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Reminder: QCD

Important properties of QCD

QCD has remarkable properties:

Confinement (conformal anomaly)
Dynamical chiral symmetry breaking of
SUA(Nf ) (

〈
ψiψi

〉
6= 0)

Chiral anomaly breaking of UA(1)
(δDψiDψ 6= 0)

Asymptotic freedom

β(αs) = µ
∂αs(µ)

∂µ
=
α2

s

π
b1 +

α3
s

π2 b2 + ...

b1 = −
[

11
6

CA −
2
3

∑
R

nRTR

]
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Reminder: QCD

Definition of QCD

The Lagrangian of Quantum Chromodynamics (QCD)

LQCD
E =

1
2g2 Tr [Gµν Gµν ]−

Nf∑
i=1

ψi
(
/D −mi

)
ψi

+iθ
1

16π2g2 Tr [Gµν Gρσεµνρσ] .

contains all possible (renormalizable) operators that are compatible
with the defining symmetries of QCD:

Poincaré symmetry
SU(3) (color) gauge invariance
global SUV (Nf )×UV (1)×SUA(Nf ){×UA(1)} (massless case)
if θ = 0 C,P and T
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Reminder: QCD

Definition of QCD

Given the action, observables can be extracted from path-integral (PI)
correlation functions

〈O〉F ,GQCD =

∫
DψDψDAO(ψ,ψ,A) exp

{
iSQCD(ψ,ψ,A)

}
=

∫
DA

(∏Nf
i=1 det[D(mi )]

)
〈O(A)〉F exp

{
iSQCD

G (A)
}

The integration of the Grassmann-variables yields the fermionic
determinant.
After performing a Wick-rotation to imaginary time, the action
transforms

iSQCD → −SQCD
E

and becomes real (⇒ LQCD simulations)
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Reminder: LQCD

The Lattice and the classical Wilson gauge action

SWG = g−2
0
∑

x,µν

[
Nc −<Tr

[
Uµ(x)Uν(x + a µ̂)U†µ(x + a ν̂)U†ν(x)

] ]

Uµ(x) = exp{iaτaAa
µ(x)}

Uµν(x) = 1 + i(a2Gµν +O(a3))

−1
2

a4G2
µν +O(a5)

SWG =
1

2g2
0

∑
x

Tr [GµνGµν ] +O(a2)

Quarks live on
the lattice points

Gluons not only live on the links, they are
the links
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Reminder: LQCD

Symmetries

Discretization should preserve as many symmetries as possible.

It cannot preserve
SO(4) (→ Poincaré)
invariance, but the lattice
variant: the cubic group W(4)
Nielsen Ninomiya theorem:
Fermion action cannot
preserve translational
invariance and chiral
symmetry while being real,
local and bilinear -1

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-3 -2 -1  0  1  2  3
Latter problem is usually solved by explicitly breaking chiral
symmetry in some fashion.
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Reminder: LQCD

The Wilson fermion action

Wilson solved doubling problem by adding a continuum irrelevant
operator (the terms proportional to r )

SWF = a4
∑

xy

ψ̄(x)MWxyψ(y)

MWxy = δx,y − κ
∑
µ

[
(r − γµ)Uµ(x)δx,y+aµ̂ + (r + γµ)U†µ(x)δx,y−aµ̂

]
MW ∝ am0 − a /D +O(a3) + ra2D2 +O(a3)

In other words by explicitly breaking chiral symmetry :

(γ5MW + MWγ5)xy = δx,y − rκ
∑
µ

[
Uµ(x)δx,y+aµ̂ + U†µ(x)δx,y−aµ̂

]
SW (p) =

[
m0a + 4r −

∑
µ

(r cos apµ − iγµ sin apµ)
]

Problem: Additive quark mass renormalization, critical slowing down
Improved actions & algorithms required (25 year effort by the field)
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Why the spectrum?

Status

Asymptotic freedom: good
agreement between theory
and experiment (perturbative
methods)

0.5
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ρ
K

*
φ

N

Λ
Σ

Ξ
∆

Σ∗
Ξ∗

Ω
mass[GeV]

Ω - input
φ - input

Good evidence in the
non-perturbative domain
(e.g. CP-PACS ’07,
Nf =2 + 1,
210MeV ≤ Mπ ≤ 730MeV,
a ' 0.087 fm, L <∼ 2.8 fm,
MπL ' 2.9)
However, systematic errors
not under control
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Fundamentals

Importance Sampling

After Wick-rotation, the exponent of the Boltzmann-factor in the
path-integral is positive

exp
{

iSQCD
}
→ exp

{
−SQCD

E

}
The path-integral is now equivalent to a partition sum of
statistical mechanics
The Boltzmann-weight can now be interpreted as probability
The expectation value of an operator can thus be written

〈O〉F ,G =
∞∑
i=0

〈O(Ai )〉F ,

if Ai has the probability p ∝ exp{−SQCD
E (Ai )} to appear in the

ensemble of A’s
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Action and simulation algorithm

Simulation algorithm: Details

Action
Clover tree level improved Wilson fermions
Symanzik improved gauge action
Stout links

Algorithm
Rational HMC for strange quark
Mass preconditioning (“Hasenbusch trick”)
Multi scale integration scheme (“Sexton-Weingarten”)
Omelyan integrator (“non equidistant leap frog”), increasing
integration precision
Mixed precision inverters
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Action and simulation algorithm

