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1. Distance in noncommutative geometry

A geometry “without points”, but the notion of distance available via Connes
formula. The metric information is encoded within the Dirac operator

ds = D−1

I Riemannian compact spin manifold M:

−iγµ∂µ ⇐⇒ riemannian geodesic distance.

I Fibre bundle P with connection:

−iγµ(∂µ + Aµ)⇐⇒?

Noncommutative geometry provides a metric interpretation of the gauge
fields, including the Higgs field (Connes, Chamseddine, Lott).
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Real line: sup
f∈C∞(R)

{|f (x)− f (y)| / ‖f ′‖ ≤ 1} = |x − y |.

f(Y)

X Y
f(X)

Riemannian spin manifold M:

sup
f∈C∞(M)

{|f (x)− f (y)| /
∥∥∥−−→grad f

∥∥∥ ≤ 1} = dgeo(x , y).

I The upper bound is attained because there exists f with
∥∥∥−−→grad f

∥∥∥ = 1

everywhere on the geodesic (x , y), i.e f (z) = dgeo(x , z).
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Noncommutative space: by Gelfand duality,

P(C∞ (M)) ' M

ωx(f ) = f (x)

with P(A) the pure states of A (normalized positive linear maps C∞(M)→ C).

[γµ∂µ, f ]ψ = γµ∂µf ψ − f γµ∂µψ = (γµ∂µf )ψ

‖[γµ∂µ, f ]‖2 = ‖γµ∂µf ‖2 = ‖(γµ∂µf )(γν∂ν f )∗‖ = ‖gµν∂µ∂ν f ‖ =
∥∥∥−−→grad f

∥∥∥
d(ωx , ωy )

.
= sup

f∈C∞(M)

{|ωx(f )− ωy (f )| / ‖[γµ∂µ, f ]‖ ≤ 1}

→ Definition of the distance that still makes sense for noncommutative A as
soon as there is a Dirac operator → coherent with the classical case when
A = C∞ (M) : d = dgeo ,
→ does not involve notions ill-defined in a quantum context (e.g. trajectories
between points) but only spectral properties: spectral distance.
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2. Gauge fields in NCG

Connection: action of In(A) on the geometry (A π→ H,D),

π → π ◦ αu ⇐⇒ D → DA
.

= D + A + JAJ−1

A
.

= u[D, u∗].

Particular case of a fluctuation of the metric (export the metric to a Morita
equivalent geometry; A characterizes the connection on the module):

A = Σ
i

ai [D, bi ].

Product of the continuum by the discrete:

pure state:(x , ωI )⇐= A = C∞ (M)⊗AI

H = L2(M,S)⊗HI

D = −iγµ∂µ ⊗ II + γ5 ⊗ DI

=⇒ A = H − iγµAµ

I H: scalar field on M with value in AI → Higgs.

I Aµ: 1-form field with value in Lie(U(AI )) → gauge field.
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3. Scalar fuctuation Aµ = 0,H 6= 0 (Wulkenhaar, P.M. 2001)

A = C∞ (M)⊗AI with AI = C⊕H⊕M3(C) =⇒ P(A) is a two-sheet model

X2

C

.

Y2

Y1 H
X1.

.
.

.

The spectral distance d coincides with the geodesic distance in M × [0, 1] given by„
gµν 0

0
`
|1 + h1|2 + |h2|2

´
m2

top

«
where

„
h1

h2

«
is the Higgs doublet.
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4. Gauge fluctuation Aµ 6= 0,H = 0

Example suggested by Connes (96)

A = C∞ (M)⊗AI with AI = Mn(C), DI = 0.

P(A) is a trivial bundle P
π→ M with fiber CPn−1,

P 3 p = (x , ξ) = ξx , ξx(a) = 〈ξ, a(x)ξ〉 = Tr(sξa(x)).

