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QFT on manifolds is relevant formalism to describe
quantized matter at large spacetime curvature (→ early
Universe).

Interesting physical effects: primordial fluctuations (→
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Baryon/Anti-Baryon asymmetry, Hawking/Unruh effect, ...)
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Quantum Fluctuations and Structure of Universe

Microscope

Macroscipic

Quantum Field
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Consider quantized field
eqn. on curved manifold
Example: �gφ = 0

g: Lorentzian metric, e.g.
g = −dt2 + a(t)2ds2

R
3.
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Why is QFT in curved space so different from flat
space?

No S-matrix

No natural particle interpretation, no vacuum state

No spacetime symmetries

No Hamiltonian/conserved energy (Stability?
Thermodynamics?)

=⇒ Forced to a formulation which emphasizes the local,
geometrical aspects of QFT.

→ Algebraic formulation, Operator Product Expansion (OPE)
...: This talk
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What is QFT?

“Equations” ↔ Algebraic relations
(+ bracket between quantum
structure) fields (OPE)
“Solutions” ↔ Quantum states

Example: Free field φ:

OPE: φ(x1)φ(x2) ∼
H(x1, x2)1 + φ2(y) + . . . ,
H = u

σ+it0 + v ln(σ + it0).

States: Collections of n-point
functions wn = 〈O1 . . .On〉Ψ in which
OPE holds.

OPE coefficients have functorial
behavior under embedding
[S.H. & Wald, Brunetti et al.]:

ψ

ψ

Functor

Functor

C CM,gM’,g’

(M’,g’)
(M,g)

States do not have such a
behavior under embedding!
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What is the OPE?

General formula: [Wilson, Zimmermann 1969, ..., S.H. 2006]

〈Oj1(x1) · · · Ojn
(xn)〉Ψ

∼
∑

Ci
j1...jn

(x1, . . . , xn; y)
︸ ︷︷ ︸

OPE−coefficients↔ structure“constants′′

〈Oi(y)〉Ψ

Physical idea: Separate the short distance regime of
theory (large ”energies”) from the energy scale of the state
(small) E4 ∼ 〈ρ〉Ψ.

Application: In Early Universe have different scales
E ∼ T (t) ∼ a(t)−1, curvature radius R(t) ∼ H(t)−1.

OPE-coefficients may be calculated within perturbation
theory (Yang-Mills-type theories).
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Axiomatization of QFT

I propose to axiomatize quantum field theory as a collection of
operator product coefficients {Cj

i1...in
(x1, . . . , xn; y)}, each of

with is the (germ of) a distribution on Mn+1 subject to

Covariance

Local (anti-) commutativity

Microlocal spectrum condition

Consistency (Associativity)

Existence of a state

Consequences:

PCT-theorem holds [S.H. 2003]

Spin-statistics relation holds [S.H. & Wald 2007]
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Short-distance factorization (Consistency)

Can scale points in OPE in different
ways:

O1(x1) · · · On(xn)

∼
∑

i

Ci(x1, . . . , xn, y)Oi(y)

y x
x

1

2

x3

x4

M

All
points
scaled
towards
y

Consider different “merger
trees”
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Different scalings

i  1 i  2 i3 i4 i5 i6
i1 i2 i3 i4 i5 i6

    mergers

 
successive 

Factorization
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Mathematical formulation of associtivity:
“Fulton-MacPherson compactification” [Axelrod & Singer, Fulton & MacPherson]

↔ Blow up bndy of configuration space
of n points Conf[n] = M × · · · × M - {diagonals}

Example:

RI 2 0{ } S1− =
blow up

E

For n-point configuration space this leads to
fb.d. : M [n] → Conf[n], with E[n] = f−1

b.d.({diagonals})

E[n] = ∪trees S[merger tree]
︸ ︷︷ ︸

faces of different dim

= stratifold

Associativity: OPE-coefficient (pulled back by f∗
b.d.) factorizes

in particular way on each face of E[n]. → “Operad-like”
structure.
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Wave front set

