

With Automation towards the Four b-Jet Rate at NLO in QCD

5th Vienna Central European Seminar on Particle Physics and QFT, 28-30/11/2008

Overview

Motivation

The GOLEM Approach

Summary

Results for $q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$

Conclusion

The Missing Link in the Standard Model (SM)

- SM requires symmetry breaking for mass generation \Rightarrow Higgs boson
- SM Higgs will be found at LHC
- SM does not explain everything
- Dark matter
- Unification of forces
- Hierarchy of masses and mixing angles
- Gravity
- Need to look at extensions

- Promissing candidate: Supersymmetry
- Testable at LHC (if $\approx 1 \mathrm{TeV}$)
- Solves some (most?) problems

The Missing Link in the Standard Model (SM)

NIRHEF

- SM requires symmetry breaking for mass generation \Rightarrow Higgs boson
- SM Higgs will be found at LHC

The Missing Link in the Standard Model (SM)

NIREF

- SM requires symmetry breaking for mass generation \Rightarrow Higgs boson
- SM Higgs will be found at LHC - if it exists

The Missing Link in the Standard Model (SM)

- SM requires symmetry breaking for mass generation \Rightarrow Higgs boson
- SM Higgs will be found at LHC - if it exists
- SM does not explain everything
- Dark matter
- Unification of forces
- Hierarchy of masses and mixing angles
- Gravity

Need to look at extensions
Promissing candidate: Supersymmetry

- Testable at LHC (if $\approx 1 \mathrm{TeV}$)
- Solves some (most?) problems

The Missing Link in the Standard Model (SM)

- SM requires symmetry breaking for mass generation \Rightarrow Higgs boson
- SM Higgs will be found at LHC - if it exists
- SM does not explain everything
- Dark matter
- Unification of forces
- Hierarchy of masses and mixing angles
- Gravity
- ..
- Need to look at extensions
- Promissing candidate: Supersymmetry - Testable at LHC (if $\approx 1 \mathrm{TeV}$)
- Solves some (most?) problems

The Missing Link in the Standard Model (SM)

- SM requires symmetry breaking for mass generation \Rightarrow Higgs boson
- SM Higgs will be found at LHC - if it exists
- SM does not explain everything
- Dark matter
- Unification of forces
- Hierarchy of masses and mixing angles
- Gravity
- ...
- Need to look at extensions
- Promissing candidate: Supersymmetry
- Testable at LHC (if $\approx 1 \mathrm{TeV}$)
- Solves some (most?) problems

Standard particles

SUSY particles

MSSM Higgs at large $\tan \beta$

If the MSSM is realized in nature: Higgs sector $\left(h^{0}, H^{0}, H^{ \pm}, A\right)$

- no a priori knowledge of MSSM parameters $\left(m_{A}, \tan \beta\right)$
- still want to find a Higgs boson
- for large values of $\tan \beta$:

[Dai, Gunion, Vega]

MSSM Higgs at large $\tan \beta$

If the MSSM is realized in nature: Higgs sector $\left(h^{0}, H^{0}, H^{ \pm}, A\right)$

- no a priori knowledge of MSSM parameters $\left(m_{A}, \tan \beta\right)$
- still want to find a Higgs boson
- for large values of $\tan \beta$:
- $H^{0} \rightarrow b \bar{b}$ important channel
- $p p \rightarrow b \bar{b} b \bar{b}$ irreducible background
- precise knowledge of signal and background crucial
- In other parameter regions
$H^{0} \rightarrow h^{0} h^{0} \rightarrow b \bar{b} b \bar{b}$
[Dai, Gunion, Vega]

Is NLO really necessary?

- "Traditional" approach:
- use LO + parton shower for the shape and
- fix normalisation with experimental data.
- not always enough:
- Therefore: For LHC many processes needed at \geq NLO

- Automated tools as for LO desirable.

Is NLO really necessary?

- "Traditional" approach:
- use LO + parton shower for the shape and
- fix normalisation with experimental data.
- not always enough:
- In QCD: large renomalisation scale dependency at LO

Is NLO really necessary?

- "Traditional" approach:
- use LO + parton shower for the shape and
- fix normalisation with experimental data.
- not always enough:
- In QCD: large renomalisation scale dependency at LO
- LO and NLO may differ in shape \Rightarrow no global K-factor

[Binoth, Guillet, Pilon, Werlen]

Is NLO really necessary?

