universitätbonn

Coulomb effects in pionless effective field theory

Sebastian König
in collaboration with Hans-Werner Hammer
Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, Germany

6th Vienna Central European Seminar
Vienna, 28/11/2009

Outline

- Introduction
- n-d system: Strong interaction only
- p-d system: Including Coulomb effects
- Application and Results
- Summary

Introduction

- Pionless effective field theory
- Effective Lagrangian

Pionless effective field theory

Construct an effective field theory for low-energy few-nucleon systems
Concepts and experimental input:

- At very low energies even pions can be integrated out \rightarrow only nucleons left as effective degrees of freedom
- Nonrelativistic framework \rightarrow demand Galilei-invariance of effective Lagrangian
- Large scattering lengths in $N N$ scattering \rightarrow additional low-energy scale

This program has been carried out quite successfully, already.
e.g. Bedaque, Hammer, van Kolck 2000

Interesting: Study Coulomb effects in the 3-body system
Rupak, Kong 2003
Use nucleon-deuteron system as an example!

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}=N^{\dagger}\left(\mathrm{i} D_{0}+\frac{\vec{D}^{2}}{2 M_{N}}\right) N+\mathcal{L}_{\text {photon }} \\
&-d^{i \dagger}\left[\sigma_{d}+\left(\mathrm{i} D_{0}+\frac{\vec{D}^{2}}{4 M_{N}}\right)\right] d^{i}-t^{A \dagger}\left[\sigma_{t}+\left(\mathrm{i} D_{0}+\frac{\vec{D}^{2}}{4 M_{N}}\right)\right] t^{A} \\
& \quad-y_{d}\left[d^{i \dagger}\left(N^{T} P_{d}^{i} N\right)+\text { h.c. }\right]-y_{t}\left[t^{A \dagger}\left(N^{T} P_{t}^{A} N\right)+\text { h.c. }\right]
\end{aligned}
$$

Contents:

- Nucleon field N, doublet in spin and isospin space
- Two auxiliary dibaryon fields d^{i} (spin triplet, isospin singlet) and t^{A} (spin singlet, isospin triplet) corresponding to the respective channels in $N N$ scattering
- Coupling constants y_{d} and y_{t}, dibaryon propagators are just constants (σ_{d}, σ_{t}) to first order

Couple to photons via covariant derivative: $D_{\mu}=\partial_{\mu}+\mathrm{ie} \hat{Q}_{\mathrm{em}} A_{\mu}$

n-d system: Strong interaction only

"With the lights out, it's less dangerous..."

- Power counting
- Integral equation

Power counting

Identify scales:

- Low-energy scale: $p \sim \gamma_{d} \sim \mathcal{O}(Q)$
- Cut-off $\Lambda \sim \mathcal{O}\left(m_{\pi}\right), m_{\pi} / M_{N} \sim \mathcal{O}(Q / \Lambda)$
- Assume $y_{d}^{2} \sim y_{t}^{2} \sim 1 / \Lambda$ and $\sigma_{d} \sim \sigma_{t} \sim Q$

Consequences:

- Integration measure $\int \mathrm{d}^{3} q \sim \mathcal{O}\left(Q^{3}\right)$
- Nucleon propagator $\sim \mathcal{O}\left(M_{N} / Q^{2}\right)$ (non-relativistic!)
- Leading order dibaryon propagator $=-\mathrm{i} / \sigma \sim \mathcal{O}(1 / Q)$
$\bigcirc==\sim \mathcal{O}(1)$
\rightarrow Re-sum propagator!

Power counting

Identify scales:

- Low-energy scale: $p \sim \gamma_{d} \sim \mathcal{O}(Q)$
- Cut-off $\Lambda \sim \mathcal{O}\left(m_{\pi}\right), m_{\pi} / M_{N} \sim \mathcal{O}(Q / \Lambda)$
- Assume $y_{d}^{2} \sim y_{t}^{2} \sim 1 / \Lambda$ and $\sigma_{d} \sim \sigma_{t} \sim Q$

Consequences:

- Integration measure $\int \mathrm{d}^{3} q \sim \mathcal{O}\left(Q^{3}\right)$
- Nucleon propagator $\sim \mathcal{O}\left(M_{N} / Q^{2}\right)$ (non-relativistic!)
- Leading order dibaryon propagator $=-\mathrm{i} / \sigma \sim \mathcal{O}(1 / Q)$
$\bigcirc==\sim \mathcal{O}(1)$
\rightarrow Re-sum propagator!
- Bubble chain: $\Delta_{d}=\Longrightarrow====+==\square=+\ldots$
- Fix parameters from $N N$ scattering
- Dibaryon kinetic energy \rightarrow range corrections

Integral equation

$\square \sim \square \sim \ldots$ all of same order \rightarrow Integral equation!