OPE-coefficients should satisfy a “µ-local spectrum condition”
[Brunetti et al., SH]

↔ positivity of “energy” in tangent space
↔ correct “iǫ-prescription” (domain of holomorphy)
↔ (generalized) “Hadamard condition”

Key tool: “Wave front set” [Hö rmander, Duistermaat, Sato, ...]

f smooth, comp. support =⇒ |f̂(k)| ∼ 1/|k|N
all k, all N

f distributional, comp. support =⇒ |f̂(k)| ≁ 1/|k|N
some k, some N

Stefan Hollands 4th Vienna Central European Seminar



Wave front set of f at point x ∈ X defined by

WFx(f) = {singular directions in momentum space atx}
⊂ T ∗

x X

supp(    )f

k

=manifold 
where      livesf

shrinking to x

X

T Xx

Wave front set characterizes singularities of f . In QFT typically
X = Mn and f = n-point function of fields.
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The following µ-local spectrum condition [Brunetti et al. 1998,2000]

should hold for the OPE coefficients C:
Wave front set WF (C) has very special form [S.H. 2006]:

Spacetime

Embedding
p

Σ−
Σ       incoming p’s

outgoing p’s k

k

k

1

2

3

abstract Feynman graph

x

x

2

x3

1

ki = null−geodesic
1 1WF(C) = (x  , k  , ..., x  , k  ) :n n

p future−pointing
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Curvature expansion

C(x1, . . . , xn; y)

= structure constants

=
∑

Q[∇kR(y), couplings]

× Lorentz inv.Minkowski distributions

u(ξ1, . . . , ξn)

ξi—Normal coordinates

y
2

3

2

3M

T My

Rαβγδ(y)

x1

1ξ

ξ
x

ξ

x

Can be computed systematically in pert. theory [Hollands 2006]

Minkowski distributions ↔ “Mellin-Moments”

u(ξ1, . . . , ξn) = Resz=ipower

∫ ∞

0
C(λξ1, . . . , λξn, y)λiz dλ
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Perturbation theory

OPE-coefficients can be constructed in perturbation theory, e.g.
scalar field [S.H. 2006]

L = d4x
√

g[ |∇φ|2 + λφ4 ]

Given a renormalizable Lagrangian L, can construct OPE
coefficients as distributions valued in formal power series.

Satisfy all above properties.

Holds in all Hadamard states.

Also works for Yang-Mills theory [S.H. 2007], but more
complicated.
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For perturbation theory need time-ordered products

Tn(φk1(x1) ⊗ · · · ⊗ φkn(xn)) ∈ Map(C⊗n,A)

Problem: A priori only defined
on space

M × · · · × M \
⋃

{diagonals}
x

x
x

1

2
3

In this viewpoint: extension=renormalization. [Brunetti et al., SH & Wald]

Combinatorial problem: Diagonals intersect each other →
“nested divergencies”

Analytical problem: Must understand singularity structure
→ “wave-front-set,” (poly)-logarithmic scaling, ...

Local covariance condition reduces “renormalization ambiguity”
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Renormalization

First expansion: time-ordered products

Tn(φ4(x1) ⊗ · · · ⊗ φ4(xn))

=
∑

ti1...in(x1, . . . , xn) : φi1(x1) · · ·φin(xn) :
︸ ︷︷ ︸

cov. def. Wick product

Second expansion: C-valued distributions

t(x1, . . . , xn−1, y)

∼
∑

P [∇kR(y), couplings]

× Lorentz inv.Minkowski distributions

v(ξ1, . . . , ξn−1)

y
2

3

2

3M

T My

Rαβγδ(y)

x1

1ξ

ξ
x

ξ

x

=⇒ Renormalization problem for v.Stefan Hollands 4th Vienna Central European Seminar



Third expansion: Diagrams

v(ξ 1, ... ,ξ n−1)