- "Traditional" approach:
- use LO + parton shower for the shape and
- fix normalisation with experimental data.
- not always enough:
- In QCD: large renomalisation scale dependency at LO
- LO and NLO may differ in shape \Rightarrow no global K-factor
- Therefore: For LHC many processes needed at \geq NLO.

After after first LHC data:

Is NLO really necessary?

- "Traditional" approach:
- use LO + parton shower for the shape and
- fix normalisation with experimental data.
- not always enough:
- In QCD: large renomalisation scale dependency at LO
- LO and NLO may differ in shape \Rightarrow no global K-factor
- Therefore: For LHC many processes needed at \geq NLO.
- Automated tools as for LO desirable.

After after first LHC data: more to come

GOLEM:

General One Loop Evaluator for Matrix Elements

	LO	NLO
Method	standard tool	hand crafted code
Time scale	hours - days	months - years

The (main) problems with NLO calculations:

- bottle neck: loop diagrams
- complexity: \#diagrams \times \#terms per diagram
\rightarrow tensor integrals, cancellations \leftrightarrow numerical (in-)stability
- computational challenge: memory and run time

GOLEM:

General One Loop Evaluator for Matrix Elements

	LO	NLO
Method	standard tool	hand crafted code
Time scale	hours - days	months - years

The (main) problems with NLO calculations:

- bottle neck: loop diagrams
- complexity: \#diagrams \times \#terms per diagram
- tensor integrals, cancellations \leftrightarrow numerical (in-)stability
\rightarrow computational challenge: memory and run time

GOLEM:

General One Loop Evaluator for Matrix Elements

	LO	NLO
Method	standard tool	hand crafted code
Time scale	hours - days	months - years

The (main) problems with NLO calculations:

- bottle neck: loop diagrams
- complexity: \#diagrams \times \#terms per diagram
- tensor integrals, cancellations \leftrightarrow numerical (in-)stability
\square

GOLEM:

General One Loop Evaluator for Matrix Elements

The (main) problems with NLO calculations:

- bottle neck: loop diagrams
- complexity: \#diagrams \times \#terms per diagram
- tensor integrals, cancellations \leftrightarrow numerical (in-)stability
- computational challenge: memory and run time

The GOLEM and the Tensor Integrals

Problem: solve $\int \frac{\mathrm{d}^{n} k}{i \pi^{n / 2}} \frac{q_{a_{1}}^{\mu_{1}} \cdots q_{a_{r}}^{\mu_{r}}}{\prod_{j=1}^{N}\left(q_{j}^{2}-m_{j}^{2}+i \delta\right)}, \quad q_{a}^{\mu}=k^{\mu}+r_{a}^{\mu}$

- tensor reduction separates tensor structure from integrals
- usually: expression in terms of scalar integrals $I_{N(}^{n}()$ $\Rightarrow(\text { Gram determinants })^{-1}$
- in GOLEM: allow for certain numerators $I_{N}^{n}\left(I_{1}, \ldots, I_{p}\right)$
- switch between numerical evaluation and algebraic reduction

Implementation: golem95 - publicly available

The GOLEM and the Tensor Integrals

Problem: solve $\int \frac{\mathrm{d}^{n} k}{i \pi^{n / 2}} \frac{q_{a 1}^{\mu_{1}} \cdots q_{a r}^{\mu_{r}}}{\prod_{j=1}^{N}\left(q_{j}^{2}-m_{j}^{2}+i \delta\right)}, \quad q_{a}^{\mu}=k^{\mu}+r_{a}^{\mu}$

- tensor reduction separates tensor structure from integrals

[^0]
The GOLEM and the Tensor Integrals

Problem: solve $\int \frac{\mathrm{d}^{n} k}{i \pi^{n / 2}} \frac{q_{a 1}^{\mu_{1}} \cdots q_{a r}^{\mu_{r}}}{\prod_{j=1}^{N}\left(q_{j}^{2}-m_{j}^{2}+i \delta\right)}, \quad q_{a}^{\mu}=k^{\mu}+r_{a}^{\mu}$

