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The deconfinement transition:
QCD has two remarkable properties:

At small momenta / Large distances: Confinement
At T = 0, µB = 0: −→ Hadronic matter

At large momenta / Small distances: Asymptotic freedom
At T →∞ and/or µ→∞: −→ Quarks and gluons
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Preliminaries: Quantum fields in thermal equilibrium

Theoretical challenge:
Fireball described by relativistic hydrodynamics

Tµν =
[
p(T ) + e(T )]uµuν − p(T )gµν , ∂µT

µν = 0

Hydrodynamic equations take the equation of state as input
−→ Problem in equilibrium thermodynamics

Quantities of interest:
Equation of state
Screening lengths
Quasi-particle spectral functions
Transport coefficients



Preliminaries: Quantum fields in thermal equilibrium
Thermodynamical information is encoded in the partition function:

Can be written as a path integral (here at zero baryon number density)

Z = Tr exp
[
− Ĥ/T

]
=
∫
φ(0,x)=φ(1/T,x)

Dφ exp(−SE)

SE =
∫ ∞
−∞

d3x

∫ 1/T

0
dτLE

Bosons periodic b.c., fermions anti-periodic b.c.
Quantites of interest:

p(T ) =
∂(T lnZ)

∂V
= T/V lnZ

s(T ) =
∂(T lnZ)

∂T
E(T ) = −PV + TS



The lattice approach:
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The perturbative approach:

High T : Renormalized coupling g(T ) ∼ 1/ lnT
Periodicity in coordinate space makes p0 discrete

1
p2
−→ 1

p2 + ω2
n

,

Bosons: ωn = (2n)πT Static mode: n = 0
Fermions: ωn = (2n+ 1)πT

4d integrals become 3+1d sum-integrals∫
d4p

(2π)4
→ T

∑
n

∫
d3p

(2π)3

To get (lnZ): Sum of 1PI vacuum diagrams



The perturbative approach:

General structure of the perturbative expansion g2(T ) ∼ 1/ log(T ):
Leading order: Gas of non-interacting quarks and gluons

pSB/T
4 =

π2

45

(
N2
c − 1 +

7NcNf

4

)
Recipe to compute higher order corrections: Vacuum diagrams

p(T ) ∼ pSB(T )(1 + #g2 + #g3 + #g4 ln g + #g4 + #g5 + #g6 ln g + . . .)

Non-analytic terms originate from IR divergences of static modes
→ resummations

Note: Number of loops 6= power in g2



The perturbative approach: Kajantie et al. hep-ph/0211321
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)
Not straightforward to improve!! g6-term non-perturbative.
n-loop diagram ∼ g6(g2T/m)(4−l) with m ∼ g2T
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Dimensional reduction

At high T : For long distance properties (∆x� 1/T ), the system
looks 3d.

Degrees of freedom are static modes φ0(x)
φ(x, τ) = T

∑∞
n=−∞ exp(iωnτ)φn(x)

Effective action: Integrate out non-static modes

Z =
∫
Dφ0Dφn exp(−S0(φ0)− Sn(φ0, φn)) 4d theory

=
∫
Dφ0 exp(−S0(φ0)− Seff(φ0)) 3d theory

In practice: Need a scale separation between static and non-static
modes to give a truncation to the effective action



Where does Dimensional Reduction work?
Scales in hot Yang-Mills:

Perturbatively:
Hard scale: 2πT Typical thermal momentum, non-static modes
Soft scale: mE ∼ gT Debye screening, static electric modes, A0

Ultra-soft scale: mM ∼ g2T color magnetic screening,
static magnetic modes, Ai

⇒ Asymptotic dimensional reduction

Non-perturbatively: mE(Tc) ∼ 3Tc
?
� 2πTc

0

1

2

3

4

1 1.5 2 2.5 3 3.5 4

T/Tc

mD/T  
Nf=0
Nf=2

Kaczmarek,Zantow
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Electrostatic QCD, Magnetostatic QCD Braaten & Nieto

Integrate out the hard scale to get EQCD (∆x� 1/T )
(=3d Yang-Mills + adjoint Higgs)

