Dimensional reduction near the deconfinement transition

Aleksi Kurkela
ETH Zürich

Wien 27.11.2009

Outline

- Introduction
- Dimensional reduction
- Center symmetry

The deconfinement transition:

QCD has two remarkable properties:

- At small momenta / Large distances: Confinement
- At $T=0, \mu_{B}=0$:
\longrightarrow Hadronic matter
- At large momenta / Small distances: Asymptotic freedom - At $T \rightarrow \infty$ and/or $\mu \rightarrow \infty$: \longrightarrow Quarks and gluons

Temperature

The deconfinement transition:

QCD has two remarkable properties:

- At small momenta / Large distances: Confinement
- At $T=0, \mu_{B}=0$:
\longrightarrow Hadronic matter
- At large momenta / Small distances: Asymptotic freedom
- At $T \rightarrow \infty$ and/or $\mu \rightarrow \infty$:
\longrightarrow Quarks and gluons
Temperature

Preliminaries: Quantum fields in thermal equilibrium

Theoretical challenge:

- Fireball described by relativistic hydrodynamics

$$
T^{\mu \nu}=[p(T)+e(T)] u^{\mu} u^{\nu}-p(T) g^{\mu \nu}, \quad \partial_{\mu} T^{\mu \nu}=0
$$

- Hydrodynamic equations take the equation of state as input
- \longrightarrow Problem in equilibrium thermodynamics
- Quantities of interest:
- Equation of state
- Screening lengths
- Quasi-particle spectral functions
- Transport coefficients

Preliminaries: Quantum fields in thermal equilibrium

 Thermodynamical information is encoded in the partition function:- Can be written as a path integral (here at zero baryon number density)

$$
\begin{aligned}
& Z=\operatorname{Tr} \exp [-\hat{H} / T]=\int_{\phi(0, \mathbf{x})=\phi(1 / T, \mathbf{x})}^{\mathcal{D} \phi \exp }\left(-S_{E}\right) \\
& S_{E}=\int_{-\infty}^{\infty} d^{3} x \int_{0}^{1 / T} d \tau \mathcal{L}^{E} \\
& \text { 1/Т }
\end{aligned}
$$

- Bosons periodic b.c., fermions anti-periodic b.c. Quantites of interest:

$$
\begin{aligned}
p(T) & =\frac{\partial(T \ln Z)}{\partial V}=T / V \ln Z \\
s(T) & =\frac{\partial(T \ln Z)}{\partial T} \\
E(T) & =-P V+T S
\end{aligned}
$$

The lattice approach:

The perturbative approach:

High T : Renormalized coupling $g(T) \sim 1 / \ln T$

- Periodicity in coordinate space makes p_{0} discrete

$$
\frac{1}{p^{2}} \longrightarrow \frac{1}{\mathbf{p}^{2}+\omega_{n}^{2}}
$$

- Bosons: $\omega_{n}=(2 n) \pi T$

Static mode: $n=0$

- Fermions: $\omega_{n}=(2 n+1) \pi T$
- 4 d integrals become $3+1 \mathrm{~d}$ sum-integrals

$$
\int \frac{d^{4} p}{(2 \pi)^{4}} \rightarrow T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}}
$$

- To get $(\ln Z)$: Sum of 1PI vacuum diagrams

The perturbative approach:

General structure of the perturbative expansion $g^{2}(T) \sim 1 / \log (T)$:

- Leading order: Gas of non-interacting quarks and gluons

$$
p_{\mathrm{SB}} / T^{4}=\frac{\pi^{2}}{45}\left(N_{c}^{2}-1+\frac{7 N_{c} N_{f}}{4}\right)
$$

- Recipe to compute higher order corrections: Vacuum diagrams

$$
p(T) \sim p_{\mathrm{SB}}(T)\left(1+\# g^{2}+\# g^{3}+\# g^{4} \ln g+\# g^{4}+\# g^{5}+\# g^{6} \ln g+\ldots\right)
$$

- Non-analytic terms originate from IR divergences of static modes \rightarrow resummations

Note: Number of loops \neq power in g^{2}

The perturbative approach: Kajimntio et al. hepphh/211 1321

$p(T) \sim p_{\mathrm{SB}}(T)\left(1+g^{2}+g^{3}+g^{4} \ln g+g^{4}+g^{5}+g^{6} \ln g+g^{6}+\ldots\right)$

- Not straightforward to improve!! g^{6}-term non-perturbative.
- n-loop diagram $\sim g^{6}\left(g^{2} T / m\right)^{(4-l)}$ with $m \sim g^{2} T$

Outline

- Introduction
- Dimensional reduction
- Center symmetry

Dimensional reduction

- At high T : For long distance properties $(\Delta x \gg 1 / T)$, the system looks 3d.

