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Introduction

• Pionless effective field theory

• Effective Lagrangian



Pionless effective field theory

Construct an effective field theory for low-energy few-nucleon systems

Concepts and experimental input:

• At very low energies even pions can be integrated out
→ only nucleons left as effective degrees of freedom

• Nonrelativistic framework
→ demand Galilei-invariance of effective Lagrangian

• Large scattering lengths in NN scattering
→ additional low-energy scale

This program has been carried out quite successfully, already.
e.g. Bedaque, Hammer, van Kolck 2000

Interesting: Study Coulomb effects in the 3-body system
Rupak, Kong 2003

Use nucleon-deuteron system as an example!



Effective Lagrangian

L = N†

(

iD0 +
~D2

2MN

)

N + Lphoton

− di†

[

σd+

(

iD0 +
~D2

4MN

)]

di − tA†

[

σt+

(

iD0 +
~D2

4MN

)]

tA

− yd

[
di†
(
NT P i

dN
)

+ h.c.
]
− yt

[
tA†
(
NT P A

t N
)

+ h.c.
]

Contents:

• Nucleon field N , doublet in spin and isospin space

• Two auxiliary dibaryon fields di (spin triplet, isospin singlet) and tA

(spin singlet, isospin triplet) corresponding to the respective channels
in NN scattering

• Coupling constants yd and yt, dibaryon propagators are just
constants (σd, σt) to first order

Couple to photons via covariant derivative: Dµ = ∂µ + ieQ̂emAµ



n-d system: Strong interaction only
“With the lights out, it’s less dangerous...”

• Power counting

• Integral equation



Power counting

Identify scales:

• Low-energy scale: p ∼ γd ∼ O(Q)

• Cut-off Λ ∼ O(mπ), mπ/MN ∼ O(Q/Λ)

• Assume y2
d ∼ y2

t ∼ 1/Λ and σd ∼ σt ∼ Q

Consequences:

• Integration measure
∫

d3q ∼ O(Q3)

• Nucleon propagator ∼ O(MN/Q2) (non-relativistic!)

• Leading order dibaryon propagator = −i/σ ∼ O(1/Q)

� ∼ O(1)

→ Re-sum propagator!

� � �



Power counting

Identify scales:

• Low-energy scale: p ∼ γd ∼ O(Q)

• Cut-off Λ ∼ O(mπ), mπ/MN ∼ O(Q/Λ)

• Assume y2
d ∼ y2

t ∼ 1/Λ and σd ∼ σt ∼ Q

Consequences:

• Integration measure
∫

d3q ∼ O(Q3)

• Nucleon propagator ∼ O(MN/Q2) (non-relativistic!)

• Leading order dibaryon propagator = −i/σ ∼ O(1/Q)

� ∼ O(1)

→ Re-sum propagator!

• Bubble chain: ∆d =� =�+� + . . .

• Fix parameters from NN scattering

• Dibaryon kinetic energy → range corrections



Integral equation

� ∼� ∼ . . . all of same order → Integral equation!



Integral equation

� ∼� ∼ . . . all of same order → Integral equation!

� =� +� +�

� =� +� +�
Formal structure:

T (E; k, p) = K(E; k, p) +
1

π

∫ Λ

0

dq K(E; q, p) D(E; q) T (E; k, q)

for S-waves, incoming momentum k, outgoing momentum p

• Quartet channel → quite simple



Integral equation

� ∼� ∼ . . . all of same order → Integral equation!

� =� +� +�

� =� +� +�
Formal structure:

T (E; k, p) = K(E; k, p) +
1

π

∫ Λ

0

dq K(E; q, p) D(E; q) T (E; k, q)

for S-waves, incoming momentum k, outgoing momentum p

• Quartet channel → quite simple

• Doublet channel → coupled channels, 3N-force H(Λ) at leading order



p-d system: Including Coulomb effects
“...here we are now, entertain us!”

• Coulomb photons

• Modified power counting

• New integral equations

• Numerical methods



Coulomb photons

Consider Lphoton = − 1
4FµνFµν − 1

2ξ

(
∂µAµ − ηµην∂νAµ

︸ ︷︷ ︸

=~∇·A for ηµ=(1,0,0,0)

)2 − e jµAµ

→ quantization in Coulomb gauge

• One finds: Field component A0 does not propagate
→ eliminate with equation of motion

• Poisson equation: ∆A0 = −e j0 ⇐⇒ (ik)2A0 = −e j0

• Re-insert into Lagrangian: iLint(k) ⊃ (ie) j0(k) i
k2 (ie) j0(k)

� ∼ ie2 1

(ik)2
= (ie)

i

k2
(ie) .

