

Universal EFT for Strongly Interacting Quantum Systems

H.-W. Hammer

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics Universität Bonn

Bethe Center for Theoretical Physics

Bundesministerium für Bildung und Forschung Deutsche Forschungsgemeinschaft

DFG

6th Vienna Central European Seminar on Particle Physics and QFT

- Introduction
- Resonant Interactions and Weakly-Bound States
- Effective Field Theory for Large Scattering Length
- Applications
 - Ultracold atoms
 - Hadronic Molecules
 - Halo nuclei
- Summary and Outlook

Collaborators: E. Braaten, D. Canham, D. Kang, L. Platter, R. Springer, ...

Review article: Braaten, HWH, Phys. Rep. 428 (2006) 259

Effective Theory

- Separation of scales:
 - $1/k = \lambda \gg R$
- Limited resolution at low energy:

 \longrightarrow expand in powers of kR

Effective Theory

- Separation of scales:
 - $1/k = \lambda \gg R$
- Limited resolution at low energy:

 \longrightarrow expand in powers of kR

- Short-distance physics not resolved
 - \longrightarrow capture in low-energy constants using renormalization
 - \longrightarrow include long-range physics explicitly
- Systematic, model independent \rightarrow universal properties
- Classic example: light-light-scattering (Euler, Heisenberg, 1936) Simpler theory for $\omega \ll m_e$: $\mathcal{L}_{QED}[\psi, \bar{\psi}, A_{\mu}] \rightarrow \mathcal{L}_{eff}[A_{\mu}]$

Resonant Interactions

- Large scattering length: $|a| \gg \ell \sim r_e, l_{vdW}, ...$
- Natural expansion parameter: $\ell/|a|$, $k\ell$,...

$$a > 0 \implies B_d = \frac{1}{2\mu a^2} + \mathcal{O}(\ell/a)$$

- Atomic physics:
 - ⁴He: $a \approx 104 \text{ Å} \gg r_e \approx 7 \text{ Å} \sim l_{vdW} \longrightarrow B_d \approx 100 \text{ neV}$
 - Feshbach resonances => variable scattering length
- Nuclear physics: S-wave NN-scattering, halo nuclei,...
 - 1S_0 , 3S_1 : $|a| \gg r_e \sim 1/m_\pi \longrightarrow B_d \approx 2.2 \text{ MeV}$
 - ⁶He $\Rightarrow \alpha nn$: 2*n* separation energy \approx 1 MeV
- Particle physics:
 - X(3872) as a $D^0 \overline{D}^{0*}$ molecule? $(J^{PC} = 1^{++})$

$$B_X = m_{D^0} + m_{D^{0*}} - m_X = (0.3 \pm 0.4) \text{ MeV}$$

universitätb

Effective Lagrangian (Kaplan, 1997; Bedaque, HWH, van Kolck, 1999)

$$\mathcal{L}_d = \psi^{\dagger} \left(i\partial_t + \frac{\vec{\nabla}^2}{2m} \right) \psi + \frac{g_2}{4} d^{\dagger} d - \frac{g_2}{4} (d^{\dagger} \psi^2 + (\psi^{\dagger})^2 d) - \frac{g_3}{36} d^{\dagger} d\psi^{\dagger} \psi + \dots$$

- Interacting dimeron propagator —> sum bubbles

$$= = + = + = + = + = + \cdots$$

- Matching: $g_2 \leftarrow a, B_d, \ldots$
- RG fixed points of g_2 : a = 0 and $a = \infty$ (scale invariance)
- Higher order corrections \implies perturbation theory

universitätbo

Three-Body System in EFT

Three-body equation :

$$\mathcal{T}_{3}(k,p) = M(k,p) + \frac{4}{\pi} \int_{0}^{\Lambda} dq \, q^{2} \, M(q,p) D_{d}(q) \, \mathcal{T}_{3}(k,q)$$
with $M(k,p) = \underbrace{F(k,p)}_{1-\text{atom exchange}} \underbrace{-\frac{g_{3}}{9g_{2}^{2}}}_{H(\Lambda)/\Lambda^{2}}$

 $(g_3=0,\,\Lambda
ightarrow\infty
ightarrow$ Skorniakov, Ter-Martirosian '57)

Recombination, break-up:

Renormalization

- \checkmark Observables are independent of regulator/cutoff Λ
- \Rightarrow Running coupling $H(\Lambda)$
- $H(\Lambda)$ periodic: limit cycle

 $\Lambda \to \Lambda \, e^{n\pi/s_0} \approx \Lambda(22.7)^n$

(cf. Wilson, 1971)

