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Introduction/Motivation

)
@ Whatis QFT?

@ Operator Product Expansions
@ Perturbation theory

@ Quantum Gauge Theory

@ Outlook
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Motivation

Elementary Particles
S <

Quantum fields on
curved spacetime

Expanding
Universe

@ QFT on manifolds is relevant formalism to describe
guantized matter at large spacetime curvature (— early
Universe).

General

Relativity
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Motivation

Elementary Particles
S <

Quantum fields on
curved spacetime

e ~
Expanding - General
Universe Relativity

@ QFT on manifolds is relevant formalism to describe
guantized matter at large spacetime curvature (— early
Universe).

@ Interesting physical effects: primordial fluctuations (—
structure formation, Cosmic Microwave Background,
Baryon/Anti-Baryon asymmetry, Hawking/Unruh effect, ...)
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Quantum Fluctuations and Structure of Universe

Macroscipic
Density
Fluctuations

A\

Early

Universe Quantum Field
BIG Fluctuations
BANG Lo S 2

0+ Ko =

Consider quantized field
egn. on curved manifold
Example: Og¢ =0

g. Lorentzian metric, e.g.
g = —dt*> +a(t)*ds3a.
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Why is QFT in curved space so different from flat

space?

@ No S-matrix

— Forced to a formulation which emphasizes the local,
geometrical aspects of QFT.

— Algebraic formulation, Operator Product Expansion (OPE)
... This talk

Stefan Hollands 4th Vienna Central European Seminar



Why is QFT in curved space so different from flat

space?

No S-matrix

o
@ No natural particle interpretation, no vacuum state

— Forced to a formulation which emphasizes the local,
geometrical aspects of QFT.

— Algebraic formulation, Operator Product Expansion (OPE)
... This talk

Stefan Hollands 4th Vienna Central European Seminar



Why is QFT in curved space so different from flat

space?

@ No S-matrix
@ No natural particle interpretation, ho vacuum state
@ No spacetime symmetries

— Forced to a formulation which emphasizes the local,
geometrical aspects of QFT.

— Algebraic formulation, Operator Product Expansion (OPE)
.. This talk

Stefan Hollands 4th Vienna Central European Seminar



Why is QFT in curved space so different from flat

space?

@ No S-matrix

@ No natural particle interpretation, no vacuum state

@ No spacetime symmetries

@ No Hamiltonian/conserved energy (Stability?
Thermodynamics?)

— Forced to a formulation which emphasizes the local,
geometrical aspects of QFT.

— Algebraic formulation, Operator Product Expansion (OPE)
... This talk
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OPE coefficients have functorial

What is QFT? behavior under embedding

[S.H. & Wald, Brunetti et al.].

“Equations” <« Algebraic relations

(Mg)
(+ bracket between quantum M.g)
structure) fields (OPE)
“Solutions” « Quantum states
Example: Free field ¢: W
o OPE: 925(901)925(9022) ~ Functor
H(xi,29)1 4+ ¢*(y) + ..., —
H = %5 + vIn(o + it0). " { Funces
@ States: Collections of n-point Cwg —3  Cyg
functions w,, = (O; ... O,)w in which
OPE holds. States do not have such a

behavior under embedding!

Stefan Hollands 4th Vienna Central European Seminar



What is the OPE?

General formula: [Wilson, Zimmermann 1969, ..., S.H. 2006]

~ Z Ch @1, 2 y) (Oi(y) e

OPE—coefficients « structure “constants’’

@ Physical idea: Separate the short distance regime of
theory (large "energies”) from the energy scale of the state
(small) E* ~ (p)y.

@ Application: In Early Universe have different scales
E ~T(t) ~a(t)~!, curvature radius R(t) ~ H(t)~ '

@ OPE-coefficients may be calculated within perturbation
theory (Yang-Mills-type theories).
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Axiomatization of QFT

| propose to axiomatize quantum field theory as a collection of
operator product coefficients {C} ; (z1,...,z,;y)}, each of
with is the (germ of) a distribution on A"+ subject to

@ Covariance

(*]

Local (anti-) commutativity

(*]

Microlocal spectrum condition
Consistency (Associativity)

@ Existence of a state
Consequences:

@ PCT-theorem holds (s+. 2003

©

@ Spin-statistics relation holds isH. & waid 2007]
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Short-distance factorization (Consistency)

Consider different “merger
Can scale points in OPE in different trees”

ways:

O1(71) -+ - On(wy)
~ ZCZ (1, 2n,y)0i(y) - -

Different scalings

A" 1q2q3 Ig |5 |6 qzq Cr) 5 |6
points \‘ / “
scaled Factonzatlon
towards ‘—’Sn‘#‘é?éi?éve
Yy .

