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Technical preliminaries: QCD at finite temperature

• Path integral on a 4-dimensional euclidean cylinder with one compact
direction of length β = 1/T .
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• Roughly speaking: The finite temperature transition occurs when β is
small enough such that the system starts to feel the boundary.



A strategy for probing QCD

• The finite temperature transition occurs when β is small enough such
that the system starts to feel the boundary.

• We use the boundary conditions in the temporal direction to probe QCD.

• Above Tc (below βc) the system might behave differently for different
boundary conditions.

• Here we allow for varying fermionic boundary conditions:

ψ(~x, β) = eiϕ ψ(~x, 0)

• Motivated through properties of Kraan – van Baal calorons.



Center symmetry and Polyakov loops

• The gauge action is invariant under center transformations ( z ∈ Z3 ):

U4(x) → z U4(x) ∀ x4 = t0

• The deconfinement transition of pure gauge theory can be described as
spontaneous breaking of the center symmetry.

• The Polyakov loop transforms non-trivially and is an order parameter.

P (~x) = trc

Nt∏
t=1

U4(~x, t)

P (~x) → z P (~x)
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Center symmetry and Polyakov loops

• Above Tc the Polyakov loop spontaneously selects
one of three (for SU(3)) possible phases θ.

• We will show that the
Polyakov loop phase θ
acts like an additional
boundary condition.

-0.1 0.0 0.1 0.2

-0.2

-0.1

0

0.1

0.2

Polyakov loop in the complex plane above Tc 



Chiral symmetry breaking and Dirac spectrum

• The Banks Casher formula relates the chiral condensate to the spectral
density of the Dirac operator at the origin.

〈ψ ψ 〉 = − π ρ(0)

• At the QCD phase transition a gap opens up in the spectrum and the
chiral condensate vanishes.
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Spectral gap above Tc
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Spectral gap depends on the relative phase between b.c. and Polyakov loop.



Spectral gap as a function of T

100 200 300 400
T [MeV]

0

50

100

150

200

250

300 10
3
 x 6

12
3
 x 6

14
3
 x 6

Spectral gap [MeV] ,  anti-periodic b.c. 

100 200 300 400
T [MeV]

0

50

100

150

200

250

30010
3
 x 6

12
3
 x 6

14
3
 x 6

Spectral gap ,  periodic b.c. 

With periodic b.c. also above Tc the gap remains closed.
(for the real Polyakov sector)



Chiral condensate as a function of T
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With periodic b.c. the chiral condensate persists also above Tc
(for the real Polyakov sector).



An important physics question

• At zero temperature QCD shows two characteristic features:

– Quarks are confined.

– Chiral symmetry is broken: 〈ψψ〉 6= 0.

• QCD has a finite temperature transition where:

– Quarks become deconfined.

– Chiral symmetry is restored: 〈ψψ〉 = 0.

Is there an underlying mechanism that links the two key features of QCD?

What role is played by the boundary conditions? Can we use them?



A possible approach

• Confinement and chiral symmetry breaking both should leave a trace in
properties of the Dirac operator D, since D−1 describes the propagation
of quarks.

• For chiral symmetry breaking the Banks-Casher formula connects the
order parameter 〈ψψ〉 to IR properties of the Dirac spectrum.

• Concerning confinement it is not even clear where to look in the spectrum,
in the UV or the IR part.

• Maybe through analyzing spectral properties of D one can find a link
between confinement and chiral symmetry breaking.

• The lattice formulation provides a suitable framework (rigorously defined)
which allows for both, analytical and numerical approaches.



Lattice fermions and loops

• Discretized Dirac operator on the lattice

D =
1

2a

4∑
µ=1

γµ(x)
[
Uµ(x) δx+µ̂ , y − Uµ(x− µ̂)† δx−µ̂ , y

]
• The chiral condensate corresponds to a sum of loops:

〈ψψ〉 = − 1

V
Tr[m+D]

−1
=

∑
l∈L

c(l) Trc
∏

(x,µ)∈l

Uµ(x)

• A change of the temporal boundary conditions

U4(~x,Nt) −→ z U4(~x,Nt) , z = eiϕ ∈ U(1)

affects only loops that wind non-trivially around compact time.

