Wedge-Local Quantum Fields, Non-Commutative Minkowski Space, and Interaction

[arXiv:0706.3992]

Harald Grosse^a & Gandalf Lechner^b

 a : Department of Physics, University of Vienna b : Erwin Schrödinger Institute for Mathematical Physics, Vienna

Vienna Seminar 2007 01.12.2007

Commutative and Non-Commutative QFT

"Commutative QFT"	"Non-Commutative QFT"
Spacetime $ eals^d$ (Minkowski)	Spacetime $\mathbb{R}^d_{ heta}$, $[\hat{m{x}}_{\mu},\hat{m{x}}_{ u}]=i heta_{\mu u}$
Quantum Field $\phi(x)$	Quantum Field via Weyl-Moyal: $\phi_{\otimes}(\theta,x):=\int d^d p\; e^{ip\cdot(\hat{\boldsymbol{x}}+x)}\otimes \tilde{\phi}(p)$
Most important principles: Locality & Poincaré Covariance	Locality & (Lorentz) Covariance are broken
$\phi(x), \phi(y) = 0 \text{ if } (x - y)^2 < 0$	$\left \left[\phi_{\otimes}(\theta, x), \phi_{\otimes}(\theta, y) \right] \neq 0 \text{ if } (x - y)^2 < 0 \right. \right $
$U(y,\Lambda)\phi(x)U(y,\Lambda)^{-1} = \phi(\Lambda x +$	$y) \Lambda heta \Lambda^T eq heta$ for all Λ

- NC QFT should "look like usual QFT" on larger scales
- Analysis of (remnants of) locality and covariance in NC QFT needed
- Here: Study the situation in a simple model

ullet Simplest example: Free scalar massive field ϕ in d=s+1 dimensions,

$$\phi_{\otimes}(\theta, x) = \int \frac{d^{s} \mathbf{p}}{\omega_{\mathbf{p}}} \left(e^{ip \cdot x} a_{\otimes}^{*}(\theta, p) + e^{-ip \cdot x} a_{\otimes}(\theta, p) \right) ,$$

$$a_{\otimes}(\theta, p)^{*} := e^{ip \cdot \hat{\mathbf{x}}} \otimes a(p)^{*} , \qquad a_{\otimes}(\theta, p) := e^{-ip \cdot \hat{\mathbf{x}}} \otimes a(p)$$

- $a^{\#}(p)$: canonical commutation relations
- $oldsymbol{\omega}_{oldsymbol{p}} = \sqrt{oldsymbol{p}^2 + m^2}$, $oldsymbol{p} \in {
 m I\!R}^s$
- $\mathcal{H}=$ Bose Fock space over one particle space $\mathcal{H}_1=L^2({\rm I\!R}^s,d^sm{p}/\omega_{m{p}})$
- $\Omega = Fock vacuum vector$
- Commutation relations of the $a_{\otimes}^{\#}(\theta,p)$:

$$a_{\otimes}(\theta, p)a_{\otimes}(\theta, p') = e^{-ip\theta p'} a_{\otimes}(\theta, p') a_{\otimes}(\theta, p), \qquad p\theta p' := p_{\mu}\theta^{\mu\nu} p'_{\nu},$$

$$a_{\otimes}(\theta, p)a_{\otimes}^{*}(\theta, p') = e^{+ip\theta p'} a_{\otimes}^{*}(\theta, p') a_{\otimes}(\theta, p) + \omega_{\mathbf{p}}\delta(\mathbf{p} - \mathbf{p}') \cdot 1.$$

• $\theta \neq 0 \Longrightarrow \phi_{\otimes}(\theta, x)$ not local

• *n*-point functions [Chaichian et.al. 04], [Fiore/Wess 07]

$$\mathcal{W}_n^{\theta}(x_1, ..., x_n) = \langle \Omega, \phi_{\otimes}(\theta, x_1) \cdots \phi_{\otimes}(\theta, x_n) \Omega \rangle$$
$$= 1 \cdot \langle \Omega, \phi(x_1) \star_{\theta} \dots \star_{\theta} \phi(x_n) \Omega \rangle$$

with
$$f(x)\star_{\theta}g(y)=\exp\left(-\frac{i}{2}\partial_{x}^{\mu}\theta_{\mu\nu}\partial_{y}^{\nu}\right)f(x)g(y)$$