SEQCD =
1
g2
3︸︷︷︸

∼g2T

∫
d3x
[
−pE +

1
2

TrF 2
ij︸ ︷︷ ︸

spatial gluons

+ Tr(DiA0)2︸ ︷︷ ︸
adjoint kinetic

+
1
2

g2T 2︷︸︸︷
m2

E TrA2
0 +

1
4
λETrA4

0︸ ︷︷ ︸
interactions from integration out

+ . . .
]

Higher order terms suppressed by powers of the scale difference
Eff. theory parameters g3(T ),mE(T ), λE(T ) via perturbative
matching, no resummations needed.
After integrating out the soft modes A0, (∆x� 1/(gT )):

SMQCD =
1
g2

3

∫
d3x
[1

2
TrF 2

ij

]
Philosophy: Integrate out heavy modes analytically, simulate
low-energy theory numerically.



Example: g6-coefficient from MQCD

The g6-resummation can be done numerically in eff. theory framework:

Match QCD → EQCD to sufficient depth in g

g2
3(T ) = T (#g2 + #g4)
m2

E(T ) = T 2(#g2 + #g4)
λE(T ) = #g4

pE(T ) = T 4(1 + #g2 + #g4 + #g6)
Requires a 4-loop computation in full QCD
The matching coefficient at g6 known only in the Nf →∞ limit
Ipp&Rebhan hep-ph/0305030; Gynther, AK, Vuorinen 0909.3521

Match EQCD → MQCD to sufficient depth in g
Kajantie et al. hep-ph/0211321

Match the 3d continuum MS theory with lattice theory to order a0

done using 4-loop Numerical Stochastic Perturbation Theory
Di Renzo et al. 0808.0557

Measure pressure of lattice theory numerically
Hietanen et al. hep-lat/0509107, Hietanen & AK hep-lat/0609015



Example: Spatial string tension from MQCD

Spatial string tension (magnetic screening) to ∼ Tc

 0.4

 0.5

 0.6

 0.7

 0.8

 5 4.5 4 3.5 3 2.5 2 1.5 1

 1

T/T0

r0 T

T/ s
1/2(T)

20.5

N =4
N =6
N =8

Karsch et al., 0806.3264



Outline

Introduction
Dimensional reduction
Center symmetry



Center symmetry
At finite T the full symmetry group of Yang-Mills:

Gauge symmetry

Aµ −→ λ(τ,x)(Aµ + i∂µ)λ(τ,x)−1, s ∈ SU(Nc)

Global center symmetry

λ(τ + 1/T,x) = zλ(τ,x), z ∈ ZNc

Order parameter: Ω(x) = TrW (x) = Tr
[
P exp

(
ig
∫

dτA0(τ,x)
)]
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Light fermions break the center symmetry softly
Polyakov-loop still good approximate order parameter:
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Center symmetry
Effective potential in perturbation theory:

EQCD obtained by expanding A0 around one of the Nc

deconfining minima.
EQCD breaks the center symmetry explicitly.

No chance for correct phase structure
Quantities sensitive to A0 not well described near Tc



Center-symmetric effective theories

Goal: Want to construct an effective theory that
Preserves the ZN center symmetry
Reduces to EQCD at high T
Is superrenormalizable

Effective theory of Wilson lines not (super)renormalizable
Pisarski hep-ph/0608242 ∼ non-linear sigma model



Center-symmetric effective theories

Goal: Want to construct an effective theory that
Preserves the ZN center symmetry
Reduces to EQCD at high T
Is superrenormalizable

Effective theory of Wilson lines not (super)renormalizable
Pisarski hep-ph/0608242 ∼ non-linear sigma model

Idea: Construct effective theory for coarse grained Wilson loop
Vuorinen&Yaffe hep-ph/0604100

Z(x) =
T

VBlock

∫
V

d3yU(x,y)W (y)U(y,x), /∈ SU(Nc)



Center-symmetric effective theory for SU(2)
de Forcrand, AK, Vuorinen arXiv:0801.1566

For SU(2), sum of matrices proportional to SU(2)

Z = λΩ, Ω ∈ SU(2), λ > 0

Z =
1
2

{
Σ11︸︷︷︸

Singlet

+i Πaσa︸ ︷︷ ︸
Adjoint scalar

}
=
(

1
2Σ + iΠ1 iΠ2 −Π3

iΠ2 + Π3
1
2Σ− iΠ1

)