 Full scale invariance broken to discrete subgroup

$$H(\Lambda) = \frac{\cos(s_0 \ln(\Lambda/\Lambda_*) + \arctan(s_0))}{\cos(s_0 \ln(\Lambda/\Lambda_*) - \arctan(s_0))}, \quad s_0 \approx 1.00624$$

- Limit cycle ↔ Discrete scale invariance
- Matching: $\Lambda_* \longleftarrow B_t$, $K_3, \ldots \longrightarrow \kappa_*, a_*, a'_*$

Limit Cycle: Efimov Effect

Universal spectrum of three-body states

(V. Efimov, Phys. Lett. 33B (1970) 563)

- Discrete scale invariance for fixed angle ξ
- Geometrical spectrum für $1/a \rightarrow 0$

$$B_3^{(n)}/B_3^{(n+1)} \xrightarrow{1/a \to 0} 515.035...$$

 Ultracold atoms variable scattering length

Two parameters at LO

 \Rightarrow universal correlations generated by 3-body parameter

- RG analysis (Platter, HWH, Meißner, 2004)
 - \Rightarrow No four-body parameter at LO

 \Rightarrow 4-body observables are correlated \implies Tjon line

- Nuclear physics: Λ dependence of V_{low-k} (Bogner et al., 2004)
- **J** Tjon line also at NLO (Kirscher et al., 2009)

More on the 4-Body System

- Universal properties of 4-body system with large a
 - Bound state spectrum, scattering observables, ...
- "Efimov-plot": 4-body bound state spectrum as function of 1/a

 Improved theoretical decription and observation in ultracold atoms von Stecher, D'Incao, Greene, Nature Physics 5 (2009) 417
 Ferlaino, Knoop, Berninger, Harm, D'Incao, Nägerl, Grimm, PRL 102 (2009) 140401

universitätbo

Efimov Physics in Cold Atoms

• Velocity distribution (T = 400 nK, 200 nK, 50 nK)

(Source: http://jilawww.colorado.edu/bec/)

- Few-body loss rates provide window on Efimov physics
- Variable scattering length via Feshbach resonances

Three-body recombination:

3 atoms \rightarrow dimer + atom \Rightarrow loss of atoms

- Recombination constant: $\dot{n}_A = -K_3 n_A^3$
- K₃ has log-periodic dependence on scattering length (Nielsen, Macek, 1999; Esry, Greene, Burke, 1999; Bedaque, Braaten, HWH, 2000)
- Resonant enhancement for a < 0
- Universal line shape of recombination resonance (Braaten, HWH, 2004)

$$K_3^{deep} = \frac{(4677 \pm 2) \sinh 2\eta_*}{\sin^2 \left[s_0 \ln(\mathbf{a}/a'_*) \right] + \sinh^2 \eta_*} \frac{\hbar \, \mathbf{a}^4}{m} \,,$$

 $s_0 \approx 1.00624..$

Evidence for Efimov trimers in ¹³³Cs

(Kraemer et al. (Innsbruck), Nature 440 (2006) 315)

Efimov Physics with Fermions

- Efimov effect for fermions $\Rightarrow \geq 3$ spin states ($|1\rangle, |2\rangle, |3\rangle, ...$)
- Experimental evidence for Efimov states in ⁶Li
 - Ottenstein et al. (Heidelberg), Phys. Rev. Lett. 101 (2008) 203202
 - Huckans et al. (Penn State), Phys. Rev. Lett. 102 (2009) 165302

Braaten, HWH, Kang, Platter, Phys. Rev. Lett. 103 (2009) 073202

- Systematic normalization error: 70-90%
- Related work: Naidon, Ueda; Schmidt, Floerchinger, Wetterich (2009)

universitätbon

Efimov Physics in ⁶Li

- Recombination resonances in high field region ($|a| \gtrsim 30 \ell_{vdW}$) Williams et al. (Penn State), arXiv:0908.0789
- Recombination and bound state spectrum

Braaten, HWH, Kang, Platter, arXiv:0908.4046

Predictions for:

- Two trimer states and widths
- Atom-dimer relaxation resonance (1 23)

universität**bonn**

Efimov Physics in Other Atoms

● Atom-dimer resonance in ¹³³Cs

(Knoop et al. (Innsbruck), Nature Physics **5** (2009) 227)

(cf. Helfrich, HWH, EPL 86 (2009) 53003)