"Moyal tensor product"

- amounts to considering a vacuum state of the form $\nu \otimes \langle \Omega \,,\, .\, \Omega \rangle$ on the algebra $\mathcal{F}^{\theta}_{\otimes}$ of fields $\phi_{\otimes}(\theta,x)$
- switch to appropriate (GNS) representation $(\mathcal{F}^{\theta}_{\otimes}$ acts reducibly on $\mathcal{V}\otimes\mathcal{H})$

n-Point Functions and Vacuum Representation

- ullet Representation on Fock space ${\cal H}$, with vacuum vector Ω
- Representation of the fields $\phi_{\otimes}(\theta,x)$ [Akofor/Balachandran/Jo/Joseph 07, Grosse 79, GL 06, ...]

$$\begin{split} \phi(\theta,x) := \int \frac{d^s \boldsymbol{p}}{\omega_{\boldsymbol{p}}} \left(e^{i\boldsymbol{p}\cdot\boldsymbol{x}} \, a^*(\theta,p) + e^{-i\boldsymbol{p}\cdot\boldsymbol{x}} \, a(\theta,p) \right) \\ a(\theta,p) := e^{\frac{i}{2}p\theta P} a(p) \,, \qquad a^*(\theta,p) := e^{-\frac{i}{2}p\theta P} a^*(p) \,, \end{split}$$
 with $(P^{\mu}\Psi)_n(p_1,...,p_n) = \sum_{k=1}^n p_k^{\mu} \cdot \Psi_n(p_1,...,p_n) \,, \qquad \Psi \in \mathcal{H}.$

Relation to free field on commutative Minkowski space:

$$\phi(\theta, x) := e^{\frac{1}{2}\partial_x^{\mu}\theta_{\mu\nu}P^{\nu}} \phi(x)$$

 $\phi(\theta,x)$ can be understood as a deformation of $\phi(x)$

ullet Also possible for general quantum fields ϕ (Buchholz' talk)

Covariance Properties of $\phi(\theta, x)$

• Consider usual "untwisted" representation U of Poincaré group on \mathcal{H} : $((y,\Lambda)x=\Lambda x+y,\ j(x)=-x\ \text{total reflection})$

$$(U(y,\Lambda)\Psi)_n(p_1,...,p_n) = e^{i\sum_{k=1}^n p_k \cdot y} \Psi_n(\Lambda^{-1}p_1,...,\Lambda^{-1}p_n)$$
$$(U(0,j)\Psi)_n(p_1,...,p_n) = \overline{\Psi_n(p_1,...,p_n)}$$

• Transformation behaviour of $\phi(\theta, x)$ under U:

$$U(y,\Lambda)\phi(\theta,x)U(y,\Lambda)^{-1} = \phi(\gamma_{\Lambda}(\theta), \Lambda x + y)$$
$$\gamma_{\Lambda}(\theta) := \begin{cases} \Lambda \theta \Lambda^{T} & ; & \Lambda \in \mathcal{L}^{\uparrow} \\ -\Lambda \theta \Lambda^{T} & ; & \Lambda \in \mathcal{L}^{\downarrow} \end{cases}$$

- ullet $\gamma_{\Lambda}(heta)= heta$ for all Lorentz transformations Λ only possible for heta=0
- $\bullet \Longrightarrow \phi(\theta, x)$ is not covariant for $\theta \neq 0$.