Transforms exactly like Wilson line

Z −→ λ−1(x)Zλ(x) gauge
Z −→ −Z center Z2

...but note: (3 d.o.f in W = eigTA0) 6= (4 d.o.f in Z)



Center-symmetric effective theory for SU(2)
de Forcrand, AK, Vuorinen arXiv:0801.1566

For SU(2), sum of matrices proportional to SU(2)

Z = λΩ, Ω ∈ SU(2), λ > 0

Z =
1
2

{
Σ11︸︷︷︸

Singlet

+i Πaσa︸ ︷︷ ︸
Adjoint scalar

}
=
(

1
2Σ + iΠ1 iΠ2 −Π3

iΠ2 + Π3
1
2Σ− iΠ1

)

Most general superrenormalizable Lagrangian with Ai and Z:

LZ(2) =
1
2

TrF 2
ij︸ ︷︷ ︸

spatial gluons

+ Tr
(
DiZ†DiZ

)
︸ ︷︷ ︸

Adjoint Kinetic

+V (Z)

V (Z) = b1Σ2 + b2Π2
a + c1Σ4 + c2(Π2

a)
2 + c3Σ2Π2

a︸ ︷︷ ︸
interactions from integration out

Higher order terms suppressed by scale difference mE/T .



Perturbative matching of the parameters

Parameters of the effective theory {g3, b1, b2, c1, c2, c3} can be matched
to the full theory parameters {g, T} at high T :

Split the potential in to “hard” and “soft” V = Vh + g2
3Vs

Hard potential describes ∼ T scales, coarse graining
→ Forces Z ∈ SU(2)

Vh = h1Tr (Z†Z) + h2(TrZ†Z)2

Soft potential encodes the physics of small fluctuations, EQCD

Vs = s1Tr Π2 + s2

(
Tr Π2

)2 + s3Σ4



Matching at T →∞

Parameters can be mached in perturbation theory (series in g2(7T )
16π2 !):

b1 = −1
4
r2T 2,

b2 = −1
4
r2T 2 + 0.441841g2T 2,

c1/g
2
3 = 0.0311994r2 + 0.0135415g2,

c2/g
2
3 = 0.0311994r2 + 0.008443432g2,

c3/g
2
3 = 0.0623987r2,

g2
3 = g2T

Parameters functions of full theory parameters (g, T ) and r

rT : mass of fluctuation away from SU(2) manifold

rT = Cutoff of the effective theory
”continuum limit” = r →∞



Results from simulations:

Z2-restoring phase transition

β = 6, n = 64, r2 = 5



Results from simulations:

Phase diagram resembles the full theory (unlike in EQCD).
Insensitive to r > 1
Phase transition at correct g(T )!



Effective theory for SU(3)

For SU(3) no special relations
⇒ degree of freedom Z ∈GL(3,C)

L =
1
2

TrFijFij + Tr(DiZ
†DiZ) + V0(Z) + g2

3V1(Z)

with

V0 = c1TrZ†Z + c2

(
detZ + detZ†

)
+ c3Tr(Z†Z)2

g2
zV1 = d1TrM †M + d2Tr(M3 +M †3) + d3Tr(M †M)2

where M = Z − 1
311TrZ



Effective theory for SU(3)

For SU(3) no special relations
⇒ degree of freedom Z ∈GL(3,C)

L =
1
2

TrFijFij + Tr(DiZ
†DiZ) + V0(Z) + g2

3V1(Z)

with

V0 = c1TrZ†Z + c2

(
detZ + detZ†

)
+ c3Tr(Z†Z)2

g2
zV1 = d1TrM †M + d2Tr(M3 +M †3) + d3Tr(M †M)2

where M = Z − 1
311TrZ

The operator list is not exhaustive
Similar splitting of action

Hard potential keeps Z near unitary, has superfluous symmetry
Soft potential encodes gT physics



Summary

Dimensional reduction provides a bridge between lattice
computations and perturbation theory in the deconfined phase.
In DR setup, one can analytically deal with the heavy modes
(non-static bosons and fermions) to get a theory which is more
amenable to numerical simulations.
Incorporating the (approximate) center symmetry to EQCD leads
to correct phase diagram
Lots of things to do:

Check accuracy near Tc:
Domain wall tension
Spatial string tension
Screening masses

Make predictions:
Quarks: ZN breaking terms
Finite chemical potential (Correct phase transitions?)
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