- tensor reduction separates tensor structure from integrals
- usually: expression in terms of scalar integrals $I_{N}^{n}()$ $\Rightarrow(\text { Gram determinants })^{-1}$
- in GOLEM: allow for certain numerators $I_{N}^{n}\left(I_{1}, \ldots, I_{p}\right)$
- switch between numerical evaluation and algebraic reduction
$I_{N}^{n}\left(I_{1}, \ldots, I_{p}\right)=(-1)^{N} \Gamma\left(N-\frac{n}{2}\right) \int \delta\left(1-\sum_{i=1}^{N} z_{i}\right) \frac{z_{1} \cdots z I_{\rho}}{\left(-\frac{1}{2} z^{\top} S z-i \delta\right)^{N-n / 2}} \mathrm{~d}^{N} z$
Implementation:

The GOLEM and the Tensor Integrals

Problem: solve $\int \frac{\mathrm{d}^{n} k}{i \pi^{n / 2}} \frac{q_{a 1}^{\mu_{1}} \cdots q_{a r}^{\mu_{r}}}{\prod_{j=1}^{N}\left(q_{j}^{2}-m_{j}^{2}+i \delta\right)}, \quad q_{a}^{\mu}=k^{\mu}+r_{a}^{\mu}$

- tensor reduction separates tensor structure from integrals
- usually: expression in terms of scalar integrals $I_{N}^{n}()$ $\Rightarrow(\text { Gram determinants) })^{-1}$
- in GOLEM: allow for certain numerators $I_{N}^{n}\left(I_{1}, \ldots, I_{p}\right)$
- switch between numerical evaluation and algebraic reduction $I_{N}^{n}\left(I_{1}, \ldots, I_{p}\right)=(-1)^{N} \Gamma\left(N-\frac{n}{2}\right) \int \delta\left(1-\sum_{i=1}^{N} z_{i}\right) \frac{z_{1} \cdots I_{p}}{\left(-\frac{1}{2} z^{\top} S z-i \delta\right)^{N-n / 2}} \mathrm{~d}^{N} z$
Implementation: golem95 - publicly available

The GOLEM and the Tensor Integrals

Problem: solve $\int \frac{\mathrm{d}^{n} k}{i \pi^{n / 2}} \frac{q_{a 1}^{\mu_{1}} \cdots q_{a r}^{\mu_{r}}}{\prod_{j=1}^{N}\left(q_{j}^{2}-m_{j}^{2}+i \delta\right)}, \quad q_{a}^{\mu}=k^{\mu}+r_{a}^{\mu}$

- tensor reduction separates tensor structure from integrals
- usually: expression in terms of scalar integrals $I_{N}^{n}()$ $\Rightarrow(\text { Gram determinants) })^{-1}$
- in GOLEM: allow for certain numerators $I_{N}^{n}\left(I_{1}, \ldots, I_{p}\right)$
- switch between numerical evaluation and algebraic reduction $I_{N}^{n}\left(I_{1}, \ldots, I_{p}\right)=(-1)^{N} \Gamma\left(N-\frac{n}{2}\right) \int \delta\left(1-\sum_{i=1}^{N} z_{i}\right) \frac{z_{1} \cdots l_{l_{p}}}{\left(-\frac{1}{2} z^{\top} S z-i \delta\right)^{N-n / 2}} \mathrm{~d}^{N} z_{z}$
Implementation: golem95 - publicly available [arxiv:0810.0992]

GOLEM: Preliminary Setup

Phase Space Integration of One-Loop Amplitudes, Nilitile

- at LO: adaptive MC integration over phase space
- at NLO: adaption can become unstable in presence of integrable singularities.
- alternative: adapt to LO matrix element but integrate one-loop amplitude
- in practice: reweighting of unweighted LO events:

$$
\langle O\rangle_{\text {one-loop }}=\frac{\sigma_{\text {LO }}}{|U|} \sum_{e \in U} O(e) \frac{\mathrm{d} \sigma_{\text {one-loop }}(e)}{\mathrm{d} \sigma_{\text {LO }}(e)}
$$

- corresponds to importance sampling with

Phase Space Integration of One-Loop Amplitudes

- at LO: adaptive MC integration over phase space
- at NLO: adaption can become unstable in presence of integrable singularities.
- alternative: adapt to LO matrix element but integrate one-loop amplitude
- in practice: reweighting of unweighted LO events:

- corresponds to importance sampling with

Phase Space Integration of One-Loop Amplitudes

- at LO: adaptive MC integration over phase space
- at NLO: adaption can become unstable in presence of integrable singularities.
- alternative: adapt to LO matrix element but integrate one-loop amplitude
- in practice: reweighting of unweighted LO events:

- corresponds to importance sampling with

Phase Space Integration of One-Loop Amplitudes

- at LO: adaptive MC integration over phase space
- at NLO: adaption can become unstable in presence of integrable singularities.
- alternative: adapt to LO matrix element but integrate one-loop amplitude
- in practice: reweighting of unweighted LO events:

$$
\langle O\rangle_{\text {one-loop }}=\frac{\sigma_{\mathrm{LO}}}{|U|} \sum_{e \in U} O(e) \frac{\mathrm{d} \sigma_{\text {one-loop }}(e)}{\mathrm{d} \sigma_{\mathrm{LO}}(e)}
$$

- corresponds to importance sampling with

Phase Space Integration of One-Loop Amplitudes

- at LO: adaptive MC integration over phase space
- at NLO: adaption can become unstable in presence of integrable singularities.
- alternative: adapt to LO matrix element but integrate one-loop amplitude
- in practice: reweighting of unweighted LO events:

$$
\langle O\rangle_{\text {one-loop }}=\frac{\sigma_{\text {LO }}}{|U|} \sum_{e \in U} O(e) \frac{\mathrm{d} \sigma_{\text {one-loop }}(e)}{\mathrm{d} \sigma_{\text {LO }}(e)}
$$

- corresponds to importance sampling with

$$
p(e) \propto \frac{1}{\sigma_{\mathrm{LO}}} \frac{\mathrm{~d} \sigma_{\mathrm{LO}}(e)}{\mathrm{d} \Phi^{(N)}}
$$

Summary I: The GOLEM Project

- GOLEM is
- an algorithm for the reduction of tensor integrals plus its implementation (golem95)
- an algorithm for the automatic algebraic simplification and numerical evaluation of one-loop matrix elements plus its implementation (under development)
- Work in progress:
- building a reliable, general tool (based on existing frameworks)
- extending golem95 to massive propagators
- doing phenomenology, e.g. $p p \rightarrow b \bar{b} b \bar{b}$
- GOLEM in the past:
- $p p \rightarrow V V+$ jet also
- Rational Polynomials in one-loop amplitudes

Summary I: The GOLEM Project

- GOLEM is
- an algorithm for the reduction of tensor integrals plus its implementation (golem95)
- an algorithm for the automatic algebraic simplification and numerical evaluation of one-loop matrix elements plus its implementation (under development)
- Work in progress:
- building a reliable, general tool (based on existing frameworks)
- extending golem95 to massive propagators
- doing phenomenology, e.g. $p p \rightarrow b \bar{b} b \bar{b}$
[Binoth, Guffanti, TR, Reuter]
- GOLEM in the past:

Summary I: The GOLEM Project

- GOLEM is
- an algorithm for the reduction of tensor integrals plus its implementation (golem95)
- an algorithm for the automatic algebraic simplification and numerical evaluation of one-loop matrix elements plus its implementation (under development)
- Work in progress:
- building a reliable, general tool (based on existing frameworks)
- extending golem95 to massive propagators
- doing phenomenology, e.g. $p p \rightarrow b \bar{b} b \bar{b}$
[Binoth, Guffanti, TR, Reuter]
- GOLEM in the past:
- $p p \rightarrow V V+$ jet $[$ Karg, Sanguinetti] also [Dittmaier et al.; Campbell et al.]
- $\gamma \gamma \gamma \gamma \gamma \gamma \rightarrow 0$ [Binoth, Heinrich, Gehrmann, Mastrolia]; [Bernicot, Guillet]
- Rational Polynomials in one-loop amplitudes [Binoth, Guillet, Heinrich]
$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Setup
- software setup as described before
- check through second, independent implementation (FeynArts, Form, Maple - no code in common)
- improved IR Dipole subtraction
- here: only $\mathrm{d} \sigma_{\text {virtual }}+\mathrm{d} \sigma_{\mathrm{LO}}+\langle I(\varepsilon, \alpha)\rangle$ (full result soon)
- cuts and parameters
- $m_{b}=0$
- $p_{T}>25 \mathrm{GeV},|\eta|<2.5, \Delta R>0.4$
- $\mu_{R}=\mu_{F}=\sum_{i=1}^{4} p_{T}^{(i)} / 4$
- pdfs CTEQ6.5
- Nagy's $\alpha=0.1$ (for the shown results)
- performance on ECDF cluster
- one phase-space point per node (Xeon5450 quad-core 3 GHz)
- 8.9 s in double precision
- 17.6 s in quadruple precision

