

### Vienna University of Technology

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinement

Chiral Symmet

Banks-Cashe

Dirac Spectr

Correlations

Topology

Conclusions



## Center Vortices, Confinement and Chiral Symmetry Breaking

in cooperation with Roman Bertle, Michael Engelhardt, Manfried Faber, Jeff Greensite, Urs Heller, Gerald Jordan, Stefan Olejnik



### Center Vortices

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

### Vortices

P-Vortex Structure

Confinement

Chiral Symmeti

Banks-Cashei

Dirac Spectra

Correlations

Topology

Conclusions

almost 30 years of vortices

→ 't Hooft 1979, Nielsen, Ambjorn, Olesen, Cornwall, 1979 Mack, 1980; Feynman, 1981

• QCD vacuum is a *condensate of closed magnetic flux-lines*, they have topology of tubes (3D) or surfaces (4D),

• magnetic flux corresponds to the *center of the group*,

• Vortex model may explain ...

- Confinement → piercing of Wilson loop ≡ crossing of static electric flux tube and moving closed magnetic flux
- **Topological charge**: vortices carry topological charge at intersection points and writhing points
- Spontaneous chiral symmetry breaking ?



### P-Vortex

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinemen

Symmetry

Banks-Cashe

Dirac Spectr

Correlations

Topology

Conclusions

### P-vortex plaquettes

a plaquette is pierced by a P-vortex, if the product of its center projected links gives -1.



(日) (四) (日) (日) (日)



### Center Vortices

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinemei Chiral Symmetry

Dirac Spectra Correlations

Topology

Conclusions

### How to Identify Center Vortices?

→ Del Debbio, Faber, Greensite, Olejnik (1996–1998)

Fix thermalized SU(2) lattice configurations to maximal center (adj. Landau) gauge by maximizing the expression:



 $U_{\mu}(x) 
ightarrow Z_{\mu}(x) \equiv {
m sign} \, \operatorname{Tr}[U_{\mu}(x)]$ 



### Structure of P-Vortices

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinemen

Symmetry

Banks-Cashei

Dirac Spectra

Correlations

Topology

Conclusions

# In 4D they form closed 2D-surfaces in Dual Space, Random Structure



3-dimensional cut through the dual of a  $12^4$ -lattice.



### Area law for center projected loops

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

#### Confinement

Chiral Symmetry Banks-Casher Dirac Spectra Correlations Topology Conclusions



denote *f* the probability that a plaquette has the value -1  $\langle W(A) \rangle = [f(-1) + (1-f) \cdot 1]^A = \exp[\ln(1-2f)A], =$  $= \exp[-\sigma R \times T], \qquad \sigma \equiv -\ln(1-2f) \approx 2f$ 

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 



### Center Dominance and Precocious Linearity



Precocious linearity of center projected Creutz ratios. String tension sweeps away the 1/r-potential.

э



### Vortex removal restores chiral symmetry

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinement

Chiral Symmetry

Banks-Casher Dirac Spectra Correlations Topology

Conclusions





Chiral condensate in quenched lattice configurations before ("Original") and after ("Modified") vortex removal.



### Banks-Casher relation

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinement

Chiral Symmetr

### Banks-Casher

Dirac Spectra Correlations Topology

Conclusions

Chiral symmetry breaking  $\implies$  $\implies$  Low-lying eigenmodes of Dirac operator

$$\bar{\psi}\psi = -\lim_{m \to 0} \lim_{V \to \infty} \left\langle \frac{1}{V} \sum_{n} \frac{1}{\mathrm{i}\lambda_{n} + m} \right\rangle$$

Non-zero eigenvalues appear in pairs  $\pm i\lambda_n$ 

$$\lim_{m \longrightarrow 0} \frac{2m}{\lambda_n^2 + m^2} \longrightarrow \pi \delta(0)$$

Chiral condensate  $\implies$  Density of Near-Zero modes.

$$\bar{\psi}\psi = \frac{\pi\rho(0)}{V}$$

➔ Banks, Casher, 1980

< 日 > < 同 > < 回 > < 回 > < □ > <



### Chiral Improved Fermions

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinement

Chiral Symmetr

Banks-Cashei

Dirac Spectra Correlations

ropology

Conclusions



→ From J. Gattnar et al., Nucl. Phys. B716 (2005)105.

(日)

э



# Eigenvalues of the Overlap Dirac operator on the Ginsparg-Wilson circle





## Interpolated gauge fields



## 

### Overlap eigenvalues on interpolated gauge fields

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

Structure

Confinement

Chiral Symmetr

Banks-Cashe

Dirac Spectra Correlations

Caralusiana





Center

## Asqtad Staggered Fermions



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Conclusion



### Correlation between vortices and Dirac modes

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinement

Chiral Svmmeti

Banks-Cashei

Dirac Spectra

Correlations

Topology

Conclusions

Correlator

$$C_{\lambda} = \frac{\sum_{P_i} \sum_{x \in H} (V \rho_{\lambda}(x) - \langle V \rho_{\lambda}(x) \rangle)}{\sum_{P_i} \sum_{x \in H} 1}$$

→ Kovalenko, Morozov, Polikarpov and Zakharov 2005

- vortex points  $P_i$  on the dual lattice
- scalar eigenmode density ρ<sub>λ</sub>(x), averaged over the vertices x of the 4d hypercube H, dual to P<sub>i</sub>
- strongly depends on the number of the vortex plaquettes, attached to a point *P<sub>i</sub>*



### Vortex correlation for overlap modes





### Vortex correlation for asqtad staggered modes





### Dirac Eigenmode Density Peaks

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinemen

Chiral Symmetry Banks-Ca

Dirac Spectra

Correlations

Topology

Conclusions





## Center-projected eigenmode and topological charge

Center Vortices. Confinement and Chiral Symmetry Breaking

Topology

0.0057

0.0038

0.0019



density of eigenvalue #1, maximum 0.00745768618163 at x=9, v=8, z=4, t=7





### intersections



writhing points



(Engelhardt, Reinhardt)



### Conclusions

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

- P-Vortex Structure
- Confinement
- Chiral Symmet
- Banks-Casher
- Dirac Spectra
- Correlations
- Topology
- Conclusions

### $\Box$ Confining Disorder $\equiv$ Center Disorder

- □ P-vortices locate center vortices  $W_n/W_0 = (-1)^n$
- □ Center Dominance: The projected string tension is close to the asymptotic string tension  $\sigma$  of full Monte-Carlo configurations  $\chi_{cp}(R, R) \approx \sigma$  ( $R \geq 2$ )
- Upon abelian projection, center vortices appear as chains of monopoles and antimonopoles.
- □ Vortex removal restores chiral symmetry
- □ Asqtad staggered fermions show confinement and chiral symmetry breaking also for center-projected configurations
- Strong correlations between Dirac eigenmodes and center vortices
- Dirac eigenmodes show sharp peaks at intersection and writhing points



## Vienna University of Technology

Center Vortices, Confinement and Chiral Symmetry Breaking

Roman Höllwieser

Vortices

P-Vortex Structure

Confinement

Chiral Symmetr

Banks-Cashe

Dirac Spectr

Correlations

Topology

Conclusions

# Thank you for your attention! Questions?