• Fourier transformation with respect to ϕ allows one to project to the
equivalence class of loops winding exactly once: Dressed Polyakov Loops



Graphical representation
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Dual chiral condensate = dressed Polykov loop

• Fourier transformation with respect to the boundary condition connects
the order parameters for confinement and for chiral symmetry breaking:
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ψψ
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dϕ e−iϕ
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〈
Trc

∏
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〉

〈̂
ψψ

〉
1

= −
∫ 2π

0

dϕ e−iϕ

2π V
Tr[m+Dϕ]

−1
= −

∫ 2π

0

dϕ e−iϕ

2π V

∑
k

〈
1

m+λ
(k)
ϕ

〉
ϕ

• The representation as a spectral sum of Dirac eigenvalues allows one to
study the role of IR and UV eigenmodes for the mechanisms of confine-
ment and chiral symmetry breaking.



The Dressed Polyakov Loop is dominated by IR modes
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The Dressed Polyakov Loop is an order parameter
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Spectral properties at the phase transition
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Generalization of the Banks-Casher formula

• Having identified the connection between spectral properties and the
dressed Polyakov loops, we can now formulate the physical picture in
terms of a generalized Banks-Casher relation.

• Performing limm→0 limV→∞ we find:

−
〈̂
ψψ

〉
1

=
1

2

∫ 2π

0
dϕ e−iϕ ρ(0)ϕ

• How does the spectral density ρ(0)ϕ at the origin have to behave as a
function of ϕ such that:

−
〈̂
ψψ

〉
1

= 0 belowTc

−
〈̂
ψψ

〉
1

> 0 aboveTc



Emerging picture for the generalized Banks-Casher formula

• The spectral density at the origin, ρ(0)ϕ, behaves as (θ denotes the phase
of the Polyakov loop):

ρ(0)ϕ = const belowTc

ρ(0)ϕ ∝ δ(ϕ+ θ ) aboveTc

• The dual chiral condensate is given by:

−
〈̂
ψψ

〉
1

=
1

2

∫ 2π

0
dϕ e−iϕ ρ(0)ϕ

• And behaves correctly as:

−
〈̂
ψψ

〉
1

= 0 belowTc

−
〈̂
ψψ

〉
1

= ρ0 exp(iθ) aboveTc



Summary

• We use the fermionic temporal boundary conditions to probe QCD at
finite temperature.

• At the phase transition the behavior of the low-lying eigenvalues changes:

1. In the confined phase we have a non-vanishing spectral density ρ(0)ϕ
at the origin which is independent of the boundary condition.

2. Above Tc the spectral gap has a sine-like dependence on the phase
between boundary condition and Polyakov loop and ρ(0)ϕ ∝ δ(ϕ+θ).

• The phase of the Polyakov loop acts like a background phase, but does
not play a dynamical role.

• The center of the gauge group does not seem to play a major role in the
microscopic dynamical process.



Summary (continued)

• Fourier transforming the chiral condensate with respect to the fermionic
boundary condition we define the Dual Chiral Condensate.

• The dual chiral condensate is an order parameter for center symmetry,
interpreted as Dressed Polyakov Loops.

• The dual condensate can be represented as a spectral sum of Dirac eigen-
values which is dominated by the IR modes.

• Most elegantly the results are expressed as a generalized Banks-Casher
formula for the dual condensate:

−
〈̂
ψψ

〉
1

=
1

2

∫ 2π

0
dϕ e−iϕ ρ(0)ϕ

Chiral symmetry breaking and confinement are, via a duality transformation,
connected to closely related spectral properties of the IR Dirac spectrum.

Link between confinement and chiral symmetry breaking?



Bonus material: The centerless gauge group G2

• What role does the center play in our picture?
⇒ Study a gauge group with trivial center.

• Analyze the Dirac spectrum and its response to changing boundary
conditions using quenched G2 configurations.

• Finding:

Behavior is exactly the same as for SU(3) in the real Polyakov sector.

• Another piece of evidence that the picture developed here is universal are
the recent results in SU(2): Bornyakov et al.



G2 : Chiral condensate (123 × 6)
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G2 : Spectral gap (123 × 6)
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