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Setup

- software setup as described before
- check through second, independent implementation (FeynArts, Form, Maple - no code in common)
- improved IR Dipole subtraction
- here: only $\mathrm{d} \sigma_{\text {virtual }}+\mathrm{d} \sigma_{\mathrm{LO}}+\langle I(\varepsilon, \alpha)\rangle$ (full result soon)
- cuts and parameters
- $m_{b}=0$
- $p_{T}>25 \mathrm{GeV},|\eta|<2.5, \Delta R>0.4$

- pdfs CTEQ6.5
- Nagy's $\alpha=0.1$ (for the shown results)
- performance on ECDF cluster
- one phase-space point per node (Xeon5450 quad-core 3 GHz)
- 8.9 s in double precision
- 17.6 s in quadruple precision

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Setup

- software setup as described before
- check through second, independent implementation (FeynArts, Form, Maple - no code in common)
- improved IR Dipole subtraction [Catani, Seymour, Nagy]

- cuts and parameters

- performance on ECDF cluster
- one phase-space point per node (Xeon5450 quad-core 3 GHz)
- 8.9 s in double precision
- 17.6 s in quadruple precision

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Setup

- software setup as described before
- check through second, independent implementation (FeynArts, Form, Maple - no code in common)
- improved IR Dipole subtraction [Catani, Seymour, Nagy]
- here: only $\mathrm{d} \sigma_{\text {virtual }}+\mathrm{d} \sigma_{\mathrm{LO}}+\langle I(\varepsilon, \alpha)\rangle$ (full result soon)

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Setup

- software setup as described before
- check through second, independent implementation (FeynArts, Form, Maple - no code in common)
- improved IR Dipole subtraction [Catani, Seymour, Nagy]
- here: only $\mathrm{d} \sigma_{\text {virtual }}+\mathrm{d} \sigma_{\mathrm{LO}}+\langle I(\varepsilon, \alpha)\rangle$ (full result soon)
- cuts and parameters
- $m_{b}=0$
- $p_{T}>25 \mathrm{GeV},|\eta|<2.5, \Delta R>0.4$
- $\mu_{R}=\mu_{F}=\sum_{i=1}^{4} p_{T}^{(i)} / 4$
- pdfs CTEQ6.5
- Nagy's $\alpha=0.1$ (for the shown results)
- performance on ECDF cluster
- one phase-space point per node (Xeon5450 quad-core 3 GHz)
- 8.9 s in double precision
- 17.6 s in quadruple precision
- software setup as described before
- check through second, independent implementation (FeynArts, Form, Maple - no code in common)
- improved IR Dipole subtraction [Catani, Seymour, Nagy]
- here: only $\mathrm{d} \sigma_{\text {virtual }}+\mathrm{d} \sigma_{\mathrm{LO}}+\langle I(\varepsilon, \alpha)\rangle$ (full result soon)
- cuts and parameters
- $m_{b}=0$
- $p_{T}>25 \mathrm{GeV},|\eta|<2.5, \Delta R>0.4$
- $\mu_{R}=\mu_{F}=\sum_{i=1}^{4} p_{T}^{(i)} / 4$
- pdfs CTEQ6.5
- Nagy's $\alpha=0.1$ (for the shown results)
- performance on ECDF cluster
- one phase-space point per node (Xeon5450 quad-core 3 GHz)
- 8.9 s in double precision
- 17.6 s in quadruple precision
$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Quality Management (QM)
200,000 random phase space points

- Need to look at integrated results

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$: Finding Good QM Criteria

Switch to quadruple precision if single pole $>\mathrm{SP}_{\text {cut }}$: $\varepsilon_{\text {rel }}=\left|\sigma\left(\mathrm{SP}_{\text {cut }}\right)-\sigma(0)\right| / \sigma(0)$.

