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Metric formulation

Let (M, g) a 2+1 Lorentzian manifold, Λ cosmological constant, lPl the Planck
length.

Action

S [g , matter ] = SEH [g ] + Smat =
1

G

Z

M

d
3
x
√

g(R[g ] − 2Λ) + Smat .

This action is invariant under diffeomorphism.

Classical Equations of motion

Rµν − 1

2
gµνR + Λgµν = −GTµν .

If Λ = 0 and Tµν = 0 the previous equation implies that Rµν = 0 which in
2+1 dimension implies that the Riemann tensor is null, i.e the space is
locally flat.

Ph. Roche 2+1 Quantum Gravity in Chern-Simons formulation



Gravity in 2+1 dimensions
Combinatorial Quantization

Metric formulation
Hamiltonian formalism
Chern-Simons formulation

Metric formulation

• No local degrees of freedom: no gravitational waves
• Curvature is concentrated at the location of matter: If Λ = 0 and m

is the mass of a point particle, the metric is given by

ds
2 = −dt

2 + r
−8Gm(dr

2 + r
2
dθ2).
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Hamiltonian formalism

Σ
Σt

Σt+dtR

x

x ′

ds Ndt

N idt

A.D.M. decomposition M = Σ × R

ds
2 = −N

2
dt

2 + gij(dx
i + N

i
dt)(dx

j + N
j
dt)

Canonical momenta:

N and N i appear as Lagrange multipliers

{πkl(x); gij(y)} = δk
i δl

jδ(x − y)

S [g ] =

Z

dt

Z

Σ

(πij
ġij − NH− N

iHi )

Hi = −2∇iπ
j
i ,H =

1√
g

gijgkl(π
ikπjl − πijπkl) −√

g(R − 2λ).
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Hamiltonian formalism

H[g , π; N, N i ] =

Z

Σ

d
2
x(NH + N

iHi )

with Hi ≈ 0,H ≈ 0 first class constraints (the Hamiltonian constraint and the
momentum constraints) generating respectively spatial diffeomorphism and
time reparametrization.

Very complete review of Quantum Gravity in 2+1 Dimensions in a closed
universe is: ”Quantum Gravity in 2+1 Dimensions:the case of a Closed
Universe” S.Carlip, gr-qc/0409039.
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Chern-Simons formulation

One writes the Einstein-Hilbert lagrangian in first order form:

SEH [g ] =
1

G

Z

(R[ω] ∧ e − Λe ∧ e ∧ e)

with ω = ωIJ
µ TIJdxµ so(2, 1) connection and e I = e I

µdxµ orthonormal cotetrad
i.e g = ηIJe

I ⊗ eJ .
From the work of E.Witten (”2+1 gravity as an exactly soluble system”
(1988)) one define a connection A on a Lie algebra gΛ = ⊕K CPK ⊕IJ CTIJ

Aµ = e
I
µPI + ωIJ

µ TIJ

T
I = ǫIJK

TJK [T I , T J ] = ǫIJ
K T

K , [T I , PJ ] = ǫIJ
K P

K , [P I , PJ ] = −ΛǫIJ
K T

K .

The structure of gΛ is

gΛ>0 = so(3, 1) isometry group of deSitter space

gΛ=0 = iso(2, 1) Poincare group

gΛ<0 = so(2, 2) = so(2, 1) ⊕ so(2, 1) isometry group of antideSitter space.

One defines an invariant form Tr on gΛ by

Tr(T I
T

J) = 0, Tr(P I
P

J) = 0, Tr(P I
T

J) = ηIJ .
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Chern-Simons formulation

SEH [e, ω] = k

Z

M

Tr(A ∧ dA +
2

3
A ∧A ∧A) = SCS [A].

This equality is the core of the ”equivalence” between 2+1 gravity and
Chern-Simons theory, k−1 = G

√
Λ.

Because Chern-Simons theory is a topological quantum field theory heavily
studied, one would like to use this equivalence in order to quantize 2+1 gravity.
Difficulties are numerous:

1 The equivalence is not a complete equivalence: there are non isometrical
geometries which have associated connections in the same gauge orbit
(Matschull).

