Light Hadron Masses from First Principles

Stefan Krieg

<s.krieg@fz-juelich.de>

Budapest-Marseille-Wuppertal collaboration: S. Durr, Z. Fodor, J. Frison, C. Hoelbling, S.D. Katz, T. Kurth, L. Lellouch, Th. Lippert, K.K. Szabo, G. Vulvert

5th Vienna Central European Seminar on Particle Physics and Quantum Field Theory

Outline

- Reminder: QCD
- Reminder: LQCD
- Why the spectrum?
- 2
 - Simulation details
 - Fundamentals
 - Action and simulation algorithm
 - Calculating masses

3 Data analysis

- Go to physical guark masses
- Go to infinite volume
- Go to the continuum
- Combined data analysis

Outline

Introduction

- Reminder: QCD
- Reminder: LQCD
- Why the spectrum?

2 Simulation details

- Fundamentals
- Action and simulation algorithm
- Calculating masses

3 Data analysis

- Go to physical quark masses
- Go to infinite volume
- Go to the continuum
- Combined data analysis

Simulation details

Data analysis

Final result

Reminder: QCD

Important properties of QCD

QCD has remarkable properties:

- Confinement (conformal anomaly)
- Dynamical chiral symmetry breaking of SU_A(N_f) (⟨ψ_iψ_i⟩ ≠ 0)
- Chiral anomaly breaking of U_A(1) (δDψ_iDψ ≠ 0)
- Asymptotic freedom

$$\beta(\alpha_s) = \mu \frac{\partial \alpha_s(\mu)}{\partial \mu} = \frac{\alpha_s^2}{\pi} b_1 + \frac{\alpha_s^3}{\pi^2} b_2 + \dots$$
$$b_1 = -\left[\frac{11}{6}C_A - \frac{2}{3}\sum_R n_R T_R\right]$$

The Lagrangian of Quantum Chromodynamics (QCD)

$$\mathcal{L}_{E}^{QCD} = \frac{1}{2g^{2}} \operatorname{Tr} \left[G_{\mu\nu} G_{\mu\nu} \right] - \sum_{i=1}^{N_{t}} \overline{\psi}_{i} \left(\not{D} - m_{i} \right) \psi_{i}$$
$$+ i\theta \frac{1}{16\pi^{2}g^{2}} \operatorname{Tr} \left[G_{\mu\nu} G_{\rho\sigma} \epsilon_{\mu\nu\rho\sigma} \right].$$

contains all possible (renormalizable) operators that are compatible with the defining symmetries of QCD:

- Poincaré symmetry
- SU(3) (color) gauge invariance
- global $SU_V(N_f) \times U_V(1) \times SU_A(N_f) \{ \times U_A(1) \}$ (massless case)
- if $\theta = 0$ C,P and T

Given the action, observables can be extracted from path-integral (PI) correlation functions

$$\begin{array}{ll} \langle \mathcal{O} \rangle_{QCD}^{F,G} &=& \int \mathcal{D}\overline{\psi} \mathcal{D}\psi \mathcal{D}A \, \mathcal{O}(\overline{\psi},\psi,A) \, \exp\left\{ i S^{QCD}(\overline{\psi},\psi,A) \right\} \\ &=& \int \mathcal{D}A\left(\prod_{i=1}^{N_{f}} \det[D(m_{i})] \right) \, \langle \mathcal{O}(A) \rangle^{F} \, \exp\left\{ i S_{G}^{QCD}(A) \right\} \end{array}$$

- The integration of the Grassmann-variables yields the fermionic determinant.
- After performing a Wick-rotation to imaginary time, the action transforms

$$iS^{QCD}
ightarrow -S^{QCD}_{E}$$

and becomes real (\Rightarrow LQCD simulations)

Simulation details

Data analysis

Final result

Reminder: LQCD

The Lattice and the classical Wilson gauge action

$$\mathcal{S}_{WG} = g_0^{-2} \sum_{x,\mu\nu} \left[\mathcal{N}_c - \Re \operatorname{Tr} \left[U_\mu(x) U_\nu(x+a\,\hat{\mu}) U_\mu^\dagger(x+a\,\hat{\nu}) U_
u^\dagger(x) \right] \right]$$

- Quarks live on the lattice points
- Gluons not only live on the links, they are the links

Introduction	Simulation details	Data analysis	Final result
0000000			
Reminder: LQCD			
Symmetries			

Discretization should preserve as many symmetries as possible.