Covariance Properties of $\phi(\theta, x)$

• For the "standard θ " in d=4 dimensions,

$$\theta = \theta_1 = \vartheta \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \qquad \vartheta \neq 0,$$

we have $\gamma_{\Lambda}(\theta_1) = \theta_1$ only for

- $\Lambda = \mathsf{Boost}$ in x_1 -direction
- $\Lambda = \text{Rotation in } x_2 x_3 \text{plane}$
- Fixed θ breaks Lorentz symmetry \Rightarrow consider family of fields

$$\{\phi(\theta,x)\,:\,\theta\in\Theta\}$$

with γ -orbit $\Theta = \{ \gamma_{\Lambda}(\theta_1) : \Lambda \in \mathcal{L} \}$

• get theory with many quantum fields

• Commutation relations between $a^{\#}(\theta,p)$ and $a^{\#}(\theta',p')$ needed

Commutation relations for different θ : $a(\theta,p)a(\theta',p') = e^{-\frac{i}{2}p(\theta+\theta')p'}a(\theta',p')a(\theta,p)$ $a^*(\theta,p)a^*(\theta',p') = e^{-\frac{i}{2}p(\theta+\theta')p'}a^*(\theta',p')a^*(\theta,p)$ $a(\theta,p)a^*(\theta',p') = e^{+\frac{i}{2}p(\theta+\theta')p'}a^*(\theta',p')a(\theta,p)$ $+ \omega_{\boldsymbol{p}}\delta(\boldsymbol{p}-\boldsymbol{p}')e^{\frac{i}{2}p(\theta-\theta')P}$

- Transformation behaviour $\phi(\theta,x) \to \phi(\gamma_{\Lambda}(\theta),\Lambda x + y)$ similar to string-localized fields of [Mund/Schroer/Yngvason 05]
- Interpretation of θ as localization region in \mathbb{R}^d possible?

Wedges and wedge-local quantum fields

Idea:

Find set \mathcal{W}_0 of (causally complete) regions in \mathbb{R}^d and a bijection

$$W: \Theta \to \mathcal{W}_0$$
, $W(\gamma_{\Lambda}(\theta)) = \Lambda W(\theta) =: \iota_{\Lambda}(W(\theta))$.

- \rightarrow need isomorphic homogeneous spaces $(\mathcal{W}_0, \iota) \cong (\Theta, \gamma)$
 - $W_1 := W(\theta_1)$ must satisfy

$$\Lambda W_1 = W_1$$
 for $\gamma_{\Lambda}(\theta_1) = \theta_1$

- \rightarrow Condition on the shape of $W_1 \subset \mathbb{R}^4$:
 - $\Lambda W_1 = W_1$ for $\Lambda = \mathsf{Boost}$ in x_1 -direction
 - $\Lambda W_1 = W_1$ for $\Lambda = \text{Rotation in } x_2$ - x_3 -plane
- Such a region is well-known: The wedge

$$W_1 = \{ x \in \mathbb{R}^d : x_1 > |x_0| \}$$

Wedges in \mathbb{R}^d

- Reference region $W_1 := \{x \in \mathbb{R}^d : x_1 > |x_0|\}$
- Set of wedges: $\mathcal{W}_0 := \mathcal{L}W_1$ (Lorentz transforms of W_1)
- $W \in \mathcal{W}_0$ satisfies W' = -W.
- Pictures in d=3:

Wedges in ${ m I\!R}^d$

- Reference region $W_1 := \{x \in \mathbb{R}^d : x_1 > |x_0|\}$
- Set of wedges: $\mathcal{W}_0 := \mathcal{L}W_1$ (Lorentz transforms of W_1)
- $W \in \mathcal{W}_0$ satisfies W' = -W.
- Pictures in d=3:

Wedges in ${ m I\!R}^d$

- Reference region $W_1 := \{x \in \mathbb{R}^d : x_1 > |x_0|\}$
- Set of wedges: $\mathcal{W}_0 := \mathcal{L}W_1$ (Lorentz transforms of W_1)
- $W \in \mathcal{W}_0$ satisfies W' = -W.
- Pictures in d=3:

Wedges in \mathbb{R}^d

- Reference region $W_1 := \{x \in \mathbb{R}^d : x_1 > |x_0|\}$
- Set of wedges: $\mathcal{W}_0 := \mathcal{L}W_1$ (Lorentz transforms of W_1)
- $W \in \mathcal{W}_0$ satisfies W' = -W.
- Pictures in d=3:

Consider symmetry group $\hat{\mathcal{L}} := \mathcal{L}_+^{\uparrow} \cup j \mathcal{L}_+^{\uparrow}$ ($\hat{\mathcal{L}} = \mathcal{L}_+$ in even dimensions)

Proposition

Let $\vartheta \neq 0$. Then

 $\bullet \ \theta(\Lambda W_1) := \gamma_{\Lambda}(\theta_1) \text{ is a well-def. iso. of } \hat{\mathcal{L}}\text{-homogeneous spaces iff}$

$$\theta_1 = \vartheta \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} (d \neq 4), \ \theta_1 = \vartheta \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} (d = 4).$$

- $\theta(W') = -\theta(W), \quad W \in \mathcal{W}_0.$
 - \bullet Matching of symmetries of wedges and nc. params for d=2,3,4
 - P, T broken in d = 4, but TCP not, i.e. $j: x \mapsto -x$ is a symmetry
 - Proof of second statement: Recall W' = -W.

$$\Longrightarrow \theta(W') = \theta(jW) = \gamma_j(\theta(W)) = -j\theta(W)j^T = -\theta(W).$$

• With the isomorphism $\theta: \mathcal{W}_0 \to \Theta$, define, $W \in \mathcal{W}_0$,

$$\phi_W(x) := \phi(\theta(W), x)$$

$$= \int \frac{d^s \mathbf{p}}{\omega_{\mathbf{p}}} \left(a^*(\theta(W), p) e^{ip \cdot x} + a(\theta(W), p) e^{-ip \cdot x} \right)$$

Direct consequence of construction:

$$U(y,\Lambda)\phi_W(x)U(y,\Lambda)^{-1} = \phi(\gamma_\Lambda(\theta(W)), \Lambda x + y)$$
$$= \phi_{\Lambda W}(\Lambda x + y)$$

- ullet $\phi_W(x)$ describes an extended field configuration in W+x
- Is $\phi_W(x)$ localized in W+x in the sense of Einstein, i.e.

$$[\phi_W(x), \phi_{\tilde{W}}(y)] = 0$$
 for $(W+x) \subset (\tilde{W}+y)'$?

Causal configurations of wedges and fields

- Answer: Yes!
- \bullet For the proof, use geometrical fact: If $W, \tilde{W} \in \mathcal{W}_0$ are spacelike separated, then

$$W \subset \tilde{W}' \Longrightarrow \tilde{W} = W' + a$$
 for some $a \in \mathbb{R}^d$

 \Longrightarrow For proving wedge-locality, it is sufficient to consider

$$[\phi_{W_1}(f), \phi_{W_1'}(g)], \qquad f \in C_0^{\infty}(W_1), \ g \in C_0^{\infty}(W_1')$$

 \bullet Recall algebra of the $a^{\#}(\theta,p)$ and $\theta(W')=-\theta(W).$

$$\begin{split} & [a(\theta(W),p),\,a(\theta(W'),p')] = 0 \\ & [a^*(\theta(W),p),\,a^*(\theta(W'),p')] = 0 \\ & [a(\theta(W),p),\,a^*(\theta(W'),p')] = \omega_{\boldsymbol{p}}\delta(\boldsymbol{p}-\boldsymbol{p}')e^{ip\theta(W)P} \end{split}$$

• Then do analytic continuation from upper to lower mass shell. Result:

Theorem

 ϕ_W is a temperate quantum field with the following properties, $W \in \mathcal{W}_0$

1 Covariance: $(y, x \in \mathbb{R}^d, \Lambda \in \hat{\mathcal{L}}, W \in \mathcal{W}_0)$

$$U(y,\Lambda)\phi_W(x)U(y,\Lambda)^{-1} = \phi_{\Lambda W}(\Lambda x + y).$$

2 Wedge-Locality: $(x, y \in \mathbb{R}^d, W, \tilde{W} \in \mathcal{W}_0)$

$$(W+x) \subset (\tilde{W}+y)' \Longrightarrow [\phi_W(x), \phi_{\tilde{W}}(y)] = 0.$$