→ exchange of Coulomb photons
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→ quantization in Coulomb gauge

• One finds: Field component A0 does not propagate
→ eliminate with equation of motion

• Poisson equation: ∆A0 = −e j0 ⇐⇒ (ik)2A0 = −e j0

• Re-insert into Lagrangian: iLint(k) ⊃ (ie) j0(k) i
k2 (ie) j0(k)

� ∼ ie2 1

(ik)2
= (ie)

i

k2
(ie) .

→ exchange of Coulomb photons

Compared to this, transverse photons are suppressed by powers of
momenta and/or α/MN .



Power counting revisited

Coulomb effects ∼ αMN/p are dominant at very low momenta!
→ we can no longer assume p ∼ γd, γt ∼ Q

Need simultaneous expansion in Q/Λ and p/(αMN ) !
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Power counting revisited

Coulomb effects ∼ αMN/p are dominant at very low momenta!
→ we can no longer assume p ∼ γd, γt ∼ Q

Need simultaneous expansion in Q/Λ and p/(αMN ) !

Two scales in the loop integrations:

• Either
∫

d3q ∼ O(Q3) or
∫

d3q ∼ O(p3)

• Full dibaryon propagator either ∼ O(1/Q) or ∼ O(Q/p2)

• Same for the photon propagator: ∼ O(1/Q2) or ∼ O(1/p2)

depending on which contribution is picked up after the dq0-integration.
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Power counting revisited

Coulomb effects ∼ αMN/p are dominant at very low momenta!
→ we can no longer assume p ∼ γd, γt ∼ Q

Need simultaneous expansion in Q/Λ and p/(αMN ) !

Two scales in the loop integrations:

• Either
∫

d3q ∼ O(Q3) or
∫

d3q ∼ O(p3)

• Full dibaryon propagator either ∼ O(1/Q) or ∼ O(Q/p2)

• Same for the photon propagator: ∼ O(1/Q2) or ∼ O(1/p2)

depending on which contribution is picked up after the dq0-integration.

Bottom line:

Iterate� and� !

Rupak, Kong 2003



Integral equation with Coulomb photons

Include photons into the integral equation:

� =� +� +�
+� ×

(

�+�+�
)

→ full scattering amplitude Tfull

Leave out nucleon exchange diarams → Coulomb amplitude Tc

1. Solve both equations

2. Get phase shifts from forward amplitude: δ = 1
2i log

(
1 + 2ikMN

3π
Z0T

)

3. Compare to experiment: δdiff(k) ≡ δfull(k) − δc(k) c.f. Jackson, Blatt 1950

Harrington 1965

This means that we remove the initial and final state Coulomb interaction!



Numerical methods (I)

There are two types of singularities in the integral equations:

• Poles in the propagators (deuteron bound state!)

Dd,t(E; q) =
1

−γd,t +
√

3q2/4 − MNE − iǫ

• Logarithmic singularities in the kernels (from S-wave projection)

K(E; q, p) ∼ Q0

(
q2 + p2 − MNE − iǫ

qp

)

with Q0(a) =
1

2
log

(
a + 1

a − 1

)

Could deform integration contour, but not very convenient. . .
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There are two types of singularities in the integral equations:

• Poles in the propagators (deuteron bound state!)

Dd,t(E; q) =
1

−γd,t +
√

3q2/4 − MNE − iǫ

• Logarithmic singularities in the kernels (from S-wave projection)

K(E; q, p) ∼ Q0

(
q2 + p2 − MNE − iǫ

qp

)

with Q0(a) =
1

2
log

(
a + 1

a − 1

)

Could deform integration contour, but not very convenient. . .

Instead:

• Principal value integration: 1
x±iǫ = PV 1

x
∓ iπδ(x)

• Log-singularities are integrable! However, numerically delicate. . .

Discretisation yields a simple matrix equation!



Numerical methods (II)

• Photon propagator is singular at zero momentum transfer! Regularize

this with a small photon mass: i
q2 −→ i

q2+λ2

• In the integral equation: K(E; k, p) ∼ Q0

(

−k2+p2+λ2

2kp

)

Major numerical difficulty turns out to be the peak in the inhom. terms!
→ Re-shuffle integration mesh points!

Then: Extrapolate to λ = 0 → screening limit
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Application and Results

• Quartet channel

• Doublet channel

• He-3 binding energy



Quartet channel

Couple deuteron and nucleon spins to spin 3/2

All three nucleon spins aligned → Pauli principle

Consequences:

• Not very sensitive to short-range physics

• No bound state

• Only one channel, simple integral equation

We can include the deuteron kinetic energy operator to all orders!

Dd(E; q) = − 4π

MNy2
d

1

−γd +
√

3q2/4 − MNE − iǫ − ρd

2 (3q2/4 − MNE − γ2
d)

Cut-off stays below unphysical second pole in the propagator.