The part of DA that does not commute with the representation is the covariant
Dirac operator −iγµ(∂µ + Aµ) associated to to the connection.
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The connection defines both a spectral distance d and an horizontal distance dH :

TpP = VpP ⊕ HpP =⇒ dH(p, q) = Inf
ċt∈HctP

∫ 1

0

‖ċt‖ dt.

t

M

ξ

ζ

x

x

x

C

dH(ξx , ζx) = 4π

d ≤ dH

points at finite horizontal distance points at finite spectral distance

↙ ↘
Acc(ξx) Con(ξx)

Acc(ξx) ⊂ Con(ξx)
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Holonomy obstruction

f (z) = ωz(f ) = dgeo(x , z) =⇒ Ct(a) = dH(ξx ,Ct)

for any Ct in the minimal horizontal curve C between ξx = C0, ζy = C1.

*

ζ

p

p

p

1

0

2C

z = 
y

x

C

y

10 = =π (p )(p ) (p )2(p ) π π

ξ
x

For Ct = pi , i = 0, 1, 2, ... k,

Tr(spi a(z)) = dH(ξx , pi ).

I If k > n2, too many conditions on a(z) ! The spectral and horizontal
distances cannot be equal.

I Can one find a minimal horizontal curve with less than n2 intersecting
points ?
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Spectral distance on the circle

A = C∞(S1,Mn(C)) =⇒ pure states form a CPn−1 trivial bundle on S1,
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ωj
.

=

∫ 2π

0

θ1(t)− θj(t) dt

2
, A = i

 θ1 . . . 0
...

. . .
...

0 . . . θn

 , ξx =

 V1

...
Vn

 ∈ CPn−1.
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Fiberwise,

Acc(ξx) ∩ π−1(x) =

(
V1

e2iπkωj Vj

)
, k ∈ Z, j = 2, ..., n.

Con(ξx) ∩ π−1(x) =


Vi ∀i ∈ Far1

e iϕ2 Vi ∀i ∈ Far2

. . .
e iϕnc Vi ∀i ∈ Farnc

 , ϕj ∈ R, j ∈ [2, nc ]

where Farj are the classes of equivalence of i ∼ j iff ωj = ωi mod[2π].

I Con(ξx) is a torus inside CPn−1 with dimension nc given by the holonomy.

I Acc(ξx) is the orbit of ξx under the action of the holonomy group.
At best it is dense within Con(ξx).

Acc(ξx) ( Con(ξx)



Fiberwise,

Acc(ξx) ∩ π−1(x) =

(
V1

e2iπkωj Vj

)
, k ∈ Z, j = 2, ..., n.

Con(ξx) ∩ π−1(x) =


Vi ∀i ∈ Far1

e iϕ2 Vi ∀i ∈ Far2

. . .
e iϕnc Vi ∀i ∈ Farnc

 , ϕj ∈ R, j ∈ [2, nc ]

where Farj are the classes of equivalence of i ∼ j iff ωj = ωi mod[2π].

I Con(ξx) is a torus inside CPn−1 with dimension nc given by the holonomy.

I Acc(ξx) is the orbit of ξx under the action of the holonomy group.
At best it is dense within Con(ξx).

Acc(ξx) ( Con(ξx)



Fiberwise,

Acc(ξx) ∩ π−1(x) =

(
V1

e2iπkωj Vj

)
, k ∈ Z, j = 2, ..., n.

Con(ξx) ∩ π−1(x) =


Vi ∀i ∈ Far1

e iϕ2 Vi ∀i ∈ Far2

. . .
e iϕnc Vi ∀i ∈ Farnc

 , ϕj ∈ R, j ∈ [2, nc ]

where Farj are the classes of equivalence of i ∼ j iff ωj = ωi mod[2π].

I Con(ξx) is a torus inside CPn−1 with dimension nc given by the holonomy.

I Acc(ξx) is the orbit of ξx under the action of the holonomy group.
At best it is dense within Con(ξx).

Acc(ξx) ( Con(ξx)



Fiberwise,

Acc(ξx) ∩ π−1(x) =

(
V1

e2iπkωj Vj

)
, k ∈ Z, j = 2, ..., n.

Con(ξx) ∩ π−1(x) =


Vi ∀i ∈ Far1

e iϕ2 Vi ∀i ∈ Far2

. . .
e iϕnc Vi ∀i ∈ Farnc

 , ϕj ∈ R, j ∈ [2, nc ]

where Farj are the classes of equivalence of i ∼ j iff ωj = ωi mod[2π].

I Con(ξx) is a torus inside CPn−1 with dimension nc given by the holonomy.

