\begin{split} \widetilde{F_{2}}(x_{1},x_{2}) &= \frac{m_{2}^{2}}{8} \operatorname{Tr} \left[P_{\tau} \tau^{i} \tau^{j} \left(P_{\tau} \right)^{*} \left(\tau^{j} \right)^{T} \left(\tau^{i} \right)^{T} \right] \\ &\times \int_{k} \int_{l} \int_{r} \frac{\Gamma}{(\mathbf{(k+r)^{2}} - p^{2}))(\mathbf{(k+l+r)^{2}} + x_{1}^{2})(\tau^{2} + x_{2}^{2})(k^{2} + m_{1}^{2})(l^{2} + m_{2}^{2})} \\ &= \frac{(d-2)^{2} m_{2}^{2}}{2} \int \int \int \frac{\Gamma}{1-2} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \\ \end{split}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

$$\begin{split} c_{1} &= -\frac{3}{512\pi} \left\{ \frac{24im_{3}^{2}m_{1}^{2}}{p^{3}} - \frac{16m_{2}m_{1}^{2}}{p^{2}} + \frac{2\log\left(\frac{yp}{(m_{1}+m_{2})^{2}}+1\right)m_{2}^{2}\left(m_{1}+m_{2}\right)\left(4p^{2}+3m_{1}m_{2}\right)m_{1}^{2}}{p^{6}} \right. \\ &+ \frac{4i\log\left(1-\frac{2ip}{m_{1}}\right)\left(m_{1}^{2}\left(2p^{2}-3m_{2}^{2}\right)-4p^{2}m_{2}^{2}\right)m_{1}^{2}}{p^{5}} \\ &- \frac{2\operatorname{Im}\left(\operatorname{Li}_{2}\left(\frac{2ip-m_{2}}{m_{1}}\right)+\operatorname{Li}_{2}\left(\frac{2ip-m_{1}}{m_{2}}\right)+\operatorname{Li}_{2}\left(-\frac{2ip+m_{1}}{m_{2}-2ip}\right)\right)m_{2}^{2}\left(8p^{4}+4m_{2}^{2}p^{2}+m_{1}^{2}\left(4p^{2}+3m_{2}^{2}\right)\right)m_{1}^{2}}{p^{7}} \\ &+ \frac{i\log\left(1-\frac{2ip}{m_{1}}\right)\log\left(\frac{4p^{2}}{m_{2}^{2}}+1\right)m_{2}^{2}\left(8p^{4}+4m_{2}^{2}p^{2}+m_{1}^{2}\left(4p^{2}+3m_{2}^{2}\right)\right)m_{1}^{2}}{p^{7}} \\ &+ \frac{\arctan\left(\frac{2m}{m_{2}}\right)\log\left(\frac{4p^{2}+m_{1}^{2}}{m_{1}^{2}}\right)m_{2}^{2}\left(8p^{4}+4m_{2}^{2}p^{2}+m_{1}^{2}\left(4p^{2}+3m_{2}^{2}\right)\right)m_{1}^{2}}{p^{5}} \\ &- \frac{16im_{2}^{2}}{p}+32ip-64m_{2}-\frac{4\tan^{-1}\left(\frac{2p}{m_{1}+m_{2}}\right)\left(4p^{2}+m_{1}^{2}+m_{2}^{2}\right)\left(8p^{4}+2m_{2}^{2}p^{2}+m_{1}^{2}\left(2p^{2}-3m_{2}^{2}\right)\right)}{p^{5}} \\ &- \frac{4i\log\left(1-\frac{2ip}{m_{2}}\right)m_{2}^{2}\left(m_{1}^{2}\left(4p^{2}+3m_{2}^{2}\right)-2p^{2}m_{2}^{2}\right)}{p^{5}}\right\}, \quad (64) \\ a_{2} &= -\frac{3im_{2}^{2}}{256\pi^{3}p}\left\{p^{2}\left[\log\left(\frac{4\mu^{2}}{(m_{2}-2ip)^{2}}\right)-\frac{7}{3}\right]-m_{1}^{2}\left[\log\left(1-\frac{2ip}{m_{2}}\right)\log\left(\frac{\sqrt{m_{2}\left(m_{2}-2ip\right)}}{m_{1}-2ip}\right)}\right]\right\}, \quad (65) \\ b_{2} &= -\frac{3im_{2}^{2}}{3m^{2}}\left\{2p^{2}\log\left(1-\frac{2ip}{m_{2}}\right)-m_{1}^{2}\left[\log\left(1-\frac{2ip}{m_{2}}\right)\log\left(\frac{\sqrt{m_{2}\left(m_{2}-2ip\right)}}{m_{2}}\right)\right\} \right\}$$

New idea: Modification of pion propagator Results

◆□▶ ◆御▶ ◆臣▶ ◆臣▶

æ

...and after 35 pages:

New idea: Modification of pion propagator Results

³S₁ channel with PV fields

New idea: Modification of pion propagator Results

イロト イヨト イヨト イヨト

æ

And more to follow (soon)...

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

Table of contents

Introduction

Motivation Why effective theories?

Effective field theories for few-nucleon systems

Pionless effective theory KSW expansion Adding pions into EFT

A new approach

New idea: Modification of pion propagator Results

Conclusions and outlook

イロト イポト イヨト イヨト

Conclusions and outlook

- Effective theories offer controlled and physically transparent way to do low energy nuclear physics
- KSW power counting leads to renormalizable theory with few fit parameters
 - Deformation of pion propagators cures problems due to singular tensor potential
- Lots to do:
 - Higher partial waves (partially completed; ${}^{3}P_{0}$ problematic)
 - N³LO amplitudes
 - Applications: N-body processes, lattice implementation (in progress), ...