3 Reeh-Schlieder property ($\mathcal{O} \subset \mathbb{R}^d$ open, $W \in \mathcal{W}_0$):

$$\overline{\operatorname{span}\{\phi_W(f_1)\cdots\phi_W(f_n)\Omega\ :\ n\in\mathbb{N}_0,\ f_1,...,f_n\in\mathscr{S}(\mathcal{O})\}}=\mathcal{H}\,.$$

The two-dimensional case, relation to integrable models

• In d=2, $\mathcal{W}_0=\{W_1,-W_1\}$ and $\Theta=\{\theta_1,-\theta_1\}$. Isomorphism $\theta:\mathcal{W}_0\to\Theta$ is

$$\theta(\pm W_1) = \pm \theta_1 = \pm \vartheta \begin{pmatrix} 0 & +1 \\ -1 & 0 \end{pmatrix}.$$

• Put $p(\beta) := m(\cosh \beta, \sinh \beta) \in H_m^+$. Then

$$e^{ip(\beta_1)\theta_1p(\beta_2)} = e^{i\vartheta m^2 \sinh(\beta_1 - \beta_2)} =: S_2(\beta_1 - \beta_2)$$

Let

$$z(\beta) := a(-\theta_1, p(\beta)), \qquad z(\beta)' := a(\theta_1, p(\beta)).$$

Commutation relations:

$$z(\beta_1)z(\beta_2) = S_2(\beta_1 - \beta_2) z(\beta_2)z(\beta_1) z(\beta_1)z^{\dagger}(\beta_2) = S_2(\beta_2 - \beta_1) z^{\dagger}(\beta_2)z(\beta_1) + \delta(\beta_1 - \beta_2) \cdot 1$$

ightarrow representation of Zamolodchikov-Faddeev alg. with sc. fctn S_2

$$z(\beta_1)'z(\beta_2)' = S_2(\beta_1 - \beta_2)^{-1} z(\beta_2)'z(\beta_1)'$$

$$z(\beta_1)'z^{\dagger}(\beta_2)' = S_2(\beta_2 - \beta_1)^{-1} z^{\dagger}(\beta_2)'z(\beta_1)' + \delta(\beta_1 - \beta_2) \cdot 1$$

- ightarrow representation of Zamolodchikov-Faddeev alg. with sc. fctn S_2^{-1}
- S_2 is a scattering function for $\vartheta \geq 0$, i.e. bounded & analytic on $\{\zeta: 0 < \operatorname{Im} \zeta < \pi\}$ and

$$\overline{S_2(\beta)} = S_2(\beta)^{-1} = S_2(\beta + i\pi) = S_2(-\beta).$$

• In d=2, the algebraic structure coincides precisely with the structure of an integrable QFT with scattering function

$$S_2(\beta) = e^{im^2\vartheta \sinh \beta}$$

[Schroer 97, GL 03, Buchholz/GL 04, GL 06]

- But S_2 is not regular in the sense that it is bounded and analytic on $\{-\kappa < \operatorname{Im} \zeta < \pi + \kappa\}$ with $\kappa > 0$
- Known existence/structure theorems for local observables [Buchholz/GL 04, GL 06] do not apply here
- Status of local observables presently unclear
- Non-locality expected from relation to noncommutative spacetime

Generalizations (in arbitrary dimension)

ullet Other deformations of the field ϕ are possible, for example

$$a(\theta, p) := \Sigma_{\theta}(p)a(p)$$

with

$$(\Sigma_{\theta}(p)\Psi)_n(q_1,...,q_n) := \prod_{k=1}^n S_2(\operatorname{Arsinh}(p\theta q_k))^{1/2} \cdot \Psi_n(q_1,...,q_n),$$

and S_2 a (...) scattering function.