I Acc(ξx) is the orbit of ξx under the action of the holonomy group.
At best it is dense within Con(ξx).

Acc(ξx) ( Con(ξx)



Fiberwise,

Acc(ξx) ∩ π−1(x) =

(
V1

e2iπkωj Vj

)
, k ∈ Z, j = 2, ..., n.

Con(ξx) ∩ π−1(x) =


Vi ∀i ∈ Far1

e iϕ2 Vi ∀i ∈ Far2

. . .
e iϕnc Vi ∀i ∈ Farnc

 , ϕj ∈ R, j ∈ [2, nc ]

where Farj are the classes of equivalence of i ∼ j iff ωj = ωi mod[2π].

I Con(ξx) is a torus inside CPn−1 with dimension nc given by the holonomy.

I Acc(ξx) is the orbit of ξx under the action of the holonomy group.
At best it is dense within Con(ξx).

Acc(ξx) ( Con(ξx)



The shape of the fiber for n = 2
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# x 

x 

{

dH(0, ϕ) = 2kπ if ϕ = 2kπω mod [2π]

d(0, ϕ) = C sin ϕ
2 with C = 4π|V1||V2|

|sinωπ|
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¹¹
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I No cutlocus for the distance function d : the fiber is smoother than a circle.
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First interpretation: d(0, ϕ) is the euclidean distance on the cardioid. But the
latest is not invariant by rotation whereas d is.

O1O0

O2

O2O0

O1

O1

O2

O2

O1

I With the spectral distance, everyone can equally pretend to be the center of
the world.
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Second interpretation: length of the segment in the disk

!
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2 sin  _  
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!

The spectral distance “sees” the disk through the circle, in the same way as it
sees between the sheets of the standard model.

I The spectral distance “sees” the disk through the circle, in the same way as
it sees between the sheets of the standard model.
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5. On the line element in noncommutative geometry

ds = D−1

For the product of geometry,

D = −iγµ∂µ ⊗ II + γ5 ⊗ DI =⇒ D2 = (γµ∂µ)2 ⊗ II + IE ⊗ D2
I

=⇒ ds−2 = ds−2
E + ds−2

I .

I Pythagore−1 (cf Connes’ post on NCG blog).

Two-sheet model,(
gµν 0

0
(
|1 + h1|2 + |h2|2

)
m2

top

)
=⇒ ds2 = ds2

E + ds2
I .

I What is the equivalent for the disk ?

ds2
disk = function(ds2

circle,A) ?
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Conclusion

I Distance on the fiber for n ≥ 2, d(ξx , ζx) = πTr|S | where S is the matrix
with components

Sij
.

= 2|Vi ||Vj |
sin
(
ϕj−ϕi

2

)
sinπ(ωj − ωi )

.

I Formula for distance between the fibers.

I From a bundle point of view, the spectral distance seems more interesting
than the horizontal one since it sees through the leaves of the foliation.

I Topological effect due to M = S1 ? Other basis requires to know the
number of selfintersecting points of C∗.

Spectral distance on S1: math.OA/0703586, submitted to J. Func. Anal.
CC vs NC-distance: Com.Math.Phys. 265 (2006) 585-616,
or a non technical version, Cluj university press, hep-th/0603051.

Scalar fluctuation: with R. Wulkenhaar, J.Math.Phys. 43 (2002) 182-204.
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Distance between the fibers:

d(ξx , ζy ) = max
T±

Hξ(T ,∆)

∆

T

0

T+T−

unit is min(τ, 2π − τ)

where the sign is the one of zξ
.

= V 2
1 − V 2

2 ,

Hξ(T ,∆)
.

= T + zξ∆ + W1

√
(τ − T )2 −∆2 + W0

√
(2π − τ − T )2 −∆2

W0
.

= R
|sin(ϕ2 )|
|sinωπ|

, W1
.

= R
|sin(ωπ + ϕ

2 )|
|sinωπ|

, R
.

=
√

1− z2
ξ .

I The maximum is reached for T = 0 or on the hypothenus.
I When zξ = 0 the maximum is reached at ∆ = 0.
I The element a that reaches the supremum has null diagonal at x ,

Tr(a(y)) = T , a11(y)− a22(y) = ∆.
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