2 How do we recover sensible physics from CS theory?

3 The Lie algebra gΛ is non compact. How do we quantize effectively CS
with non compact group?

In order to study the first two problems one has to couple gravity with matter
or to add boundaries in order to obtain sensible physics. An interesting result is
the computation of Black Hole entropy using CS SO(3,1) theory with SO(3,1)
WZW on the boundary by Maldacena, Strominger.
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Chern-Simons formulation

The third problem can be solved in the Hamiltonian quantization of CS using
non commutative algebras associated to non compact quantum groups.

Holonomy algebras Nelson-Regge (1989) when Σ is a torus.

Combinatorial Quantization of Chern-Simons theory (Fock-Rosly,
Alekseev-Grosse-Schomerus, Buffenoir-R):Σ is an arbitrary punctured
topological surface but the group is compact.

Combinatorial quantization applied to Λ > 0 (Buffenoir-Noui-R) and to
Λ = 0 (Bais-Muller-Schroers-Meusburger) for an arbitrary punctured
topological surface.
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Let M = Σ × R and G a Lie group (compact or not) of Lie algebra g. We
describe the classical phase space of Chern-Simons theory.
Let A = (A0, A) with A element of the space A(Σ, G ) of g-connection on Σ.

SCS [A] = 2k

Z

dt

Z

Σ

d
2
x ǫij

Tr(Ai Ȧj + 2A0Fij(A)).

A0 is a Lagrange multiplier and Fij(A) = ∂iAj − ∂jAi + [Ai , Aj ] ≈ 0 are first
class constraints generating Gauge transformations:

A
g = gAg

−1 − dg g
−1, g ∈ C

∞(Σ, G ).

The symplectic structure on A(Σ, G ) is given by

{Aa
i (x); Ab

j (y)} =
1

k
ǫij t

abδ(x − y).

The classical phase space is the moduli space of flat connections

M(Σ, G ) = {A ∈ A(Σ, G ), F (A) = 0}/C
∞(Σ, G ).
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Functions on the phase space

Observables: gauge invariant functions of the connection. Wilson loops are
examples of observables:

π

W= tr

„

π(P exp

Z

γ

A)

«

where π is a finite dimensional representation of G .
Spin-Network: a spin-network (flat ribbon graph) is an oriented graph Γ drawn
on Σ whose edges l are colored with finite dimensional representations and
vertices x are colored by invariant tensor Φx of the tensor product of
representations incident to the vertex.

π

Σ

π(P exp
R

l
A) =

π

U l

Φx

To each spin-network Γ is associated a function on M(Σ, G )

fΓ(A) =

 

O

x vertex

Φx

! 

O

l

πl

U l

!

.
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Goldman Poisson Bracket

This function depends only on the isotopy class of Γ and the Poisson bracket of
these functions is given by Goldman Poisson bracket:

={ }

t

Problem: Quantize the Poisson algebra Fun(M(Σ, G ), C) with its structure of
Goldman Bracket and find its unitary representations. This can be done by
hand in the genus one case and without puncture (Nelson-Regge) but needs
more elaborate techniques in the general case. This is done using combinatorial
quantization.
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Principle of the construction: the space M(Σ, G ) is constructed using a lattice
gauge theory on Σ with group G and a quantization Mq(Σ, G ) is constructed
using a deformation of this lattice gauge theory with quantum group ”Gq.”

1 discretization of Σ: let τ a triangulation of Σ ,τ0 the set of vertices,τ1

the set of edges, τ2 the set of faces.

2 lattice gauge theory: the space of connections is replaced by the space of
discrete connections

A(τ) = {U(l) ∈ G |l ∈ τ1}

3 Flatness condition:
∀f ∈ τ2,

Y

l∈∂f

U(l) = 1.

4 Gauge group: let g ∈ G τ0 , l = (xy)

U(l)g = g(x)U(l)g(y)−1
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M(Σ, G ) = {Ul ∈ A(τ), ∀f ∈ τ2,
Y

l∈∂f

U(l) = 1}/
Y

x∈τ0

Ad(Gx).