- Degrees of freedom are static modes $\phi_{0}(\mathbf{x})$

$$
\phi(\mathbf{x}, \tau)=T \sum_{n=-\infty}^{\infty} \exp \left(i \omega_{n} \tau\right) \phi_{n}(\mathbf{x})
$$

- Effective action: Integrate out non-static modes

$$
\begin{aligned}
Z=\int \mathcal{D} \phi_{0} \mathcal{D} \phi_{n} \exp \left(-S_{0}\left(\phi_{0}\right)-S_{n}\left(\phi_{0}, \phi_{n}\right)\right) & \text { 4d theory } \\
=\int \mathcal{D} \phi_{0} \exp \left(-S_{0}\left(\phi_{0}\right)-S_{\mathrm{eff}}\left(\phi_{0}\right)\right) & \text { 3d theory }
\end{aligned}
$$

- In practice: Need a scale separation between static and non-static modes to give a truncation to the effective action

Where does Dimensional Reduction work?

Scales in hot Yang-Mills:

- Perturbatively:
- Hard scale: $2 \pi T$ Typical thermal momentum, non-static modes
- Soft scale: $m_{E} \sim g T$ Debye screening, static electric modes, A_{0}
- Ultra-soft scale: $m_{M} \sim g^{2} T$ color magnetic screening, static magnetic modes, A_{i}
\Rightarrow Asymptotic dimensional reduction
- Non-perturbatively: $m_{E}\left(T_{c}\right) \sim 3 T_{c} \stackrel{?}{<} 2 \pi T_{c}$

- No scale separtion below T_{c}

Electrostatic QCD, Magnetostatic QCD Braaten \& Nieto

 Integrate out the hard scale to get EQCD $(\Delta x \gg 1 / T)$ (=3d Yang-Mills + adjoint Higgs)$$
\begin{aligned}
S_{\mathrm{EQCD}}= & \underbrace{\frac{1}{g_{3}^{2}}}_{\sim g^{2} T} \int \mathrm{~d}^{3} x\left[-p_{E}\right.
\end{aligned} \begin{aligned}
& \underbrace{\frac{1}{2} \operatorname{Tr} F_{i j}^{2}}_{\text {spatial gluons }}+\underbrace{\operatorname{Tr}\left(D_{i} A_{0}\right)^{2}}_{\text {adjoint kinetic }} \\
& \\
&
\end{aligned}
$$

- Higher order terms suppressed by powers of the scale difference
- Eff. theory parameters $g_{3}(T), m_{E}(T), \lambda_{E}(T)$ via perturbative matching, no resummations needed.
- After integrating out the soft modes $A_{0},(\Delta \mathrm{x} \gg 1 /(g T))$:

$$
S_{\mathrm{MQCD}}=\frac{1}{g_{3}^{2}} \int \mathrm{~d}^{3} x\left[\frac{1}{2} \operatorname{Tr} F_{i j}^{2}\right]
$$

- Philosophy: Integrate out heavy modes analytically, simulate low-energy theory numerically.