It cannot preserve

- SO(4) (→ Poincaré) invariance, but the lattice variant: the cubic group W(4)
- Nielsen Ninomiya theorem: Fermion action cannot preserve translational invariance and chiral symmetry while being real, local and bilinear

Latter problem is usually solved by **explicitly breaking** chiral symmetry in some fashion.

Simulation details

Data analysis

Final result

Reminder: LQCD

The Wilson fermion action

Wilson solved doubling problem by adding a *continuum irrelevant* operator (the terms proportional to r)

$$S_{WF} = a^{4} \sum_{xy} \bar{\psi}(x) M_{Wxy} \psi(y)$$

$$M_{Wxy} = \delta_{x,y} - \kappa \sum_{\mu} \left[(r - \gamma_{\mu}) U_{\mu}(x) \delta_{x,y+a\hat{\mu}} + (r + \gamma_{\mu}) U_{\mu}^{\dagger}(x) \delta_{x,y-a\hat{\mu}} \right]$$

$$M_{W} \propto am_{0} - a\mathcal{D} + \mathcal{O}(a^{3}) + ra^{2}D^{2} + \mathcal{O}(a^{3})$$

In other words by explicitly breaking chiral symmetry :

$$(\gamma_5 M_W + M_W \gamma_5)_{xy} = \delta_{x,y} - r\kappa \sum_{\mu} \left[U_{\mu}(x) \delta_{x,y+a\hat{\mu}} + U^{\dagger}_{\mu}(x) \delta_{x,y-a\hat{\mu}} \right]$$

$$S_W(p) = \left[m_0 a + 4r - \sum_{\mu} \left(r \cos ap_{\mu} - i\gamma_{\mu} \sin ap_{\mu} \right) \right]$$

Problem: Additive quark mass renormalization, *critical slowing down*Improved actions & algorithms required (25 year effort by the field)

Simulation details

Data analysis

Final result

Why the spectrum?

Status

 Asymptotic freedom: good agreement between theory and experiment (perturbative methods)

- Good evidence in the non-perturbative domain (e.g. CP-PACS '07, $N_f=2+1$, 210MeV $\leq M_{\pi} \leq$ 730MeV, $a \simeq 0.087$ fm, $L \lesssim 2.8$ fm, $M_{\pi}L \simeq 2.9$)
- However, systematic errors not under control

Outline

Introduction

- Reminder: QCD
- Reminder: LQCD
- Why the spectrum?

2 Simulation details

- Fundamentals
- Action and simulation algorithm
- Calculating masses

3 Data analysis

- Go to physical quark masses
- Go to infinite volume
- Go to the continuum
- Combined data analysis

Simulation details

Data analysis

Final result

Fundamentals

Importance Sampling

 After Wick-rotation, the exponent of the Boltzmann-factor in the path-integral is positive

$$\exp\left\{iS^{QCD}
ight\}
ightarrow\exp\left\{-S^{QCD}_{E}
ight\}$$

- The path-integral is now equivalent to a partition sum of statistical mechanics
- The Boltzmann-weight can now be interpreted as probability
- The expectation value of an operator can thus be written

$$\langle \mathcal{O} \rangle_{F,G} = \sum_{i=0}^{\infty} \langle \mathcal{O}(A_i) \rangle_F,$$

if A_i has the probability $p \propto \exp\{-S_E^{QCD}(A_i)\}$ to appear in the ensemble of A's

Data analysis

Action and simulation algorithm

Simulation algorithm: Details

Action

- Clover tree level improved Wilson fermions
- Symanzik improved gauge action
- Stout links
- Algorithm
 - Rational HMC for strange quark
 - Mass preconditioning ("Hasenbusch trick")
 - Multi scale integration scheme ("Sexton-Weingarten")
 - Omelyan integrator ("non equidistant leap frog"), increasing integration precision
 - Mixed precision inverters