 Heteronuclear resonances in a mixture of ⁴¹K and ⁸⁷Rb atoms (Barontini et al. (Florence), Phys. Rev. Lett. **103** (2009) 043201)

 \Rightarrow Connected K-Rb-Rb resonances for a > 0 and a < 0

Efimov spectrum in ultracold ³⁹K atoms

(Zaccanti et al. (Florence), Nature Physics 5 (2009) 586)

 \Rightarrow Observation of first two states of an Efimov spectrum

Observation of three- and four-body resonances in ⁷Li (Gross et al. (Ramat-Gan), Phys. Rev. Lett. **103** (2009) 163202) (Pollack, Dries, Hulet (Rice), arXiv:0911.0893)

Exotic Charmonium Mesons

- Many new $c\bar{c}$ -mesons at B-factories: X, Y, Z
 - Challenge for understanding of QCD
 - Large scattering length physics important
- Example: X(3872) (Belle, CDF, BaBar, D0)

 $m_X = (3871.55 \pm 0.20) \text{ MeV}$ $\Gamma < 2.3 \text{ MeV}$ $J^{PC} = 1^{++}$

- No ordinary $c\bar{c}$ -state
 - Decays violate isospin
 - Measured mass depends on decay channel
- Nature of X(3872) ?
 - $D^0 D^{0*}$ -molecule? (cf. Tornquist, 1991)
 - Tetraquark
 - Charmonium Hybrid
 - ۰۰۰

Nature of X(3872)

- Nature of X(3872) not finally resolved
- Assumption: X(3872) is weakly-bound D^0 - \overline{D}^{0*} -molecule

 $\implies |X\rangle = (|D^0 \bar{D}^{0*}\rangle + |\bar{D}^0 D^{0*}\rangle)/\sqrt{2}, \qquad B_X = (0.26 \pm 0.41) \text{ MeV}$

 \implies universal properties (cf. Braaten et al., 2003-2008, ...)

- Explains isospin violation in decays of $X(3872) \Rightarrow$ superposition of I = 1 and I = 0
- Different masses due to different line shapes in decay channels
- EFT with explicit pions: short distance contributions dominate (Fleming, Kusunoki, Mehen, van Kolck, 2007)

 \implies EFT for large scattering length is applicable

• Large scattering length determines interaction of X(3872) with D^0 and D^{0*}

Interactions of X(3872)

- Large scattering length determines interaction of X(3872) with D^0 and D^{0*}
- Efimov effect?
 - \Rightarrow occurs if 2 out of 3 pairs have resonant interactions
- X(3872): only 3 out of 6 pairs have resonant interactions
 - \Rightarrow **no Efimov effect** (Braaten, Kusunoki, 2003)
 - \Rightarrow no X-D⁰- and X-D^{0*}-molecules
 - \Rightarrow no three-body interaction at leading order

Interactions of X(3872)

- Large scattering length determines interaction of X(3872) with D^0 and D^{0*}
- Efimov effect?
 - \Rightarrow occurs if 2 out of 3 pairs have resonant interactions
- X(3872): only 3 out of 6 pairs have resonant interactions
 - \Rightarrow **no Efimov effect** (Braaten, Kusunoki, 2003)
 - \Rightarrow no X-D⁰- and X-D^{0*}-molecules
 - \Rightarrow no three-body interaction at leading order
- But: parameter-free prediction of X- D^0 -, X- D^{0*} -scattering
- Low-energy parameters: $B_X = (0.26 \pm 0.41)$ MeV
 - \Rightarrow Scattering length in the X channel: $a = (8.8^{+\infty}_{-3.3})$ fm

Predictions for scattering amplitude/cross section

Canham, HWH, Springer, Phys. Rev. D 80, 014009 (2009)

Three-body scattering lengths

$$a_{D^0X} = a_{\bar{D}^0X} = -9.7a$$
, and $a_{D^{*0}X} = a_{\bar{D}^{*0}X} = -16.6a$

universität**bonn**

Experimental Observation ?