- precision goal $\varepsilon_{\text {rel }} \leq 0.1 \%$
\Rightarrow requires 20% of evaluations in quadruple precision
- nearly identical plot for double pole

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$: Finding Good QM Criteria

Switch to quadruple precision if $\mathrm{d} \sigma_{1 \text {-loop }} / \mathrm{d} \sigma_{\text {LO }}>\mathrm{K}_{\text {cut }}$:

- precision goal $\varepsilon_{\text {rel }} \leq 0.1 \%$
\Rightarrow requires 0.5% of evaluations in quadruple precision
- better efficiency than by looking at the pole part

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Scale Variation (virtual part)

- simultaneous parallel variation of μ_{R} and μ_{F}
- $\mathrm{NLO}_{\mathrm{virt}}=\sigma_{\mathrm{LO}}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X: p_{T}$ Distributions (virtual part)

- p_{T} of the hardest jet
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$. Rapidity Distributions (virtual part) Nipler

- rapidity of the hardest jet
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

Summary II

[Jan-Henrik Andersen]
http://lappweb.in2p3.fr/lapth/Golem/golem95.html

Summary II

[Jan-Henrik Andersen]
http://lappweb.in2p3.fr/lapth/Golem/golem95.html

Outlook

Some work remains to be done:

- extend GOLEM for massive integrals
- better user interface preferrably linked into existing frameworks
- finish $p p \rightarrow b \bar{b} b \bar{b}$ program - real corrections + dipoles - gluon induced subprocess
- apply GOLEM technology to other interesting $2 \rightarrow 4$ processes
[Jan-Henrik Andersen]

- explore how far we can get beyond 4 final state particles

Outlook

[Jan-Henrik Andersen]

Some work remains to be done:

- extend GOLEM for massive integrals
- better user interface preferrably linked into existing frameworks
- finish $p p \rightarrow b \bar{b} b \bar{b}$ program
- real corrections + dipoles
- gluon induced subprocess
- apply GOLEM technology to other interesting $2 \rightarrow 4$ processes
- explore how far we can get beyond 4 final state particles

Backup Slides

Amplitude Organisation

Integral Reduction

More Results

Amplitude Organísation

$$
\sigma=\int_{n} \mathrm{~d} \sigma^{\mathrm{LO}}
$$

The full NLO amplitude calculation consits of

- LO (tree level) diagrams
- virtual corrections (loop diagrams)
- real corrections $((n+1)$-particle tree diagrams)
- subtraction terms (for explicit cancellation of IR noles)

Amplitude Organísation

$$
\sigma=\int_{n} \mathrm{~d} \sigma^{\mathrm{LO}}+\int_{n}\left(\mathrm{~d} \sigma^{\mathrm{V}}\right)
$$

The full NLO amplitude calculation consits of

- LO (tree level) diagrams
- virtual corrections (loop diagrams)
- real corrections (($n+1$)-particle tree diagrams)
- subtraction terms (for explicit cancellation of IR poles)

Amplitude Organísation

$$
\sigma=\int_{n} \mathrm{~d} \sigma^{\mathrm{LO}}+\int_{n}\left(\mathrm{~d} \sigma^{\mathrm{V}}\right)+\int_{n+1}\left(\mathrm{~d} \sigma^{\mathrm{R}} \quad\right)
$$

The full NLO amplitude calculation consits of

- LO (tree level) diagrams
- virtual corrections (loop diagrams)
- real corrections (($n+1$)-particle tree diagrams)
- subtraction terms (for explicit cancellation of IR poles)

Amplitude Organísation

$$
\sigma=\int_{n} \mathrm{~d} \sigma^{\mathrm{LO}}+\int_{n}\left(\mathrm{~d} \sigma^{\mathrm{V}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{A}}\right)+\int_{n+1}\left(\mathrm{~d} \sigma^{\mathrm{R}}-\mathrm{d} \sigma^{\mathrm{A}}\right)
$$

The full NLO amplitude calculation consits of

- LO (tree level) diagrams
- virtual corrections (loop diagrams)
- real corrections (($n+1$)-particle tree diagrams)
- subtraction terms (for explicit cancellation of IR poles)

Amplitude Organísation

$$
\mathcal{M}_{c_{1} \ldots c_{n}}\left(p_{1}, \ldots, p_{n}\right)=\sum_{\lambda} \mathcal{A}_{c_{1} \ldots c_{n}}\left(p_{1}^{\lambda_{1}}, \ldots, p_{n}^{\lambda_{n}}\right)
$$

