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Applications of tadpoles

What has been done so far at four loops? (before 2008)

Master integrals for QED-like single-scale tadpoles
[Schröder, Vuorinen (2005); Faisst, Tentyukov, Sturm (2006)]

Decoupling relations for αs

[Chetyrkin, Kühn, Sturm; Schröder, Steinhauser (2005)]

First low energy moment of the vacuum polarization function
[Chetyrkin, Kühn, Sturm; Boughezal, Czakon, Schutzmeier (2006)]

determination of mc and mb (e+e− → hadrons or lattice data)
determination of αs (lattice data)

Master integrals for the ρ parameter
[Faisst, PM, Sturm; Boughezal, Czakon (2006)]

QCD corrections to the ρ parameter
[Chetyrkin, Kühn, PM, Sturm; Boughezal, Czakon (2006)]

enters prediction of W mass → upper bound on SM Higgs mass

Applications in hot QCD



Applications of four-loop tadpoles Reduction techniques Results

Example: Quark mass determination from sum rules

The vacuum polarization: correlator of electromagnetic currents jµ

(qµqν − q2gµν)Π(q2) = i
∫

dx eiqx〈0|Tjµ(x)jν(0)|0〉 =
µ ν

QCD

is related to hadron production R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)

by a dispersion relation Π(q2) − Π(0) =
q2

12π2

∫

ds
R(s)

s(s − q2)
.

Compare low q2 expansion

Mexp
n =

∫

ds
R(s)

sn+1 and Π(q2) =
3Q2

q

16π2

∑

n

Cn

(

q2

4m2

)n

⇒ m =
1
2

(

9Q2
qCn

4Mexp
n

)
1

2n
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Features of the sum rule approach

J/ψ ψ ,
▲  BES (2001)
❍   MD-1
▼  CLEO
■   BES (2006)
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Reduces the number of scales {q2, m2} → {m2}
(light quarks are treated as massless)
→ makes four loop calculations possible

Long distance effects average out for small n

larger n suppresses continuum region

reduces influence of experimental error

growing long distance effects

increasingly difficult to calculate
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Status of the vacuum polarization function

first 8 moments at O(α2
s)

[Chetyrkin, Kühn, Steinhauser (1996)]

moments up to n = 30 at O(α2
s)

[Boughezal, Czakon, Schutzmeier (2006); Maier, PM, Marquard, (2007)]

first physical moment at O(α3
s)

[Chetyrkin, Kühn, Sturm; Boughezal, Czakon, Schutzmeier (2006)]

all orders result for n2
l at O(α3

s)
[Grozin, Sturm (2005)]

moments up to n = 30 for n2
f at O(α3

s)
[Czakon, Schutzmeier (2007)]

new: second physical moment at O(α3
s)

[Maier, PM, Marquard (2008)]

third moment at O(α3
s) is under way!
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Reduction techniques: Integration-by-Parts

Current multi-loop calculations require up to O(106) Feynman integrals

→ express integrals as linear combinations of O(10) master integrals

Basic ingredient: Integration-by-Parts relations
Basic ingredient: [Chetyrkin, Tkachov (1981)]

0 =

∫

dd k1 . . . ddkℓ

∂

∂kµ
i

{kµ
j , pµ

j }

Da1
1 Da2

2 . . . Dan
n

provide relations between integrals
with different propagator powers {a1, . . . , an}

Usage: generate and solve system of equations
Usage: or construct recursion relations
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Reduction techniques: Laporta algorithm

Standard method to solve IBPs: Laporta algorithm

define ordering of integrals

generate IBPs

solve systematically for the most difficult integrals
by a Gauss elimination-like algorithm

Generally very powerful, but:

system of equations overdetermined by O(3 − 5)

complicated intermediate expressions

bad combinatorics for large propagator powers;
most of the solved integrals are not needed in the calculation
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Reduction techniques: Groebner bases

Systematic approach to construct recursion relations:

Groebner bases

Consider an algebra of operators that shift propagator powers

Write IBPs as elements of this algebra

IBPs generate an ideal of relations which are satisfied by
Feynman integrals

Reduce integrals modulo a basis of the ideal

choose the basis in such a way that the remainder is unique
= Groebner basis

remainder is the reduction formula

Calculates exactly what is needed. Size of intermediate expressions
is limited by the number of master integrals.
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Reduction techniques: s-bases

How to find a Groebner basis? Buchberger algorithm

guaranteed to construct a basis,
but may need unlimited resources (CPU, memory)

practically doesn’t succeed even in simple cases

Improvement: s-bases

modified Buchberger algorithm [Smirnov, Smirnov]

much faster, but not guaranteed to stop
(strongly dependent on ordering)

doesn’t succeed in all sectors
→ still needs Laporta part

public implementation available: FIRE [A. V. Smirnov]
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Reduction of self energy subgraphs

Integrals with self energy insertions have largest propagator powers.

Idea: reduce subgraphs

= 2-loop SE × 1-loop SE × connecting propagator
× cross talking scalar products

Use tensor reduction to remove cross talk
and Laporta algorithm to reduce self energies.

Construct IBPs where the self energies are treated as objects
depending only on their external momentum.

→ remaining integral is effectively 1-loop!

Very efficient, but limited to special topologies
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Combined approaches

Reduction techniques have complementary strengths:

Integrals with highest propagator powers are most difficult for
Laporta algorithm (because of combinatorics).

s-basis algorithm happens to fail preferably in lowest sectors.

can be easily done by self energy reduction
→ use as plugin for FIRE

Major part is done by Laporta algorithm,
keep the system of IBPs as small as possible
and calculate the rest with FIRE and self energy reduction.
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Second moment of the photon polarization
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Impact of recent progess

Reconstruction full q2 dependence of Π(q2) via Padé approximations
[Hoang, Mateu, Zebarjad (2008)]

aims at a contour improved analysis for quark mass determinations

Calculate moments on the lattice (pseudoscalar current correlator)
→ αs, mc [HPQCD collaboration & Karlsruhe]

αs(MZ ) = 0.1174(12) mc(3 GeV) = 0.986(10) GeV
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Quark masses from R(s)

n mb(10 GeV) exp αs µ total δC̄(30)
n mb(mb)

1 3.593 0.020 0.007 0.002 0.021 — 4.149
2 3.607 0.014 0.012 0.003 0.019 — 4.162
3 3.618 0.010 0.014 0.006 0.019 0.008 4.173
4 3.631 0.008 0.015 0.021 0.027 0.012 4.185

n = 1:

mc(3 GeV) = 0.986(13) GeV don’t use n = 1 for mb!

n = 2: without and with C(3)
2

mc(3 GeV) = 0.979(22) GeV mb(10 GeV) = 3.609(25) GeV

mc(3 GeV) = 0.976(16) GeV mb(10 GeV) = 3.607(19) GeV

Most precise mb determination available
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Conclusion

Recent progress in reduction of Feynman integrals,
inspired by Groebner basis

Combining different techniques allows for calculations,
where Laporta alone fails

Second moment of current correlators calculated,
third moment will be published soon

Used for precise determinations of mc , mb and αs
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