Integral equation

Formal structure:

$$
\mathcal{T}(E ; k, p)=K(E ; k, p)+\frac{1}{\pi} \int_{0}^{\Lambda} \mathrm{d} q K(E ; q, p) D(E ; q) \mathcal{T}(E ; k, q)
$$

for S-waves, incoming momentum k, outgoing momentum p

- Quartet channel \rightarrow quite simple

Integral equation

Formal structure:

$$
\mathcal{T}(E ; k, p)=K(E ; k, p)+\frac{1}{\pi} \int_{0}^{\Lambda} \mathrm{d} q K(E ; q, p) D(E ; q) \mathcal{T}(E ; k, q)
$$

for S-waves, incoming momentum k, outgoing momentum p

- Quartet channel \rightarrow quite simple
- Doublet channel \rightarrow coupled channels, 3 N -force $H(\Lambda)$ at leading order

p-d system: Including Coulomb effects

"...here we are now, entertain us!"

- Coulomb photons
- Modified power counting
- New integral equations
- Numerical methods

Coulomb photons

Consider $\mathcal{L}_{\text {photon }}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \xi}(\underbrace{\partial_{\mu} A^{\mu}-\eta_{\mu} \eta_{\nu} \partial^{\nu} A^{\mu}}_{=\vec{\nabla} \cdot \mathbf{A} \text { for } \eta^{\mu}=(1,0,0,0)})^{2}-e j_{\mu} A^{\mu}$
\rightarrow quantization in Coulomb gauge

- One finds: Field component A_{0} does not propagate \rightarrow eliminate with equation of motion
- Poisson equation: $\Delta A^{0}=-e j^{0} \Longleftrightarrow(i \mathbf{k})^{2} A^{0}=-e j^{0}$
- Re-insert into Lagrangian: $\mathrm{i}_{\mathcal{L}_{\mathrm{int}}}(\mathbf{k}) \supset(\mathrm{ie}) j_{0}(\mathbf{k}) \frac{\mathrm{i}}{\mathrm{k}^{2}}(\mathrm{ie}) j_{0}(\mathbf{k})$

$$
\overline{\{ } \sim \mathrm{i} e^{2} \frac{1}{(\mathrm{ik})^{2}}=(\mathrm{ie}) \frac{\mathrm{i}}{\mathbf{k}^{2}}(\mathrm{i} e) .
$$

\rightarrow exchange of Coulomb photons

Coulomb photons

Consider $\mathcal{L}_{\text {photon }}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \xi}(\underbrace{\partial_{\mu} A^{\mu}-\eta_{\mu} \eta_{\nu} \partial^{\nu} A^{\mu}}_{=\vec{\nabla} \cdot \mathbf{A} \text { for } \eta^{\mu}=(1,0,0,0)})^{2}-e j_{\mu} A^{\mu}$
\rightarrow quantization in Coulomb gauge

- One finds: Field component A_{0} does not propagate \rightarrow eliminate with equation of motion
- Poisson equation: $\Delta A^{0}=-e j^{0} \Longleftrightarrow(i \mathbf{k})^{2} A^{0}=-e j^{0}$
- Re-insert into Lagrangian: $\mathcal{i}_{\mathcal{L}_{\mathrm{int}}}(\mathbf{k}) \supset(\mathrm{ie}) j_{0}(\mathbf{k}) \frac{\mathrm{i}}{\mathrm{k}^{2}}(\mathrm{ie}) j_{0}(\mathbf{k})$

$$
\overline{\{ } \sim \mathrm{i} e^{2} \frac{1}{(\mathrm{ik})^{2}}=(\mathrm{ie}) \frac{\mathrm{i}}{\mathbf{k}^{2}}(\mathrm{i} e) .
$$

\rightarrow exchange of Coulomb photons
Compared to this, transverse photons are suppressed by powers of momenta and/or α / M_{N}.

Power counting revisited

Coulomb effects $\sim \alpha M_{N} / p$ are dominant at very low momenta!
\rightarrow we can no longer assume $p \sim \gamma_{d}, \gamma_{t} \sim Q$
Need simultaneous expansion in Q / Λ and $p /\left(\alpha M_{N}\right)$!