Example: g^{6}-coefficient from MQCD

The g^{6}-resummation can be done numerically in eff. theory framework:

- Match QCD \rightarrow EQCD to sufficient depth in g
- $g_{3}^{2}(T)=T\left(\# g^{2}+\# g^{4}\right)$
- $m_{E}^{2}(T)=T^{2}\left(\# g^{2}+\# g^{4}\right)$
- $\lambda_{E}(T)=\# g^{4}$
- $p_{E}(T)=T^{4}\left(1+\# g^{2}+\# g^{4}+\# g^{6}\right)$
- Requires a 4 -loop computation in full QCD
- The matching coefficient at g^{6} known only in the $N_{f} \rightarrow \infty$ limit Ipp\&Rebhan hep-ph/0305030; Gynther, AK, Vuorinen 0909.3521
- Match EQCD \rightarrow MQCD to sufficient depth in g

Kajantie et al. hep-ph/0211321

- Match the 3 d continuum $\overline{\mathrm{MS}}$ theory with lattice theory to order a^{0}
- done using 4-loop Numerical Stochastic Perturbation Theory

```
Di Renzo et al. 0808.0557
```

- Measure pressure of lattice theory numerically

Example: Spatial string tension from MQCD

Spatial string tension (magnetic screening) to $\sim T_{c}$

Karsch et al., 0806.3264

Outline

- Introduction
- Dimensional reduction
- Center symmetry

Center symmetry

At finite T the full symmetry group of Yang-Mills:

- Gauge symmetry

$$
A_{\mu} \longrightarrow \lambda(\tau, \mathbf{x})\left(A_{\mu}+i \partial_{\mu}\right) \lambda(\tau, \mathbf{x})^{-1}, \quad s \in \mathrm{SU}\left(N_{\mathrm{c}}\right)
$$

- Global center symmetry

$$
\lambda(\tau+1 / T, \mathbf{x})=z \lambda(\tau, \mathbf{x}), \quad z \in Z_{N_{\mathrm{c}}}
$$

Order parameter: $\Omega(\mathbf{x})=\operatorname{Tr} W(\mathbf{x})=\operatorname{Tr}\left[P \exp \left(i g \int \mathrm{~d} \tau A_{0}(\tau, \mathbf{x})\right)\right]$

$$
T<T_{c}
$$

$T \approx T_{c}$
$\because \quad T>T_{\bar{c}}$

Light fermions break the center symmetry softly

- Polyakov-loop still good approximate order parameter:

Bazavov et al. 0903.4379

Center symmetry

Effective potential in perturbation theory:

- EQCD obtained by expanding A_{0} around one of the N_{c} deconfining minima.
- EQCD breaks the center symmetry explicitly.
- No chance for correct phase structure
- Quantities sensitive to A_{0} not well described near T_{c}

Center-symmetric effective theories

- Goal: Want to construct an effective theory that
- Preserves the Z_{N} center symmetry
- Reduces to EQCD at high T
- Is superrenormalizable
- Effective theory of Wilson lines not (super)renormalizable

Center-symmetric effective theories

- Goal: Want to construct an effective theory that
- Preserves the Z_{N} center symmetry
- Reduces to EQCD at high T
- Is superrenormalizable
- Effective theory of Wilson lines not (super)renormalizable

Idea: Construct effective theory for coarse grained Wilson loop
Vuorinen\&Yaffe hep-ph/0604100

$$
\mathcal{Z}(\mathbf{x})=\frac{T}{V_{\text {Block }}} \int_{V} \mathrm{~d}^{3} y U(\mathbf{x}, \mathbf{y}) W(\mathbf{y}) U(\mathbf{y}, \mathbf{x}), \notin S U\left(N_{\mathrm{c}}\right)
$$

Center-symmetric effective theory for $\mathrm{SU}(2)$

de Forcrand, AK, Vuorinen arXiv:0801.1566

- For $\mathrm{SU}(2)$, sum of matrices proportional to $\mathrm{SU}(2)$

$$
\begin{aligned}
\mathcal{Z} & =\lambda \Omega, \quad \Omega \in \mathrm{SU}(2), \quad \lambda>0 \\
\mathcal{Z} & =\frac{1}{2}\{\underbrace{\Sigma \mathbb{1}}_{\text {Singlet }}+i \underbrace{\Pi_{a} \sigma_{a}}_{\text {Adjoint scalar }}\}=\left(\begin{array}{cc}
\frac{1}{2} \Sigma+i \Pi_{1} & i \Pi_{2}-\Pi_{3} \\
i \Pi_{2}+\Pi_{3} & \frac{1}{2} \Sigma-i \Pi_{1}
\end{array}\right)
\end{aligned}
$$