C'Jliziaqiﬂd Cigie e Ci|1i2i3i4i5i6
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Mathematical formulation of associtivity:
“Fulton-MacPherson compactification” [aseirod & singer, Futton & MacPherson]
< Blow up bndy of configuration space
of n points Conf[n] = M x --- x M - {diagonals}

Example: . %

blow up
For n-point configuration space this leads to

fo.a. : M[n] — Conf[n], with E[n] = f, ; ({diagonals})
E[n] = Ugrees S[merger tree] = stratifold

faces of different dim

Associativity: OPE-coefficient (pulled back by f; ;) factorizes
in particular way on each face of E[n]. — “Operad-like”
structure.
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Wave front set

OPE-coefficients should satisfy a “u-local spectrum condition
[Brunetti et al., SH]

«— positivity of “energy” in tangent space

> correct “ie-prescription” (domain of holomorphy)

< (generalized) “Hadamard condition”

Key tool: “Wave front set” [H6 rmander, Duistermaat, Sato, ...]

f smooth, comp. support —  |f(k)] ~ 1/ kN
all &, all N

f distributional, comp. support = |f(k)| »~ 1/|k|N
some k, some N
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Wave front set of f at point x € X defined by

WF,(f) = {singulardirectionsin momentum spaceatz}
c T;X

X=manifold
wheref  live /
supp(f )
shrinking tox

Wave front set characterizes singularities of f. In QFT typically
X = M"™ and f = n-point function of fields.
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The following p-local spectrum condition (srunetiet al. 1998,2000]
should hold for the OPE coefficients C:
Wave front set W F'(C) has very special form (s.+. 20001:

WF(C) =04 . K oo oK ) :
null-geodesic

ki = X incoming p’'s
— 5 outgoing p’s

Embedding

P -
abstract Feynman graph Spacetime
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Curvature expansion

C(xla ey T y)
= structure constants

= ) QIV*R(y), couplings]
x  Lorentzinv. Minkowski distributions

u(é-la s afn)

&—Normal coordinates

@ Can be computed systematically in pert. theory [Holiands 2006]
@ Minkowski distributions < “Mellin-Moments”

u(&r, ..., &) :Reszipower/ C(NEL, ..., A&, ) A% dX
0

Stefan Hollands 4th Vienna Central European Seminar



Perturbation theory

OPE-coefficients can be constructed in perturbation theory, e.g.
scalar field [S.H. 20086]

L =d'z\/g[|Vo[* + A¢" ]

@ Given a renormalizable Lagrangian L, can construct OPE
coefficients as distributions valued in formal power series.

@ Satisfy all above properties.
@ Holds in all Hadamard states.

@ Also works for Yang-Mills theory (s+. 2007, but more
complicated.
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For perturbation theory need time-ordered products
T (" (21) ® - - @ ¢F" (x)) € Map(C®", A)

Problem: A priori only defined
on space

M x - x M\ U{diagonals}

. . : - %
In this viewpoint: extension=renormalization. (erunetietal. sH & waid)
@ Combinatorial problem: Diagonals intersect each other —
“nested divergencies”

@ Analytical problem: Must understand singularity structure
— “wave-front-set,” (poly)-logarithmic scaling, ...

Local covariance condition reduces “renormalization ambiguity”
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Renormalization

First expansion: time-ordered products
Tn(¢'(21) @ - ® ¢ (2n))
= >ty (@, wn) ¢ (1) P (@)

cov. def. Wick product

Second expansion: C-valued distributions

t(xl""vxnflay) RGB \‘

~ ZP[VkR(y),couplings]
x  Lorentz inv. Minkowski distributions M

U(fla cee 7§n—1)
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Third expansion: Diagrams

© Subdivergences already
renormalized.

V(Eq, o &) =

massless
propagators /

Feynman
Diagrams(E

4 23

— Renormalization possible to arbitrary orders!