Simulation details

Data analysis

Final result

Action and simulation algorithm

Algorithm stability: absence of phase transitions

Lattices: $M_\pi pprox$ 240 - 440 MeV, a pprox 0.136 fm

Simulation details

Data analysis

Final result

Action and simulation algorithm

Simulation details

Data analysis

Final result

Action and simulation algorithm

Algorithm stability: distribution of $1/n_{CG}$

Lattice: $m_{\pi} =$ 190 MeV, a = 0.088 fm, 64 \times 48³ ($m_{\pi}L \ge$ 4)

Simulation details

Data analysis

Final result

Calculating masses

Extracting particle masses

Masses are extracted from the formula:

$$\begin{aligned} \langle P(t)|P(0)\rangle &= \langle P(0)|\exp\{-\mathcal{H}t\} |P(0)\rangle \\ &= \sum_{i} \frac{\langle P(0)|i\rangle \langle i|P(0)\rangle}{2E_{i}} \exp\{-E_{i}t\} \\ &\to \frac{\langle P(0)|0\rangle \langle 0|P(0)\rangle}{2E_{0}} \exp\{-E_{0}t\} + \mathcal{O}\left(\exp\{-E_{1}t\}\right) \\ &\xrightarrow{BC} const. \times \frac{\cosh}{\sinh} \left\{E_{0}t\right\} \end{aligned}$$

Here P will be the zero momentum projected operator

Simulation details

Data analysis

Final result

Calculating masses

Particle correlators

Simulation details

Data analysis

Outline

Introduction

- Reminder: QCD
- Reminder: LQCE
- Why the spectrum?

2 Simulation details

- Fundamentals
- Action and simulation algorithm
- Calculating masses

3 Data analysis

- Go to physical quark masses
- Go to infinite volume
- Go to the continuum
- Combined data analysis

Data analysis

Controlling all systematic errors

- Make sure it's QCD: Include *u*, *d* and *s* quarks int the simulation with an action, whose universality class is QCD.
- Go to physical quark masses: Use controlled interpolations and extrapolations of the results to physical *m*_{ud} and *m*_s
- Go to infinite volume: Use large volumes ($M_{\pi}L \gtrsim 4$) to guarantee small finite-size effects and at least one simulation at a significantly larger volume to confirm the smallness of these effects.
 - And treat the resonant states correctly.
- Go to the continuum: Use controlled extrapolations to the continuum limit, requiring that the calculations be performed at no less than three values of the lattice spacing.

Go to physical quark masses

Outline

- Reminder: QCD
- Reminder: LQCD
- Why the spectrum?
- 2 Simulation details
 - Fundamentals
 - Action and simulation algorithm
 - Calculating masses
- 3 Data analysis
 - Go to physical quark masses
 - Go to infinite volume
 - Go to the continuum
 - Combined data analysis

Simulation details

Data analysis

Go to physical quark masses

Quark mass dependence

Goal:

• Extra-/Interpolate M_X (baryon/vector meson mass) to physical point (M_{π}, M_K)

Method:

- Use M_{Ξ} or M_{Ω} to set the scale
- Variables to parametrize M_{π}^2 and M_K^2 dependence of M_X :
 - Use bare masses aM_y , $y \in \{X, \pi, K\}$ and a (bootstrapped)
 - Use dimensionless ratios $r_y := \frac{M_y}{M_{\pi/Q}}$ (cancellations)

We use both procedures →systematic error

Data analysis

Go to physical quark masses

Quark mass dependence (ctd.)

Method (ctd.):

• Parametrization: $M_X = M_X^{(0)} + \alpha M_\pi^2 + \beta M_K^2 + higher orders$

- Leading order sufficient for M_K^2 dependence
- We include higher order term in M_{π}^2
 - Next order χ PT (around $M_{\pi}^2 = 0$): $\propto M_{\pi}^3$
 - Taylor expansion (around $M_{\pi}^2 \neq 0$): $\propto M_{\pi}^4$

Both procedures fine \rightarrow systematic error No sensitivity to any order beyond these

- Vector mesons: higher orders not significant
- Baryons: higher orders significant
 - Restrict fit range to further estimate systematics:
 - Use full range, $M_{\pi} < 550, 450 \text{MeV}$

We use all 3 ranges \rightarrow systematic error

Simulation details

 Final result

Go to physical quark masses

Data set

Simulation details

Data analysis 0000●000000000

Go to physical quark masses

Chiral fit

Simulation details

Data analysis

Final result

Go to physical quark masses

Chiral fit using ratios

Go to infinite volume

Outline

Introduction

- Reminder: QCD
- Reminder: LQCD
- Why the spectrum?