- Transforms exactly like Wilson line

$$
\begin{array}{lll}
\mathcal{Z} \longrightarrow \lambda^{-1}(\mathbf{x}) \mathcal{Z} \lambda(\mathbf{x}) & \text { gauge } \\
\mathcal{Z} \longrightarrow-\mathcal{Z} & \text { center } Z_{2}
\end{array}
$$

- ...but note: $\left(3\right.$ d.o.f in $\left.W=e^{i g T A_{0}}\right) \neq(4$ d.o.f in $\mathcal{Z})$

Center-symmetric effective theory for $\mathrm{SU}(2)$

de Forcrand, AK, Vuorinen arXiv:0801.1566

- For $\mathrm{SU}(2)$, sum of matrices proportional to $\mathrm{SU}(2)$

$$
\begin{aligned}
\mathcal{Z} & =\lambda \Omega, \quad \Omega \in \mathrm{SU}(2), \quad \lambda>0 \\
\mathcal{Z} & =\frac{1}{2}\{\underbrace{\Sigma \mathbb{1}}_{\text {Singlet }}+i \underbrace{\Pi_{a} \sigma_{a}}_{\text {Adjoint scalar }}\}=\left(\begin{array}{cc}
\frac{1}{2} \Sigma+i \Pi_{1} & i \Pi_{2}-\Pi_{3} \\
i \Pi_{2}+\Pi_{3} & \frac{1}{2} \Sigma-i \Pi_{1}
\end{array}\right)
\end{aligned}
$$

- Most general superrenormalizable Lagrangian with A_{i} and \mathcal{Z} :

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Z}(2)} & =\underbrace{\frac{1}{2} \operatorname{Tr} F_{i j}^{2}}_{\text {spatial gluons }}+\underbrace{\operatorname{Tr}\left(D_{i} \mathcal{Z}^{\dagger} D_{i} \mathcal{Z}\right)}_{\text {Adjoint Kinetic }}+V(\mathcal{Z}) \\
V(\mathcal{Z}) & =\underbrace{b_{1} \Sigma^{2}+b_{2} \Pi_{a}^{2}+c_{1} \Sigma^{4}+c_{2}\left(\Pi_{a}^{2}\right)^{2}+c_{3} \Sigma^{2} \Pi_{a}^{2}}_{\text {interactions from integration out }}
\end{aligned}
$$

- Higher order terms suppressed by scale difference m_{E} / T.

Perturbative matching of the parameters

Parameters of the effective theory $\left\{g_{3}, b_{1}, b_{2}, c_{1}, c_{2}, c_{3}\right\}$ can be matched to the full theory parameters $\{g, T\}$ at high T :

- Split the potential in to "hard" and "soft" $V=V_{h}+g_{3}^{2} V_{s}$
- Hard potential describes $\sim T$ scales, coarse graining
\rightarrow Forces $\mathcal{Z} \in \mathrm{SU}(2)$

$$
V_{h}=h_{1} \operatorname{Tr}\left(\mathcal{Z}^{\dagger} \mathcal{Z}\right)+h_{2}\left(\operatorname{Tr} \mathcal{Z}^{\dagger} \mathcal{Z}\right)^{2}
$$

- Soft potential encodes the physics of small fluctuations, EQCD

$$
V_{s}=s_{1} \operatorname{Tr} \Pi^{2}+s_{2}\left(\operatorname{Tr} \Pi^{2}\right)^{2}+s_{3} \Sigma^{4}
$$

Matching at $T \rightarrow \infty$

Parameters can be mached in perturbation theory (series in $\frac{g^{2}(7 T)!}{16 \pi^{2}!}$):

$$
\begin{aligned}
b_{1} & =-\frac{1}{4} r^{2} T^{2}, \\
b_{2} & =-\frac{1}{4} r^{2} T^{2}+0.441841 g^{2} T^{2}, \\
c_{1} / g_{3}^{2} & =0.0311994 r^{2}+0.0135415 g^{2}, \\
c_{2} / g_{3}^{2} & =0.0311994 r^{2}+0.008443432 g^{2}, \\
c_{3} / g_{3}^{2} & =0.0623987 r^{2}, \\
g_{3}^{2} & =g^{2} T
\end{aligned}
$$

- Parameters functions of full theory parameters (g, T) and r
- $r T$: mass of fluctuation away from $\mathrm{SU}(2)$ manifold
- $r T=$ Cutoff of the effective theory
- "continuum limit" $=r \rightarrow \infty$

Results from simulations:

Z_{2}-restoring phase transition

$$
\beta=6, n=64, r^{2}=5
$$

Results from simulations:

- Phase diagram resembles the full theory (unlike in EQCD).
- Insensitive to $r>1$
- Phase transition at correct $g(T)$!