[S.H. & Wald 2002]
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Third expansion: Diagrams © Subdivergences already

renormalized.
@ Diagrams “live” in
— tangent space T, M.
V(El’ "En—l) - ’

massless
propagators /

Feynman
Diagrams(E

4 23

— Renormalization possible to arbitrary orders!

[S.H. & Wald 2002]
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Third expansion: Diagrams © Subdivergences already

renormalized.
@ Diagrams “live” in
V(& ... &) = tangent space T, M.
© E.g. dimensional

regularization possible

massless at this stage.
propagators /

Feynman
Diagrams(E

4 23

— Renormalization possible to arbitrary orders!

[S.H. & Wald 2002]
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Example: 3-point OPE

To leading order in perturbation theory, and leading order in
deviation from flat space, 3-point OPE in scalar A¢*-theory has
structure

(1) p(w2)P(3) ~
[Z% +2ZClg(ai) +...]o(y)

OPE—coefficient C(z1,x2,23;y)

3—-Point Operator Prodt

(4-other operators)

Cla(z)—Clausen function
oi;—geodesic distance
a—curved space area of triangle
D—geometrical determinant
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Yang-Mills theory

Can repeat procedure for Yang-Mills theory, L = d4m\/§ |F|?,
with F' = dA + iA[A, A] curvature of non-abelian gauge
connection.

New issues:

@ Need to deal with local gauge invariance
AL — @ ACHE T T

@ Pass to gauge-fixed theory with additional fields.
@ Recover original theory as cohomology of auxiliary theory.

@ Need suitable renormalization prescription (— “Ward
identities”).
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Strategy

@ Introduce auxiliary theory L = Ly, + Ly + Lgp, + Ly, With
more fields and BRST-invariance.

@ Construct quantized auxiliary theory.

@ Define quantum BRST-current J, ensure that d =« J = 0.

@ Define quantum BRST-charge @) = fz J, ensure that
Q?=0.

@ Define interacting field observables as cohomology of Q)

@ OPE closes among gauge invariant operators

@ Renormalization group flow ("operator mixing”) closes
among gauge-invariant fields.
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Ward identities

Construction requires the satisfaction of new set of identities s+.

2007]-

[Qo, T<eg’/ﬁ)] = %T( (So+,S)+0)® eg’/ﬁ) J

where S = Sy + AS; + A2S2,and ¥ = [ f A O'is a local
observable smeared with cutoff function. Bracket defined by

(P.Q) = [y (%% (P o Q))

Proof is difficult and requires techniques from relative
cohomolgy.
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New application of OPE in curved space: OPE can e.g. be
used in calculations of quantum field theory fluctuations in early
universe, where curvature cannot be neglected.

Example: Consider w3 = (¢¢d)y Where ¢ suitable field
parametrizing density contrast dp/p.

@ Step 1. Compute OPE-coefficients from perturbation
theory (reliable in asymptotically free theories).

Application: Non-Gaussianities in CMB, bispectrum (—

3/2
fNL == wg/’w2/ [Shellard,Maldacena,Spergel,...], [Eriksen et al., Bartolo et al., Cabella et al.,

Gaztanaga et al. (constraints from WMAP data),...]), s
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New application of OPE in curved space: OPE can e.g. be
used in calculations of quantum field theory fluctuations in early
universe, where curvature cannot be neglected.

Example: Consider w3 = (¢¢d)y Where ¢ suitable field
parametrizing density contrast dp/p.

@ Step 1. Compute OPE-coefficients from perturbation
theory (reliable in asymptotically free theories).

@ Step 2: Write w3 ~ > C* (O;)y.
@ Step 3: Get form factors (O;)y e.g. from (a) AdS-CFT, (b)
view as input parameters.
Application: Non-Gaussianities in CMB, bispectrum (—

3/2
fNL == wg/’w2/ [Shellard,Maldacena,Spergel,...], [Eriksen et al., Bartolo et al., Cabella et al.,

Gaztanaga et al. (constraints from WMAP data),...]), s
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Conclusions

4]

QFT in curved spacetime is a well-developed formalism
capable of treating physically interesting interacting models

@ Renormalized OPE in curved spacetime available

@ Potential applications in Early Universe/cosmology

@ Gauge fields can be treated if suitable Ward identities
imposed

@ Open issues: Supersymmetry, non-pert. regime, singular

backgrounds, convergence of pert. series, consistency
conditions,...
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