ξ

ξ

ξ1 2

3
ξ4

Σ
massless

propagators

Feynman
Diagrams

=

1 Subdivergences already
renormalized.

2 Diagrams “live” in
tangent space TyM .

3 E.g. dimensional
regularization possible
at this stage.

y

M

ξ1
2ξ

MTy
ξ4

ξ 3

=⇒ Renormalization possible to arbitrary orders!
[S.H. & Wald 2002]
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Example: 3-point OPE

To leading order in perturbation theory, and leading order in
deviation from flat space, 3-point OPE in scalar λφ4-theory has
structure

φ(x1)φ(x2)φ(x3) ∼

[
∑ D

σij
+

λ

a

∑

Cl2(αi) + . . . ]

︸ ︷︷ ︸

OPE−coefficient C(x1,x2,x3;y)

φ(y)

(+other operators)

Cl2(z)—Clausen function
σij—geodesic distance
a—curved space area of triangle
D—geometrical determinant

M

α

α

1

2

3

σ23

a

y

3−Point Operator Product

x1

x2

x3α
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Yang-Mills theory

Can repeat procedure for Yang-Mills theory, L = d4x
√

g |F |2,
with F = dA + iλ[A,A] curvature of non-abelian gauge
connection.
New issues:

Need to deal with local gauge invariance
A → G−1AG + G−1dG.

Pass to gauge-fixed theory with additional fields.

Recover original theory as cohomology of auxiliary theory.

Need suitable renormalization prescription (→ “Ward
identities”).
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Strategy

Introduce auxiliary theory L = Lym + Lgf + Lgh + Laf , with
more fields and BRST-invariance.

Construct quantized auxiliary theory.

Define quantum BRST-current J , ensure that d ∗ J = 0.

Define quantum BRST-charge Q =
∫

Σ J , ensure that
Q2 = 0.

Define interacting field observables as cohomology of Q

OPE closes among gauge invariant operators

Renormalization group flow (”operator mixing”) closes
among gauge-invariant fields.
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Ward identities

Construction requires the satisfaction of new set of identities [S.H.

2007]:

[

Q0, T (e
iΨ/~

⊗ )
]

=
1

2
T

(

(S0 + Ψ, S0 + Ψ) ⊗ e
iΨ/~

⊗

)

where S = S0 + λS1 + λ2S2, and Ψ =
∫

f ∧ O is a local
observable smeared with cutoff function. Bracket defined by

(P,Q) =

∫

d4x
√

g

(
δP

δφ(x)

δQ

δφ‡(x)
± (P ↔ Q)

)

Proof is difficult and requires techniques from relative
cohomolgy.
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New application of OPE in curved space: OPE can e.g. be
used in calculations of quantum field theory fluctuations in early
universe, where curvature cannot be neglected.

Example: Consider w3 = 〈φφφ〉Ψ where φ suitable field
parametrizing density contrast δρ/ρ.

Step 1: Compute OPE-coefficients from perturbation
theory (reliable in asymptotically free theories).

Step 2: Write w3 ∼ ∑
Ci 〈Oi〉Ψ.

Step 3: Get form factors 〈Oi〉Ψ e.g. from (a) AdS-CFT, (b)
view as input parameters.

Application: Non-Gaussianities in CMB, bispectrum (→
fNL = w3/w

3/2
2 [Shellard,Maldacena,Spergel,...], [Eriksen et al., Bartolo et al., Cabella et al.,

Gaztanaga et al. (constraints from WMAP data),...]), ...
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Conclusions

QFT in curved spacetime is a well-developed formalism
capable of treating physically interesting interacting models

Renormalized OPE in curved spacetime available

Potential applications in Early Universe/cosmology

Gauge fields can be treated if suitable Ward identities
imposed

Open issues: Supersymmetry, non-pert. regime, singular
backgrounds, convergence of pert. series, consistency
conditions,...
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