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The tensor structure N00 is, keeping the conventions of diagram b for the indices (clearly in

this case one has ν = σ = 0)
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Performing as usual the d|q| integration we have

iΠ00
tl (k) =

4π2ig2CA

16π4

∫ +∞

−∞
dq0

∫ +1

−1

d cos θ
|q0|
2

nB(|q0|)
k2 + (q0)2 − 2|q0||k| cos θ

×
[
−

(
(q0)2 + 4k2 − 4|q0||k| cos θ

)
+ (q0)2 + 4k2 cos2 θ − 4|q0||k| cos θ

]
.

The angular integration yields

iΠ00
tl (k) =

ig2CA

8π2

∫ +∞

−∞
dq0 |q0|nB(|q0|)

[
−4k2

−2|q0||k| log
k2 + (q0)2 − 2|q0||k|
k2 + (q0)2 + 2|q0||k|

+4k2

(
−2

k2 + (q0)2

4|q0|2k2
+

(k2 + (q0)2)2

−8|q0|3k3
log

k2 + (q0)2 − 2|q0||k|
k2 + (q0)2 + 2|q0||k|

)]

=
ig2CA

4π2

∫ +∞

−∞
dq0 |q0|nB(|q0|)

[
− k2

(q0)2
− 1 +

(
2|k|
q0

− (k2 + (q0)2)2

2|q0|3|k|

)

× log

∣∣∣∣
|k|−| q0|
|k| + |q0|

∣∣∣∣

]
. (41)

We can now obtain the final Coulomb gauge gluon thermal amplitude by summing the three

parts we have computed. We thus have, for the real part
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whereas the imaginary part is just the imaginary part of diagram b as given in Eq. (38).
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Motivations
• Effective Field Theories of QCD have been 

successful in the last decades on a variety 
of physical problems

• Examples:

• ChPT for the study of low-energy 
hadronic physics

• Non-Relativistic QCD / potential 
NRQCD for heavy quarkonium physics



• EFTs prove to be a valuable computational tool for 
physical problems characterized by various 
sufficiently separated energy scales

• An EFT is constructed by integrating out modes of 
energy and momentum larger than the cut-off μ

LEFT =
∑

n

cn(EΛ/µ)
On(µ)

EΛ

Wilson coefficient
Low-energy 
operator/

cutoff         

• The Wilson coefficient are obtained by matching 
appropriate Green functions in the two theories



Goal

• Our goal is then to extend the well-
established T=0 EFT formalism for heavy 
quarkonia to the finite temperature 
situation



Physical picture
• Hypothesis of quarkonium (       ) dissociation in a thermal 

medium (QGP) due to color screening (Matsui, Satz, 1986)

• Can thus quarkonium dissociation be a signature of QGP 
formation?

Charmonium dissociation at SPS and RHIC
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Physical picture
• Past studies based mainly on 

phenomenological potential models or lattice 
computations of the free energy

4 O. Kaczmarek et al.
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Fig. 3. Heavy quark free energies in the singlet channel for 2-flavors of dynamical quarks at a
quark mass of m/T = 0.40 on 163

× 4 lattices renormalized to the zero-T potential obtained
from6)(solid line).

This can be written as thermal average over free energies in singlet and octet channels

e−Fq̄q(r)/T =
1

9
e−F1(r)/T +

8

9
e−F8(r)/T . (2.5)

At distances much shorter than the inverse temperature (rT ! 1) the dominant scale
is set by r and the running coupling will be controlled by this scale and become small
for (r ! 1/ΛQCD). In this limit the singlet and octet free energies are dominated
by one-gluon exchange and become calculable within ordinary zero temperature per-
turbation theory, i.e. are given by the singlet and octet heavy quark potential. We
have used this to fix the constant C in (2.2),(2.3) and (2.5) by matching the singlet
free energy to the zero temperature heavy quark potential at short distances.

In fig. 1 the renormalized free energies in the different color channels for two
temperatures are plotted. At small distances F1 coincides with the T=0-potential.
For the temperature of 0.91 Tc we see no thermal effect up to a distance of r

√
σ ≈ 1.5

where string breaking sets in and leads to a constant value at larger separations. For
T=1.24 Tc the thermal effect sets in at r

√
σ ≈ 0.7. The singlet free energy, F1, shows

the usual screened Coulomb like behavior approaching a temperature dependent
constant value at large distances. In all color channels the free energies reach the
same constant (cluster) value at large separations above as well as below Tc.