- gauge invariant helicity subamplitudes: independent, no cancellations expected
- color subamplitudes: minimal basis by choosing irreducible representation
- subamplitudes are sums of diagrams

Amplitude Organísation

$$
\mathcal{M}_{c_{1} \ldots c_{n}}\left(p_{1}, \ldots, p_{n}\right)=\sum_{\lambda} \sum_{c} C_{c_{1} \ldots c_{n}}^{c} \mathcal{A}^{c}\left(p_{1}^{\lambda_{1}}, \ldots, p_{n}^{\lambda_{n}}\right)
$$

- gauge invariant helicity subamplitudes: independent, no cancellations expected
- color subamplitudes: minimal basis by choosing irreducible representation
- subamplitudes are sums of diagrams

Amplitude Organísation

$$
\mathcal{M}_{c_{1} \ldots c_{n}}\left(p_{1}, \ldots, p_{n}\right)=\sum_{\lambda} \sum_{c} C_{c_{1} \ldots c_{n}}^{c}\left(\sum_{\mathcal{D}} \mathcal{D}^{c}\left(p_{1}^{\lambda_{1}}, \ldots, p_{n}^{\lambda_{n}}\right)\right)
$$

- gauge invariant helicity subamplitudes: independent, no cancellations expected
- color subamplitudes: minimal basis by choosing irreducible representation
- subamplitudes are sums of diagrams

Integral Reduction

- One-loop diagrams lead to integrals like

$$
I_{N}^{d ; \mu_{1} \ldots \mu_{r}}\left(a_{1}, \ldots a_{r} ; S\right) \equiv \int \frac{\mathrm{d}^{d} k}{i \pi^{d / 2}} \frac{q_{a_{1}}^{\mu_{1}} \cdots q_{a_{r}}^{\mu_{r}}}{\prod_{j=1}^{N}\left(q_{j}^{2}-m_{j}^{2}+i \delta\right)},
$$

$$
q_{i}=k+p_{i}-p_{i-1} .
$$

- tensor integrals have to undergo tensor reduction.
- form factors can be written in terms of Feynman-parameter integrals.
- relations between Feynman-parameter integrals lead to redution formalism for integrals.
- Tensor Reduction by Subtraction
[Binoth, Guillet, Heinrich, Pilon, Schubert: JHEP 0510:015,2005]

Integral Reduction: Three-Point Functions

Integral Reduction: Four-Point Functions

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$: Finding Good QM Criteria

Switch to quadruple precision if single pole $>\mathrm{DP}_{\text {cut }}$:

- each point evaluated at either double or quad precision
- error defined over the integral of 200,000 phase space points

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Scale Variation (virtual part)

- simultaneous parallel variation of μ_{R} and μ_{F}
- $\mathrm{NLO}_{\mathrm{virt}}=\sigma_{\mathrm{LO}}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$: Scale Variation (virtual part)

- simultaneous anti-parallel variation of μ_{R} and μ_{F}
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X: p_{T}$ Distributions (virtual part)

- p_{T} of the hardest jet
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$
$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X: p_{T}$ Distributions (virtual part)

- p_{T} of the second hardest jet
- $\mathrm{NLO}_{\mathrm{virt}}=\sigma_{\mathrm{LO}}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$
$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X: p_{T}$ Distributions (virtual part)

- p_{T} of the third hardest jet
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$
$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X: p_{T}$ Distributions (virtual part)

- p_{T} of the softest jet
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$. Rapidity Distributions (virtual part) Nipler

- rapidity of the hardest jet
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$: Rapidity Distributions (virtual part) NIDEEF

- rapidity of the second hardest jet
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$: Rapidity Distributions (virtual part) NIDEEF

- rapidity of the third hardest jet
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X$: Rapidity Distributions (virtual part) NIDEEF

- rapidity of the softest jet
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Transverse Mass (virtual part)

- Sum of m_{T} of all b-quark pairings
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\text {LO }}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

$q \bar{q} \rightarrow b \bar{b} b \bar{b}+X:$ Transverse Mass (virtual part)

- Sum of m_{T} of the four- b system
- $\mathrm{NLO}_{\text {virt }}=\sigma_{\mathrm{LO}}+\sigma_{\text {one-loop }}+I(\varepsilon, \alpha)$

[^0]: Implementation: golem95 - publicly available