- Behavior of X(3872) produced in isolation should be distinguishable from its behavior when in the presence of $D^0, D^{*0}, \bar{D}^0, \bar{D}^{*0}$
- Rare events in $B\bar{B}$ production ($B \to X$, $\bar{B} \to D, D^*$)
- Final state interaction of D, D^* mesons in B_c -decays
- Example: quark-level B_c decay yielding three charmed/anticharmed quarks in final state

Process may be accessible at the LHC

• Low separation energy of valence nucleons: $B_{valence} \ll B_{core}, E_{ex}$

 \longrightarrow close to "nucleon drip line" \longrightarrow scale separation \longrightarrow EFT

3-Body Halos

- Examples: ¹⁴Be \leftrightarrow ¹²Be +n +n, ²⁰C \leftrightarrow ¹⁸C +n +n
- "Effective" 3-body system: separation energy of valence nucleons small compared to binding energy of "core"
- Efimov effect in halo nuclei? \Rightarrow excited states

Canham, HWH, Eur. Phys. J. A **37** (2008) 367

(cf. Amorim, Frederico, Tomio, 1997)

Unchanged by NLO range corrections

(Canham, HWH, arXiv:0911.3238)

Form Factors and Radii (NLO)

- Range corrections: $r_e \approx 1/m_\pi = 1.4 \text{ fm}$
- Structure of halo nuclei \rightarrow matter form factors, radii

nucleus	B_{nnc} [keV]	B_{nc} [keV]	$\sqrt{\langle r_{nn}^2 angle}$ [fm]	$\sqrt{\langle r_{nc}^2 angle}$ [fm]
14 Be	1120	-200.0	3.9 ± 0.1	$\textbf{3.3}\pm\textbf{0.1}$
20 C	3506	162	3.0 ± 0.1	$\textbf{2.5}\pm\textbf{0.1}$
	3506	60	$\textbf{2.8}\pm\textbf{0.1}$	2.4 ± 0.1
20 C *	65 ± 1.0	60	$\textbf{43.2}\pm\textbf{0.5}$	$\textbf{38.7} \pm \textbf{0.4}$

Canham, HWH, arXiv:0911.3238

- Input: TUNL Nuclear data evaluation project, ...
- Experiment: ${}^{14}\text{Be} \to \sqrt{\langle r_{nn}^2 \rangle} = (5.4 \pm 1.0) \text{ fm}$ (Marques et al., Phys. Rev. C 64 (2001) 061301)

Summary and Outlook

universität**bonn**

- Effective field theory for large scattering length
 - Discrete scale invariance, universal correlations,...
- Applications in atomic, nuclear, and particle physics
 - Cold atoms close to Feshbach resonance
 - Scattering properties of the X(3872)
 - Halo nuclei
- Future directions:
 - Hadronic molecules: universal properties, three-body molecules? (e.g. $Y(4660) \leftrightarrow \psi' f_0(980) \leftrightarrow \psi' K\bar{K}$)
 - Three-nucleon system on the lattice: finite volume corrections, limit cycle in "deformed" QCD?
 - Halo nuclei: reactions, external currents, ...
 - Cold atoms: heteronuclear systems, $N \ge 4$, 2d-systems, ...

Additional Slides

Efimov Physics

(V. Efimov, Phys. Lett. **33B** (1970) 563)

- Three-body system with large scattering length a
- Hyperspherical coordinates: $R^2 = (r_{12}^2 + r_{13}^2 + r_{23}^2)/3$
- Schrödinger equation simplifies for $|a| \gg R \gg l$:

- Singular Potential: renormalization required
- Boundary condition at small R: breaks scale invariance

 \implies dependence of observables on 3-body parameter (and a)

• EFT formulation: boundary condition \Rightarrow 3-body interaction

universitätbo

Universal Correlations

• 2 Parameters at LO \Rightarrow 3-body observables are correlated

 \implies Phillips line (Phillips, 1968)

No four-body parameter at LO (Plat

(Platter, HWH, Meißner, 2004)

• Structure of halo nuclei \rightarrow matter form factors, radii

nucleus	B_{nnc} [keV]	B_{nc} [keV]	$\sqrt{\langle r_{nn}^2 angle}$ [fm]	$\sqrt{\langle r_{nc}^2 angle}$ [fm]
14 Be	1120	-200.0	4.1 ± 0.5	$\textbf{3.5}\pm\textbf{0.5}$
²⁰ C	3506	162	2.8 ± 0.3	$\textbf{2.4}\pm\textbf{0.3}$
	3506	60	$\textbf{2.8}\pm\textbf{0.2}$	$\textbf{2.3}\pm\textbf{0.2}$
20 C *	65 ± 6.8	60	42 ± 3	38 ± 3

Canham, HWH, Eur. Phys. J. A 37 (2008) 367

(cf. Yamashita, Tomio, Frederico, 2004)

- Input: TUNL Nuclear data evaluation project, ...
- Experiment: ${}^{14}\text{Be} \to \sqrt{\langle r_{nn}^2 \rangle} = (5.4 \pm 1.0) \text{ fm}$ (Marques et al., Phys. Rev. C 64 (2001) 061301)