While the singlet potential is attractive, the octet potential is repulsive at short
distances. From eq. (2.5) it follows that in this limit the color averaged free energy
will be dominated by the singlet contribution. We may then deduce from (2.5) also



T=0 NR EFTs: a Short Primer
• Non-relativistic        bound states are 

characterized by the hierarchy of the 
mass, energy and momentum scales
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T=0 NR EFTs: a Short Primer
• Non-relativistic        bound states are 

characterized by the hierarchy of the 
mass, energy and momentum scales

• One can then expand observables in 
terms of the ratio of the scales and 
construct a hierarchy of EFTs that are 
equivalent to QCD order-by-order in 
the expansion parameter
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• Expansion in            ,        and

• Potential as a Wilson coefficient, receives contributions 
from all higher scales

Weakly coupled pNRQCD
• Degrees of freedom:        states with energy                          

and momentum                                                                
Singlet and octet color states

• Gluons with energy/momentum

• Gluon fields are multipole-expanded in the centre of mass 
coordinate R

QQ
p ! mv

E ∼ ΛQCD,mv2

! mv

A(R, r, t) = A(R, t) + r ·∇A(R, t) + . . .

rαs(m) 1
m



Thermodynamical scales
• The thermal medium introduces new scales in 

the physical problem

• The temperature

• The electric screening scale (Debye mass)

• The magnetic screening scale (magnetic 
mass)

• In the weak coupling assumption these scales 
develop a hierarchy
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• The thermal medium introduces new scales in 

the physical problem

• The temperature
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T

gT ∼ mD

g2T ∼ mm



Scales of the problem
m

mv ∼ 1
r

mv2 ∼ E



Scales of the problem
m

mv ∼ 1
r

mv2 ∼ E
ΛQCD



Scales of the problem
m

mv ∼ 1
r

mv2 ∼ E
ΛQCD

T

gT ∼ mD

g2T ∼ mm



Scales of the problem
m

mv ∼ 1
r

mv2 ∼ E
ΛQCD

?
T

gT ∼ mD

g2T ∼ mm



Scales of the problem
• In our work various possibilities have been 

studied, from             to

• Here we illustrate the intermediate case       

T ! E m! T ! 1/r ∼ mD

m! 1/r ! T ! mD ! E
• A good showcase of the EFT approach with 

the interplay of different scales

• We don’t consider the (suppressed) 
magnetic mass effects



m

mv ∼ 1
r

mv2 ∼ E

T

gT ∼ mD

ΛQCD

Mass scale
• QCD ⇒NRQCD

• We only consider the leading 
term        , corresponding to 
treating heavy quarks/antiquarks 
as static sources

• So far everything goes exactly as 
in the T=0 case

(
1
m

)0



Mass scale
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Soft scale

• NRQCD ⇒pNRQCD

• Integrating out the soft modes 
causes the singlet and octet 
potentials to appear
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T

gT ∼ mD

ΛQCD



Soft scale
+ + ...
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1
E − p2/m− V (r)
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The static potentialm
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The temperature
• First thermal corrections to the 

potential

• Corrections appear as loops in 
the effective theory

• Real and imaginary parts, 
contributing to energy and 
decay width observables
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V

Im δVs(r) = −N2
c CF

6
α3

s T ∼ g2r2T 3 ×
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Re δVs(r) =
π

9
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s r T 2 ∼ g2r2T 3 × V

T

V V

• The imaginary part correspond to 
singlet-to-octet thermal breakup
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The Debye Mass
• After having integrated out the 

temperature Hard Thermal 
Loop contributions have to be 
resummed, giving the 
longitudinal gluon propagator a 
mass and and imaginary part

• This contribution cancels the 
divergence in the previous 
expression
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HTL
Propagator

Re δVs(r) ∼ g2r2T 3 ×
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• The real part is suppressed but 
the imaginary part indeed cancels 
the divergence
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• The imaginary part of the static potential gives the 
decay width , which has two origins: singlet-to-
octet breakup and Landau damping. The former is 
suppressed by           vs the latter 

Summing up
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Conclusions
• We have shown how to employ the EFT 

approach to deal with a problem characterized 
by various separated energy scales

• We have obtained new result in the 
intermediate regime                                   
which could be relevant for LHC 
phenomenology

• We have introduced a new mechanism of 
thermal decay

m! 1/r ! T ! mD ! E