The invariant form Tr on g defines an invariant tensor t ∈ g
⊗2. We can endow

G with a structure of Poisson-Lie group by

{g1; g2} = [r12, g1g2]

with r12 + r21 = t12. Fock-Rosly have defined a structure of Poisson on A(τ)
such that the action of the Poisson-Lie group

Q

x∈τ0
Ad(Gx) is Poisson. It can

be shown that the Poisson structure on M(Σ, G ) that one obtains is
independent of the chosen triangulation and is the natural symplectic structure
coming from Chern-Simons theory.

Fock-Rosly Poisson structure

{U1(xz); U2(xy)}FR = r12U1(xz)U2(xy), l ∩ l
′ = ∅ {U1(l); U2(l

′)}FR = 0.

Ph. Roche 2+1 Quantum Gravity in Chern-Simons formulation



Gravity in 2+1 dimensions
Combinatorial Quantization

Classical Phase space, Observables.
Combinatorial Quantization
The quantum Lorentz group

The definition of Mq(Σ, G ) is obtained by quantizing Fock-Rosly Poisson
structure and it has been defined in a series of work by A.Alekseev, H.Grosse,
V.Schomerus. See also the related work on q-Yang Mills by E.Buffenoir and
Ph.R. There are two important results:

1 Quantization of M(Σ, G ) when g is a semisimple Lie algebra.

2 Representation theory of Mq(Σ, G ) when G is a compact group and q is a
root of unity.

Very rough idea of the construction. One can define a structure of quantum
group Fq(G ) which classical limit is given by the Poisson Lie group structure on
G , it is given by:

IJ

R12

I
g 1

J
g 2=

J
g 2

I
g 1

IJ

R12, I , J ∈ Irrep(g).

One can define a structure of algebra Aq(τ) by quantizing Fock-Rosly structure
as:

IJ

R12

I

U1 (xz)
J

U2 (xy) =
J

U2 (xy)
I

U1 (xz),

this structure being uniquely defined by imposing that gauge transformation
Aq(τ) → Aq(τ) ⊗⊗xFq(G )x is a morphism of a algebra. By dividing Aq(τ) by
an ideal imposing the flatness condition and by taking the elements which are
invariant under the action of the quantum gauge group one obtains the
quantum algebra Mq(Σ, G ).
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In order to built the representation theory of Mq(Σ, G ) one can take advantage
of the fact that the structure of algebra of Mq(Σ, G ) up to isomorphism does
not depend on the triangulation, one can even construct Mq(Σ, G ) with a
graph γ containing only one vertex, one face and 2g cycles.

.

.
. .

.
. .

x
A(1)

A(2)

A(g) B(1)

B(2)

B(g)

M(1)
M(p)

It consists in the holonomies M(i) around the eventual punctures and the
holonomies A(i) and B(i) around the handles. The graph algebra is
Lp,g = A(γ).
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Examples of commutation relations are:

R12M1(i)R
−1
12 M2(j) = M2(j)R12M1(i)R

−1
12 .

A fundamental theorem of A.Alekseev is:

Lp,g ≃ L⊗p
1,0 ⊗ L⊗g

0,1 .

Moreover L1,0 ≃ Uq(g) and L0,1 ≃ T ∗
q (G ).

As a result an irreducible module of Lp,g is ⊗j=1,...,pV
αj ⊗ Fq(G )⊗g where V αj

are finite dimensional irreducible Uq(g) modules.

Alekseev-Schomerus

Mq(Σ, G ) has only one unitary module: (⊗j=1,...,pV
αj ⊗ Fq(G )⊗g )Uq(g).