Scattering phase shifts - Quartet channel
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Doublet channel

Now couple deuteron and nucleon spins to spin 1/2

Consequences:

• Pauli principle does not apply here → need higher cut-off

• Singlet dibaryon in the intermediate state → coupled channels

• Cannot easily use re-summed N2LO propagators. . .

Furthermore:

Fix leading-order 3-Nucleon force from bound-state equation!

We can:

• Fix H(Λ) from triton binding energy in the strong system. . .

• . . . then calculate bound state from equation with Coulomb effects

→ Predict He-3 binding energy!



He-3 binding energy
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Scattering phase shifts - Doublet channel
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Summary

It was demonstrated that. . .

• Coulomb effects can be included in pionless effective field theory

• the static Coulomb potential is dominant at low momenta

• power counting needs to be modified in the presence of Coulomb
effects

• one needs to implement numerical methods carefully

• taking the screening limit is possible

• we can predict p-d observables from n-d experimental input

***
Thanks for your attention!



Spares



Spin- and S-wave projection

• Use

P i
d =

1√
8

σ2σ
iτ2 and P A

t =
1√
8

σ2τ2τ
A

to project onto the 3S1, I = 0 and 1S0, I = 1 states

• Couple the spins in the nucleon-deuteron system according to

1⊗ 1

2
=

3

2
⊕ 1

2
=⇒ 2 channels for amplitude (T ij)βb

αa(E;k,p)

• Quartet: Set i, j = (1 ∓ i2)/
√

2, α = β = 1, a = b = 1 → T q

• Doublet: T d = 1
3 (σi)α′

α (T ij)β′b
α′a(σj)β

β′ with α = β = 1, a = b = 1

Project onto S-waves with Tl=0(E; k, p) = 1
2

1∫

−1

dcos θ T (E;k,p)



Dibaryon propagators

We have to re-sum the dibaryon propagators to all orders:

∆d =� =� +� +� + . . .

∆t =� =� +� +� + . . .

Fix parameters from NN scattering:

iAd,t(k) = −y2
d,t∆d,t(p0 =

k2

2MN

,p = 0) =
4π

MN

i

k cot δd,t − ik

• k cot δd = −γd + ρd

2 (k2 + γ2
d) + . . . =⇒ yd, σd

• k cot δt = −γt + r0t

2 k2 + . . . with γt ≡ 1
at

=⇒ yt, σt

Residue of pole in ∆d → deuteron wave function renormalization Z0

Include dibaryon kinetic energy operator → effective range corrections



Effective range corrections

Include dibaryon kinetic energy operators:

� ∼ i∆LO(p) ×−i

(

p0 −
p2

4MN

)

× i∆LO(p)

• Treat this as a perturbation → NLO, N2LO

• Possible to re-sum geometric series, e.g.

i∆ij
d (p) = − 4πi

MNy2
d

δij

4πσd

MN y2

d

− µ +
√

p2

4 − MNp0 − iǫ + 4π
MN y2

d

(

p0 − p2

4MN

)

but still only N2LO (other contributions neglected!)

• Fix parameters by reproducing effective range expansions up to O(k2)

• Unphysical second pole in re-summed propagator!



Three-nucleon force

One finds: Strong cut-off dependence in the doublet channel!

→ Renormalize with leading order three-nucleon force (SU(4)-symmetric)

L3 = −MN

H(Λ)

Λ2

(

y2
dN†(~d · ~σ)†(~d · ~σ)N + . . .

)

Substitute:

� −→� +�

� −→� +�
1000 10000 1e+05

-10

-5

0

5

10

15

Λ [MeV]
H

(Λ
)

Fix H(Λ) with three-body input → e.g. Triton binding energy



Bound state equation

Bound state → pole in T-matrix

T (E; k, p) =
B(k)B(p)

E + EB
for E → −EB

→ homogeneous integral equation for B(p)

B(E, p) =
1

π

∫ Λ

0

dq K(E; q, p) D(E; q)B(E, q)

Diagrammatic:

� =�+�

Fix E = −EB and cut-off Λ, find suitable H(Λ)



Scaling of the deuteron propagator

Consider a diagram of the form

�

(Ed + q0,q)

(EN − q0,−q)

e.g.�
Integrate over q0. . .

→ ∆d

(

Ed + EN − q2

2MN

,q

)

∼
γd +

√
3
4 (q2 − p2) + γ2

d

3
4 (q2 − p2)

∼ Q

q2

• Deuteron pole enhanced for q ∼ p. . .

• . . . but typically suppressed by d3q ∼ p3

• Except when we also have a Coulomb photon propagator ∼ 1/p2 !

Rupak, Kong 2003
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