Leads to a slightly different exchange algebra of the form

$$a(\theta, p)a(\theta', p') = A_{\theta\theta'}(p, p')a(\theta', p')a(\theta, p)$$

$$a(\theta, p)a^*(\theta', p') = B_{\theta\theta'}(p, p')a^*(\theta', p')a(\theta, p) + \delta(\mathbf{p} - \mathbf{p}') C_{\theta\theta'}(p)$$

Covariance, Wedge-Locality and Reeh-Schlieder still holds for

$$\phi(\theta, x) = \int \frac{d^{s} \mathbf{p}}{\omega_{\mathbf{p}}} \left(e^{i\mathbf{p}\cdot x} a^{*}(\theta, p) + e^{-i\mathbf{p}\cdot x} a(\theta, p) \right)$$

Interaction in higher dimensions, scattering states

- Given any of these deformed families of quantum fields, what about the interaction? Interpretation of S_2 ?
- ullet In d>1+1, it is still possible to calculate two-particle scattering
- Method: Haag-Ruelle scattering theory
- Construct two-particle states with the right asymptotic localization and momentum space properties [Borchers/Buchholz/Schroer 00]
- Results: Two-particle scattering states depend on non-commutativity (choice of wedge-fields)

$$(f^{+} \times g^{+})_{\text{out}}^{W}(p,q) = e^{-\frac{i}{2}p\,\theta(W)q}\,f^{+}(p)g^{+}(q) + e^{\frac{i}{2}p\,\theta(W)q}\,f^{+}(q)g^{+}(p)$$
$$(f^{+} \times g^{+})_{\text{in}}^{W}(p,q) = e^{\frac{i}{2}p\,\theta(W)q}\,f^{+}(p)g^{+}(q) + e^{-\frac{i}{2}p\,\theta(W)q}\,f^{+}(q)g^{+}(p)\,.$$

Deformation of the S-Matrix

- Similar formulae for the more general deformations (with $a(\theta,p)=\Sigma_{\theta}(p)a(p)$)
- NC leads to change of S-matrix: non-trivial scattering
- Properties of the deformed S-matrix: Buchholz' talk
- ullet $e^{ip heta q}$ is phase \Rightarrow No change in cross sections, but in time delays
- Situation similar to integrable models in d = 1 + 1
- Wedge-local, covariant, interacting QFT in any dimension

Local observables

- Many wedge-local fields exist, but what about local observables?
- ullet Condition on a (bounded) operator A to be localized in a region $\mathcal O$ in Minkowski space:

$$[A, \phi_W(x)] = 0$$
 whenever $\mathcal{O} \subset (W+x)'$

- \bullet Set $\mathcal{A}(\mathcal{O})$ of all solutions of this condition is a (v. Neumann) algebra.
- \bullet Local observable content of the model measured by "size" of $\mathcal{A}(\mathcal{O})$ for bounded \mathcal{O}
- Reminder: Situation in local QFT:

$$\mathcal{A}(\mathcal{O})\Omega \subset \mathcal{H}$$
 is dense (Reeh-Schlieder property)

• Extreme opposite: $\mathcal{A}(\mathcal{O})=\mathbb{C}\cdot 1$ for all bounded \mathcal{O} (No local observables at all).

Situation in the model at hand:

Proposition

Let $\vartheta \neq 0$.

- ① If d = 1 + 1, the Reeh-Schlieder property holds, and the theory is completely local.
- ② If d>1+1, the Reeh-Schlieder property is not valid locally, i.e. $\mathcal{A}(\mathcal{O})\Omega\subset\mathcal{H}$ is not dense if \mathcal{O} is bounded.
 - Indirect evidence for non-locality of the model
 - Similar situation found in [Buchholz/Summers 06]
 - ullet Model defined by the fields ϕ_W is not generated by a local QFT

Conclusions and open questions

New family of model QFTs:

- Related to "free" field on NC Minkowski space
- Consequent application of Poincaré symmetry leads to wedge-local fields
- Remnants of Covariance and Locality found in NC model
- Two-particle S-Matrix becomes non-trivial

Big open question:

- How to do scattering theory on NC spaces in general?
- Notion of "asymptotically commutative" spaces needed / helpful