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Technical preliminaries: QCD at finite temperature

e Path integral on a 4-dimensional euclidean cylinder with one compact
direction of length 5 =1/T.
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e Roughly speaking: The finite temperature transition occurs when [ is
small enough such that the system starts to feel the boundary.



A strategy for probing QCD

e The finite temperature transition occurs when (3 is small enough such
that the system starts to feel the boundary.

e We use the boundary conditions in the temporal direction to probe QCD.

e Above T, (below f3.) the system might behave differently for different
boundary conditions.

e Here we allow for varying fermionic boundary conditions:
U(T,B) = ¥ (Z,0)

e Motivated through properties of Kraan — van Baal calorons.



Center symmetry and Polyakov loops
e The gauge action is invariant under center transformations ( z € Z3 ):

Us(x) — zUy(x) YV xy = to

e The deconfinement transition of pure gauge theory can be described as

spontaneous breaking of the center symmetry.

e The Polyakov loop transforms non-trivially and is an order parameter.
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Center symmetry and Polyakov loops

e Above T, the Polyakov loop spontaneously selects
one of three (for SU(3)) possible phases 6.

e \We will show that the

Polyakov loop phase 6 Polyakov loop in the complex plane above T_
acts like an additional oo
P B *
boundary condition. .
0.2 A I _
’.:»,0
st
0.1+ o Bool _
’ °
e . %8 S
oF SEeg "':'sio.’ i
R R ®
'0.1_ ,“‘.‘ -
:‘.&3‘
=¥,
’ *
02F o tS -
* ©

-0.1 0.0 0.1 0.2



Chiral symmetry breaking and Dirac spectrum

e The Banks Casher formula relates the chiral condensate to the spectral
density of the Dirac operator at the origin.

(V) = —7p(0)

e At the QCD phase transition a gap opens up in the spectrum and the
chiral condensate vanishes.
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Spectral gap above T,
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Spectral gap as a function of T’

Spectral gap [MeV], anti-periodic b.c. Spectral gap, periodic b.c.
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With periodic b.c. also above 7. the gap remains closed.
(for the real Polyakov sector)



Chiral condensate as a function of T

Chiral condensate [Gevs] , anti-periodic b.c.

Chiral condensate [GeVS], periodic b.c.
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With periodic b.c. the chiral condensate persists also above T
(for the real Polyakov sector).



An important physics question

e At zero temperature QCD shows two characteristic features:

— Quarks are confined.
— Chiral symmetry is broken: (3)) # 0.

e QCD has a finite temperature transition where:

— Quarks become deconfined.
— Chiral symmetry is restored: (1)) = 0.

Is there an underlying mechanism that links the two key features of QCD?

What role is played by the boundary conditions? Can we use them?



A possible approach

e Confinement and chiral symmetry breaking both should leave a trace in
properties of the Dirac operator D, since D! describes the propagation
of quarks.

e For chiral symmetry breaking the Banks-Casher formula connects the
order parameter (y¢) to IR properties of the Dirac spectrum.

e Concerning confinement it is not even clear where to look in the spectrum,
in the UV or the IR part.

e Maybe through analyzing spectral properties of D one can find a link
between confinement and chiral symmetry breaking.

e The lattice formulation provides a suitable framework (rigorously defined)
which allows for both, analytical and numerical approaches.



Lattice fermions and loops

e Discretized Dirac operator on the lattice
B
% Z’Yﬂ(x) {Uu(x) Ouijiy — Unlz — ﬂ)T 5%—;%3;}
u=1

e The chiral condensate corresponds to a sum of loops:

(B) = ——Tem + D] = () Tr. [[Uul)

v
lel (x,p)€l

e A change of the temporal boundary conditions

UZ,N) — 2U(Z,N,) , 2z =¢% e UQ)

affects only loops that wind non-trivially around compact time.

e Fourier transformation with respect to ¢ allows one to project to the
equivalence class of loops winding exactly once: Dressed Polyakov Loops



Graphical representation
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Dual chiral condensate = dressed Polykov loop

e Fourier transformation with respect to the boundary condition connects
the order parameters for confinement and for chiral symmetry breaking:
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e The representation as a spectral sum of Dirac eigenvalues allows one to
study the role of IR and UV eigenmodes for the mechanisms of confine-
ment and chiral symmetry breaking.



The Dressed Polyakov Loop is dominated by IR modes

Individual contributions, am=0.1 Accumulated contributions, am=0.1
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The Dressed Polyakov Loop is an order parameter
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Results from different lattices fall on a universal curve.
— Good scaling and renormalization properties.



Spectral properties at the phase transition

045 -
0.40—W' 1 1

| yT<TC,am=0.10 ] - -

v T<T,am=0.05 (%) Vv Z A\

S 035} : o\t Ap
3 ’ AT>T,am=0.10
- AT>T, am=0.05
0.30 - -

0:25 _W |

0-20_| 1 1 1 1L

The confined and deconfined phases give rise to a different response of the
IR part of the Dirac spectrum to changing boundary conditions.



Generalization of the Banks-Casher formula

e Having identified the connection between spectral properties and the
dressed Polyakov loops, we can now formulate the physical picture in
terms of a generalized Banks-Casher relation.

e Performing lim,, .o limy _, o, we find:
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e How does the spectral density p(0), at the origin have to behave as a
function of ¢ such that:

—<@¢>1 =0 below T,

—<@¢>1 > 0 above T,



Emerging picture for the generalized Banks-Casher formula

e The spectral density at the origin, p(0),, behaves as (6 denotes the phase
of the Polyakov loop):

p(0), = const below T,

p(0), o< d(p+0) above T,

e The dual chiral condensate is given by:

- 27

- (), = 5 [ o0,

e And behaves correctly as:

_<E¢>1 — 0 below T,

_<E¢>1 = po exp(if) above T,



Summary

e We use the fermionic temporal boundary conditions to probe QCD at
finite temperature.
e At the phase transition the behavior of the low-lying eigenvalues changes:

1. In the confined phase we have a non-vanishing spectral density p(0),,
at the origin which is independent of the boundary condition.

2. Above T, the spectral gap has a sine-like dependence on the phase
between boundary condition and Polyakov loop and p(0),, o 6(p+86).

e The phase of the Polyakov loop acts like a background phase, but does
not play a dynamical role.

e The center of the gauge group does not seem to play a major role in the
microscopic dynamical process.



Summary (continued)

e Fourier transforming the chiral condensate with respect to the fermionic
boundary condition we define the Dual Chiral Condensate.

e The dual chiral condensate is an order parameter for center symmetry,
interpreted as Dressed Polyakov Loops.

e The dual condensate can be represented as a spectral sum of Dirac eigen-
values which is dominated by the IR modes.

e Most elegantly the results are expressed as a generalized Banks-Casher
formula for the dual condensate:
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Chiral symmetry breaking and confinement are, via a duality transformation,
connected to closely related spectral properties of the IR Dirac spectrum.

Link between confinement and chiral symmetry breaking?



Bonus material: The centerless gauge group Go

e What role does the center play in our picture?
= Study a gauge group with trivial center.

e Analyze the Dirac spectrum and its response to changing boundary
conditions using quenched Go configurations.

e Finding:

Behavior is exactly the same as for SU(3) in the real Polyakov sector.

e Another piece of evidence that the picture developed here is universal are
the recent results in SU(2): Bornyakov et al.



Gy : Chiral condensate (123 x 6)
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Gy : Spectral gap (123 x 6)
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