Power counting revisited

Coulomb effects $\sim \alpha M_{N} / p$ are dominant at very low momenta!
\rightarrow we can no longer assume $p \sim \gamma_{d}, \gamma_{t} \sim Q$
Need simultaneous expansion in Q / Λ and $p /\left(\alpha M_{N}\right)$!
Two scales in the loop integrations:

- Either $\int \mathrm{d}^{3} q \sim \mathcal{O}\left(Q^{3}\right)$ or $\int \mathrm{d}^{3} q \sim \mathcal{O}\left(p^{3}\right)$
- Full dibaryon propagator either $\sim \mathcal{O}(1 / Q)$ or $\sim \mathcal{O}\left(Q / p^{2}\right)$
- Same for the photon propagator: $\sim \mathcal{O}\left(1 / Q^{2}\right)$ or $\sim \mathcal{O}\left(1 / p^{2}\right)$
depending on which contribution is picked up after the $\mathrm{d} q_{0}$-integration.

Power counting revisited

Coulomb effects $\sim \alpha M_{N} / p$ are dominant at very low momenta!
\rightarrow we can no longer assume $p \sim \gamma_{d}, \gamma_{t} \sim Q$
Need simultaneous expansion in Q / Λ and $p /\left(\alpha M_{N}\right)$!
Two scales in the loop integrations:

- Either $\int \mathrm{d}^{3} q \sim \mathcal{O}\left(Q^{3}\right)$ or $\int \mathrm{d}^{3} q \sim \mathcal{O}\left(p^{3}\right)$
- Full dibaryon propagator either $\sim \mathcal{O}(1 / Q)$ or $\sim \mathcal{O}\left(Q / p^{2}\right)$
- Same for the photon propagator: $\sim \mathcal{O}\left(1 / Q^{2}\right)$ or $\sim \mathcal{O}\left(1 / p^{2}\right)$
depending on which contribution is picked up after the $\mathrm{d} q_{0}$-integration.
Bottom line:

Integral equation with Coulomb photons

Include photons into the integral equation:

\rightarrow full scattering amplitude $\mathcal{T}_{\text {full }}$
Leave out nucleon exchange diarams \rightarrow Coulomb amplitude \mathcal{T}_{c}

1. Solve both equations
2. Get phase shifts from forward amplitude: $\delta=\frac{1}{2 \mathrm{i}} \log \left(1+\frac{2 \mathrm{i} k M_{N}}{3 \pi} Z_{0} \mathcal{T}\right)$
3. Compare to experiment: $\delta_{\text {diff }}(k) \equiv \delta_{\text {full }}(k)-\delta_{\mathrm{c}}(k) \quad$ c.f. Jackson, Blatt 1950 Harrington 1965
This means that we remove the initial and final state Coulomb interaction!

Numerical methods (I)

There are two types of singularities in the integral equations:

- Poles in the propagators (deuteron bound state!)

$$
D_{d, t}(E ; q)=\frac{1}{-\gamma_{d, t}+\sqrt{3 q^{2} / 4-M_{N} E-\mathrm{i} \epsilon}}
$$

- Logarithmic singularities in the kernels (from S-wave projection)

$$
K(E ; q, p) \sim Q_{0}\left(\frac{q^{2}+p^{2}-M_{N} E-\mathrm{i} \epsilon}{q p}\right) \text { with } Q_{0}(a)=\frac{1}{2} \log \left(\frac{a+1}{a-1}\right)
$$

Could deform integration contour, but not very convenient. . .

Numerical methods (I)

There are two types of singularities in the integral equations:

- Poles in the propagators (deuteron bound state!)

$$
D_{d, t}(E ; q)=\frac{1}{-\gamma_{d, t}+\sqrt{3 q^{2} / 4-M_{N} E-\mathrm{i} \epsilon}}
$$

- Logarithmic singularities in the kernels (from S-wave projection)

$$
K(E ; q, p) \sim Q_{0}\left(\frac{q^{2}+p^{2}-M_{N} E-\mathrm{i} \epsilon}{q p}\right) \text { with } Q_{0}(a)=\frac{1}{2} \log \left(\frac{a+1}{a-1}\right)
$$

Could deform integration contour, but not very convenient. . . Instead:

- Principal value integration: $\frac{1}{x \pm \mathrm{i} \epsilon}=\operatorname{PV} \frac{1}{x} \mp \mathrm{i} \pi \delta(x)$
- Log-singularities are integrable! However, numerically delicate...

Discretisation yields a simple matrix equation!