Algorithm stability: absence of phase transitions
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Lattices: Mπ ≈ 240− 440 MeV, a ≈ 0.136 fm
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Action and simulation algorithm

λ−1
min distribution
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Action and simulation algorithm

Algorithm stability: distribution of 1/nCG
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Lattice: mπ = 190 MeV, a = 0.088 fm, 64× 483 (mπL ≥ 4)
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Calculating masses

Extracting particle masses

Masses are extracted from the formula:

〈P(t)|P(0)〉 = 〈P(0)| exp{−Ht} |P(0)〉

=
∑

i

〈P(0)|i〉 〈i |P(0)〉
2Ei

exp{−Ei t}

→ 〈P(0)|0〉 〈0|P(0)〉
2E0

exp{−E0t}+O (exp{−E1t})

BC→ const .× cosh
sinh

{
E0t
}

Here P will be the zero momentum projected operator
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Calculating masses

Particle correlators
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Lattice: mπ = 190 MeV, a = 0.088 fm, 64× 483 (mπL ≥ 4)
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Controlling all systematic errors

Make sure it’s QCD: Include u, d and s quarks int the simulation
with an action, whose universality class is QCD.
Go to physical quark masses: Use controlled interpolations and
extrapolations of the results to physical mud and ms

Go to infinite volume: Use large volumes (MπL >∼ 4) to guarantee
small finite-size effects and at least one simulation at a
significantly larger volume to confirm the smallness of these
effects.

And treat the resonant states correctly.
Go to the continuum: Use controlled extrapolations to the
continuum limit, requiring that the calculations be performed at
no less than three values of the lattice spacing.

Stefan Krieg Light Hadron Masses from First Principles



Introduction Simulation details Data analysis Final result

Go to physical quark masses
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Go to physical quark masses

Quark mass dependence

Goal:
Extra-/Interpolate MX (baryon/vector meson mass) to physical
point (Mπ, MK )

Method:
Use MΞ or MΩ to set the scale
Variables to parametrize M2

π and M2
K dependence of MX :

Use bare masses aMy , y ∈ {X , π,K} and a (bootstrapped)
Use dimensionless ratios ry :=

My
MΞ/Ω

(cancellations)

We use both procedures→systematic error
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Go to physical quark masses

Quark mass dependence (ctd.)

Method (ctd.):

Parametrization: MX = M(0)
x + αM2

π + βM2
K + higher orders

Leading order sufficient for M2
K dependence

We include higher order term in M2
π

Next order χPT (around M2
π = 0): ∝ M3

π

Taylor expansion (around M2
π 6= 0): ∝ M4

π

Both procedures fine→systematic error
No sensitivity to any order beyond these

Vector mesons: higher orders not significant
Baryons: higher orders significant

Restrict fit range to further estimate systematics:
Use full range, Mπ < 550, 450MeV

We use all 3 ranges→systematic error
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Go to physical quark masses

Data set
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Go to physical quark masses

Chiral fit
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Go to physical quark masses

Chiral fit using ratios
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Go to infinite volume
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Go to infinite volume

Finite volume effects from virtual pions

Goal:
Eliminate virtual pion finite V effects

Method:
Best practice: use large V

We use MπL & 4 (and one point to study finite V )
Effects are tiny and well described by MX (L)−MX

MX
= cM1/2

π L−3/2eMπL

Colangelo et. al., 2005

12 16 20 24 28 32 36
L/a

0.21

0.215

0.22

0.225

a
M
p

c
1
+ c

2
e

-Mp L
-3/2

  fit
 L

Colangelo et. al. 2005
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MpL=4 Nucleon
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Go to infinite volume

Finite volume effects in resonances

Goal:
Eliminate spectrum distortions from resonances mixing with
scattering states

Method:
Stay in region where resonance is ground state

Otherwise no sensitivity to resonance mass in ground state

Systematic treatment Lüscher, 1985-1991
Conceptually satisfactory basis to study resonances
Coupling as parameter (related to width)

Fit for coupling (assumed constant, related to width)
No sensitivity on width (compatible within large error)
Small but dominant FV correction for light resonances
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Go to the continuum
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Go to the continuum

Continuum extrapolation

Goal:
Eliminate discretization effects

Method:
Formally in our action: O(αsa) and O(a2)

But: discretization effects are tiny
Not possible to distinguish between O(a) and O(a2)

→include both in systematic error
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Combined data analysis
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Combined data analysis

Systematic uncertainties

Goal:
Accurately estimate total systematic error

Method:
We account for all the above mentioned effects
When there are a number of sensible ways to proceed, we take
them: Complete analysis for each of

18 fit range combinations
ratio/nonratio fits (rX resp. MX )
O(a) and O(a2) discretization terms
NLO χPT M3

π and Taylor M4
π chiral fit

3 χ fit ranges for baryons: Mπ < 650/550/450 MeV

resulting in 432 predictions for each hadron mass with each 2000
bootstrap samples for each Ξ and Ω scale setting

Stefan Krieg Light Hadron Masses from First Principles



Introduction Simulation details Data analysis Final result

Combined data analysis

Systematic uncertainties (ctd.)

Method (ctd.):
Weigh each of the 432 central values by fit quality Q

Median of this distribution→final result
Central 68%→systematic error

Statistical error from bootstrap of the medians
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Particle spectrum BMW-collaboration, Science 322 (2008), 1224
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