2 Simulation details

- Fundamentals
- Action and simulation algorithm
- Calculating masses

3 Data analysis

Go to physical quark masses

Go to infinite volume

- Go to the continuum
- Combined data analysis

Data analysis

Go to infinite volume

Finite volume effects from virtual pions

Goal:

• Eliminate virtual pion finite V effects

Method:

- Best practice: use large V
 - We use $M_{\pi}L \gtrsim 4$ (and one point to study finite V)

• Effects are tiny and well described by $\frac{M_X(L) - M_X}{M_X} = c M_{\pi}^{1/2} L^{-3/2} e^{M_{\pi}L}$ Colangelo et. al., 2005

Data analysis ○○○○○○○●○○○○○

Go to infinite volume

Finite volume effects in resonances

Goal:

 Eliminate spectrum distortions from resonances mixing with scattering states

Method:

- Stay in region where resonance is ground state
 - Otherwise no sensitivity to resonance mass in ground state
- Systematic treatment Lüscher, 1985-1991
 - Conceptually satisfactory basis to study resonances
 - Coupling as parameter (related to width)
- Fit for coupling (assumed constant, related to width)
 - No sensitivity on width (compatible within large error)
 - Small but dominant FV correction for light resonances

Go to the continuum

Outline

Introduction

- Reminder: QCD
- Reminder: LQCD
- Why the spectrum?

2 Simulation details

- Fundamentals
- Action and simulation algorithm
- Calculating masses

3 Data analysis

- Go to physical quark masses
- Go to infinite volume

Go to the continuum

Combined data analysis

Simulation details

Data analysis

Go to the continuum

Continuum extrapolation

Goal:

• Eliminate discretization effects

Method:

- Formally in our action: $O(\alpha_s a)$ and $O(a^2)$
- But: discretization effects are tiny
 - Not possible to distinguish between O(a) and $O(a^2)$

 \rightarrow include both in systematic error

Combined data analysis

Outline

Introduction

- Reminder: QCD
- Reminder: LQCD
- Why the spectrum?

2 Simulation details

- Fundamentals
- Action and simulation algorithm
- Calculating masses

3 Data analysis

- Go to physical quark masses
- Go to infinite volume
- Go to the continuum
- Combined data analysis

Data analysis

Combined data analysis

Systematic uncertainties

Goal:

Accurately estimate total systematic error

Method:

- We account for all the above mentioned effects
- When there are a number of sensible ways to proceed, we take them: Complete analysis for each of
 - 18 fit range combinations
 - ratio/nonratio fits (r_X resp. M_X)
 - O(a) and O(a²) discretization terms
 - NLO $\chi \text{PT} M_{\pi}^3$ and Taylor M_{π}^4 chiral fit
 - 3 χ fit ranges for baryons: $M_{\pi} < 650/550/450$ MeV

resulting in 432 predictions for each hadron mass with each 2000 bootstrap samples for each Ξ and Ω scale setting

Data analysis

Combined data analysis

Systematic uncertainties (ctd.)

Method (ctd.):

- Weigh each of the 432 central values by fit quality Q
 - Median of this distribution \rightarrow final result
 - Central 68% →systematic error
- Statistical error from bootstrap of the medians

Outline

Introduction

- Reminder: QCD
- Reminder: LQCD
- Why the spectrum?

2 Simulation details

- Fundamentals
- Action and simulation algorithm
- Calculating masses

3 Data analysis

- Go to physical quark masses
- Go to infinite volume
- Go to the continuum
- Combined data analysis

Introdu	uction

Simulation details

Data analysis

Final result

Particle spectrum

BMW-collaboration, Science **322** (2008), 1224