This solves completely the problem of constructing a unitary representation of
the algebra of observables in Hamiltonian Chern-Simons theory and can be
thought of as an explicit implementation of the Dirac program of quantization
of a system with first class constraints.
Note that this works perfectly then the group is compact: g is endowed with a
compact form (a star structure), Mq(Σ, G ) is a star algebra with q root of unity
and the previous representations are finite dimensional unitary representation
How can we modify this construction to the non compact case?
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The relation with gravity imposes that g is entirely fixed by the choice of sign
of Λ. We have chosen Λ > 0 i.e g = so(3, 1) but see
Bais-Muller-Schroers-Meusburger for the case Λ = 0 where g = iso(2, 1). It is
easy to see that one must have q = 1 + ~G

√
Λ + o(~), as a result we choose

q ∈ R
+. The quantum groups Uq(so(3, 1)) and SO(3, 1)q have been studied by

different people, a very nice definition is to define Uq(so(3, 1)) as the quantum
double of Uq(su(2) following Podles-Woronowicz. Using this quantum double
construction we have that Uq(su(2)) is a sub-Hopf algebra of Uq(so(3, 1)).
Uq(so(3, 1)q) have two types of irreducible representations which are Uq(su(2))
finite:

1 Finite dimensional representations (which are non unitary except the
trivial). They are labelled by two spins (I , J) I , J positive half integers.

2 Infinite unitary representations. The principal series and the
complementary series. The principal series representation is labelled by
(k, iρ) with k half-integer and ρ ∈ R.

Our aim is to construct a unitary representation of Mq(Σ, SO(3, 1)).
The definition of Mq(Σ, SO(3, 1)) as a *-algebra is straightforward from the

definition of AGS. The elements defining A(τ) are
(I ,J)

U (l) and the R matrix
defining the relations are finite dimensional matrices.
The complication arise at the level of the construction of unitary
representations.
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One can still define a unitary representation of A(τ) on the Hilbert space

H = ⊗j

αj

V ⊗L2
q(SO(3, 1))⊗g where αj label principal representation and

L2(SO(3, 1)q) can be defined using the work of Podles-Woronowicz.
However the construction fails because there is no vector in H which is Uq(g)
because so(3, 1) is non compact.
The method that we have designed in Buffenoir-Noui-R to solve this problem is
the following:

1 Construct a vector basis of Mq(Σ, SO(3, 1)) using quantum spin networks
associated to finite dimensional representations of Uq(so(3, 1)).

2 Use a Plancherel theorem for the decomposition of L2
q(SO(3, 1)) in terms

of Principal representations and use the explicit decomposition of the
tensor product of principal representations in order to obtain a basis of
”Plane waves” belonging to (H∗)Uq(g). This basis ψχ is labelled by
quantum spin networks χ associated to principal representations.

3 Define a representation of Mq(Σ, SO(3, 1)) on wave packets of ψχ and
find generalized Hermitian scalar product on ψχ such that this
representation is unitary.
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Conclusion

The initial motivation of this work was to study gravity in 2+1 dimension with
cosmological constant Λ > 0. We have proven that one can define rigorously a
quantization of Hamiltonian Chern-Simons with SO(3, 1) group. There are lots
of open questions which could be addressed:

Classically d(su(1, 1)) = d(su(2)) = so(3, 1). We have studied of the
quantum double of Uq(su(2) but what would happen if we take the
quantum double of Uq(su(1, 1))? Reasons to study this construction.

Study of the case Λ < 0. Link with works of Fock,Kashaev,Teschner?

Analyze more precisely some geometrical construction like grafting in the
case where λ 6= 0 along the line of C.Meusburger.

One can couple matter to Chern-Simons maintaining integrability. This
can be done using the coupling of point particles to Chern-Simons theory
along the line of deSousa Gerbert. In the compact case it has been
studied by Alekseev-Faddeev-Bytsko in the classical and quantum case.
For a recent treatment in the so(3, 1) case and in the classical case see
(Buffenoir-Noui) and in the quantum case (Buffenoir-R).
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All these last works have in common to enlarge the set of observables to partial

observables and to enlarge the notion of quantum groups to dynamical

quantum groups.
There has been some recent byproduct of this study, of a purely mathematical
interest, concerning the explicit expressions for dynamical cocycle and
coboundaries in quantum (affine) Lie algebras (Buffenoir-R-Terras).
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