Effective theory for $\mathrm{SU}(3)$

- For $\mathrm{SU}(3)$ no special relations
\Rightarrow degree of freedom $\mathcal{Z} \in \mathrm{GL}(3, \mathbb{C})$

$$
\mathcal{L}=\frac{1}{2} \operatorname{Tr} F_{i j} F_{i j}+\operatorname{Tr}\left(D_{i} Z^{\dagger} D_{i} Z\right)+V_{0}(Z)+g_{3}^{2} V_{1}(Z)
$$

with

$$
\begin{aligned}
V_{0} & =c_{1} \operatorname{Tr} \mathcal{Z}^{\dagger} \mathcal{Z}+c_{2}\left(\operatorname{det} \mathcal{Z}+\operatorname{det} \mathcal{Z}^{\dagger}\right)+c_{3} \operatorname{Tr}\left(\mathcal{Z}^{\dagger} \mathcal{Z}\right)^{2} \\
g_{\mathrm{z}}^{2} V_{1} & =d_{1} \operatorname{Tr} M^{\dagger} M+d_{2} \operatorname{Tr}\left(M^{3}+M^{\dagger 3}\right)+d_{3} \operatorname{Tr}\left(M^{\dagger} M\right)^{2}
\end{aligned}
$$

where $M=\mathcal{Z}-\frac{1}{3} \mathbb{1} \operatorname{Tr} \mathcal{Z}$

Effective theory for $\mathrm{SU}(3)$

- For $\mathrm{SU}(3)$ no special relations
\Rightarrow degree of freedom $\mathcal{Z} \in \mathrm{GL}(3, \mathbb{C})$

$$
\mathcal{L}=\frac{1}{2} \operatorname{Tr} F_{i j} F_{i j}+\operatorname{Tr}\left(D_{i} Z^{\dagger} D_{i} Z\right)+V_{0}(Z)+g_{3}^{2} V_{1}(Z)
$$

with

$$
\begin{aligned}
V_{0} & =c_{1} \operatorname{Tr} \mathcal{Z}^{\dagger} \mathcal{Z}+c_{2}\left(\operatorname{det} \mathcal{Z}+\operatorname{det} \mathcal{Z}^{\dagger}\right)+c_{3} \operatorname{Tr}\left(\mathcal{Z}^{\dagger} \mathcal{Z}\right)^{2} \\
g_{\mathrm{z}}^{2} V_{1} & =d_{1} \operatorname{Tr} M^{\dagger} M+d_{2} \operatorname{Tr}\left(M^{3}+M^{\dagger 3}\right)+d_{3} \operatorname{Tr}\left(M^{\dagger} M\right)^{2}
\end{aligned}
$$

where $M=\mathcal{Z}-\frac{1}{3} \mathbb{1} \operatorname{Tr} \mathcal{Z}$

- The operator list is not exhaustive
- Similar splitting of action
- Hard potential keeps \mathcal{Z} near unitary, has superfluous symmetry
- Soft potential encodes $g T$ physics

Summary

- Dimensional reduction provides a bridge between lattice computations and perturbation theory in the deconfined phase.
- In DR setup, one can analytically deal with the heavy modes (non-static bosons and fermions) to get a theory which is more amenable to numerical simulations.
- Incorporating the (approximate) center symmetry to EQCD leads to correct phase diagram
- Lots of things to do:
- Check accuracy near T_{c} :
- Domain wall tension
- Spatial string tension
- Screening masses
- Make predictions:
- Quarks: Z_{N} breaking terms
- Finite chemical potential (Correct phase transitions?)