Numerical methods (II)

- Photon propagator is singular at zero momentum transfer! Regularize this with a small photon mass: $\frac{i}{\mathrm{q}^{2}} \longrightarrow \frac{\mathrm{i}}{\mathrm{q}^{2}+\lambda^{2}}$
- In the integral equation: $K(E ; k, p) \sim Q_{0}\left(-\frac{k^{2}+p^{2}+\lambda^{2}}{2 k p}\right)$

Major numerical difficulty turns out to be the peak in the inhom. terms!
\rightarrow Re-shuffle integration mesh points!
Then: Extrapolate to $\lambda=0 \rightarrow$ screening limit

Numerical methods (II)

- Photon propagator is singular at zero momentum transfer! Regularize this with a small photon mass: $\frac{i}{q^{2}} \longrightarrow \frac{i}{q^{2}+\lambda^{2}}$
- In the integral equation: $K(E ; k, p) \sim Q_{0}\left(-\frac{k^{2}+p^{2}+\lambda^{2}}{2 k p}\right)$

Major numerical difficulty turns out to be the peak in the inhom. terms!
\rightarrow Re-shuffle integration mesh points!
Then: Extrapolate to $\lambda=0 \rightarrow$ screening limit

Application and Results

- Quartet channel
- Doublet channel
- He-3 binding energy

Quartet channel

Couple deuteron and nucleon spins to spin $3 / 2$
All three nucleon spins aligned \rightarrow Pauli principle
Consequences:

- Not very sensitive to short-range physics
- No bound state
- Only one channel, simple integral equation

We can include the deuteron kinetic energy operator to all orders!

$$
D_{d}(E ; q)=-\frac{4 \pi}{M_{N} y_{d}^{2}} \frac{1}{-\gamma_{d}+\sqrt{3 q^{2} / 4-M_{N} E-\mathrm{i} \epsilon}-\frac{\rho_{d}}{2}\left(3 q^{2} / 4-M_{N} E-\gamma_{d}^{2}\right)}
$$

Cut-off stays below unphysical second pole in the propagator.

Scattering phase shifts - Quartet channel

Doublet channel

Now couple deuteron and nucleon spins to spin $1 / 2$
Consequences:

- Pauli principle does not apply here \rightarrow need higher cut-off
- Singlet dibaryon in the intermediate state \rightarrow coupled channels
- Cannot easily use re-summed N2LO propagators. . .

Furthermore:

Fix leading-order 3-Nucleon force from bound-state equation!

We can:

- Fix $H(\Lambda)$ from triton binding energy in the strong system...
- ... then calculate bound state from equation with Coulomb effects
\rightarrow Predict He-3 binding energy!

He-3 binding energy

Scattering phase shifts - Doublet channel

data from Arvieux 1973

Summary

It was demonstrated that...

- Coulomb effects can be included in pionless effective field theory
- the static Coulomb potential is dominant at low momenta
- power counting needs to be modified in the presence of Coulomb effects
- one needs to implement numerical methods carefully
- taking the screening limit is possible
- we can predict p -d observables from n -d experimental input

Thanks for your attention!

Spares

Spin- and S-wave projection

- Use

$$
P_{d}^{i}=\frac{1}{\sqrt{8}} \sigma_{2} \sigma^{i} \tau_{2} \text { and } P_{t}^{A}=\frac{1}{\sqrt{8}} \sigma_{2} \tau_{2} \tau^{A}
$$

to project onto the ${ }^{3} S_{1}, I=0$ and ${ }^{1} S_{0}, I=1$ states

- Couple the spins in the nucleon-deuteron system according to

$$
1 \otimes \frac{1}{2}=\frac{\mathbf{3}}{\mathbf{2}} \oplus \frac{\mathbf{1}}{\mathbf{2}} \Longrightarrow 2 \text { channels for amplitude }\left(\mathcal{T}^{i j}\right)_{\alpha a}^{\beta b}(E ; \mathbf{k}, \mathbf{p})
$$

- Quartet: Set $i, j=(1 \mp \mathrm{i} 2) / \sqrt{2}, \alpha=\beta=1, a=b=1 \rightarrow \mathcal{T}^{\mathrm{q}}$
- Doublet: $\mathcal{T}^{\mathrm{d}}=\frac{1}{3}\left(\sigma^{i}\right)_{\alpha}^{\alpha^{\prime}}\left(\mathcal{T}^{i j}\right)_{\alpha^{\prime} a}^{\beta^{\prime} b}\left(\sigma^{j}\right)_{\beta^{\prime}}^{\beta}$ with $\alpha=\beta=1, a=b=1$

Project onto S-waves with $\mathcal{T}_{l=0}(E ; k, p)=\frac{1}{2} \int_{-1}^{1} \operatorname{dcos} \theta \mathcal{T}(E ; \mathbf{k}, \mathbf{p})$

Dibaryon propagators

We have to re-sum the dibaryon propagators to all orders:

Fix parameters from $N N$ scattering:

$$
\mathrm{i} \mathcal{A}_{d, t}(k)=-y_{d, t}^{2} \Delta_{d, t}\left(p_{0}=\frac{\mathbf{k}^{2}}{2 M_{N}}, \mathbf{p}=0\right)=\frac{4 \pi}{M_{N}} \frac{\mathrm{i}}{k \cot \delta_{d, t}-\mathrm{i} k}
$$

- $k \cot \delta_{d}=-\gamma_{d}+\frac{\rho_{d}}{2}\left(k^{2}+\gamma_{d}^{2}\right)+\ldots \Longrightarrow y_{d}, \sigma_{d}$
- $k \cot \delta_{t}=-\gamma_{t}+\frac{r_{0 t}}{2} k^{2}+\ldots$ with $\gamma_{t} \equiv \frac{1}{a_{t}} \Longrightarrow y_{t}, \sigma_{t}$

Residue of pole in $\Delta_{d} \rightarrow$ deuteron wave function renormalization Z_{0}

Include dibaryon kinetic energy operator \rightarrow effective range corrections

Effective range corrections

Include dibaryon kinetic energy operators:

$$
\Longrightarrow \quad \sim \mathrm{i} \Delta^{\mathrm{LO}}(p) \times-\mathrm{i}\left(p_{0}-\frac{\mathbf{p}^{2}}{4 M_{N}}\right) \times \mathrm{i} \Delta^{\mathrm{LO}}(p)
$$

- Treat this as a perturbation \rightarrow NLO, N2LO
- Possible to re-sum geometric series, e.g.

$$
\mathrm{i} \Delta_{d}^{i j}(p)=-\frac{4 \pi \mathrm{i}}{M_{N} y_{d}^{2}} \frac{\delta^{i j}}{\frac{4 \pi \sigma_{d}}{M_{N} y_{d}^{2}}-\mu+\sqrt{\frac{\mathrm{p}^{2}}{4}-M_{N} p_{0}-\mathrm{i} \epsilon}+\frac{4 \pi}{M_{N} y_{d}^{2}}\left(p_{0}-\frac{\mathrm{p}^{2}}{4 M_{N}}\right)}
$$

but still only N2LO (other contributions neglected!)

- Fix parameters by reproducing effective range expansions up to $\mathcal{O}\left(k^{2}\right)$
- Unphysical second pole in re-summed propagator!

Three-nucleon force

One finds: Strong cut-off dependence in the doublet channel!
\rightarrow Renormalize with leading order three-nucleon force ($S U(4)$-symmetric)

$$
\mathcal{L}_{3}=-M_{N} \frac{H(\Lambda)}{\Lambda^{2}}\left(y_{d}^{2} N^{\dagger}(\vec{d} \cdot \vec{\sigma})^{\dagger}(\vec{d} \cdot \vec{\sigma}) N+\ldots\right)
$$

Substitute:

Fix $H(\Lambda)$ with three-body input \rightarrow e.g. Triton binding energy

Bound state equation

Bound state \rightarrow pole in T-matrix

$$
\mathcal{T}(E ; k, p)=\frac{\mathcal{B}(k) \mathcal{B}(p)}{E+E_{\mathrm{B}}} \text { for } E \rightarrow-E_{\mathrm{B}}
$$

\rightarrow homogeneous integral equation for $\mathcal{B}(p)$

$$
\mathcal{B}(E, p)=\frac{1}{\pi} \int_{0}^{\Lambda} \mathrm{d} q K(E ; q, p) D(E ; q) \mathcal{B}(E, q)
$$

Diagrammatic:

Fix $E=-E_{\mathrm{B}}$ and cut-off Λ, find suitable $H(\Lambda)$

Scaling of the deuteron propagator

Consider a diagram of the form

$$
\left(E_{d}+q_{0}, \mathbf{q}\right)
$$

Integrate over $q_{0} \ldots$

$$
\rightarrow \Delta_{d}\left(E_{d}+E_{N}-\frac{\mathbf{q}^{2}}{2 M_{N}}, \mathbf{q}\right) \sim \frac{\gamma_{d}+\sqrt{\frac{3}{4}\left(\mathbf{q}^{2}-\mathbf{p}^{2}\right)+\gamma_{d}^{2}}}{\frac{3}{4}\left(\mathbf{q}^{2}-\mathbf{p}^{2}\right)} \sim \frac{Q}{q^{2}}
$$

- Deuteron pole enhanced for $q \sim p \ldots$
- ... but typically suppressed by $\mathrm{d}^{3} q \sim p^{3}$
- Except when we also have a Coulomb photon propagator $\sim 1 / p^{2}$!

