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Outline

1 Commutative warm-up: sine-Gordon model and a
summary of well-known results.

2 Noncommutative spacetime: Moyal algebra Aθ(Rd ) and
?-product.

3 Finding the model: dimensional reduction from self-dual
Yang-Mills(SDYM) theory.

4 Properties of the model: classical and quantum.
5 Conclusions and outlook.
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sine-Gordon Model

Consider the following theory for a real scalar field in 1 + 1
dimensions.

S =

∫
dtdy

1
2
∂µφ∂

µφ+ 4α2(cosφ− 1) .

We use the metric ηµν = diag(1 ,−1), and α has the
dimensions of mass.
The equation of motion for φ is

∂µ∂
µφ = −4α2sinφ .

It has kink and anti-kink solutions, which are static and
given by

φ(y) = ±4 arctan e2αy .
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sine-Gordon Model

Its energy density is given by

ε =
1
2

(∂yφ)2 + 4α2(1− cosφ) =
16α2

cosh2 2αy

The kink and its energy density have the profiles

Profiles
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Its classical mass is Mkink =
∫

dyε = 16α.
Kink has topological charge Q = 1. It is disconnected from
the vacuum sector with Q = 0.
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sine-Gordon Model

A list of well-known properties...
1 Super-Renormalizable: It is sufficient to normal order the

interactions to cancel all the divergences.

: 4α2(cosφ− 1) := 4(α2 − δα2)(cosφ− 1)

2 It is in fact integrable at the quantum level: Its S-matrix
completely factorizes into two-particle S-matrices and obey
Yang-Baxter equation. No particle production occurs!!!.

3 It has an infinite set of conserved currents.
4 It is equivalent to a fermionic theory, namely the massive

Thirring model.

To explore the indications of the model at the quantum
level, a simple analysis is to compute the corrections to
Mkink by semi-classical means.
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sine-Gordon Model

Quantum corrections to the kink mass
This is done by finding the normal modes of the
fluctuations around the kink solution. If ωn are the
frequencies of these modes, this implies

Ekink−sector = 16α +
1
2

~
∑

n

ωn + O(α2)

To find Mkink at this approximation, one subtracts Evacuum
from Ekink and regularizes the remaining divergences by
renormalizing α. This gives

Mkink = 16α− 2
π
α + O(α2)
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Definitions

Noncommutative spacetime: Moyal algebra and ?-product
Flat noncommutative spacetime is the associative algebra
Aθ(Rd )(Moyal algebra) defined via the ?-product:

(f ? g)(x) = f (x)e
i
2 θ
µν←−∂µ

−→
∂νg(x) .

The coordinate functions xµ generate Aθ(Rd ) and they fulfil
the commutation relations

xµ ? xν − xν ? xµ =: [xµ , xν ]? = iθµν .

θµν is a real antisymmetric tensor of rank 2, with constant
components.
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We would like to have a NC sine-Gordon theory which...

Properties
Classically Integrable: There is a linear system of
equations, whose compatibility condition implies a
noncommutative version of sine-Gordon field equations.
Correct commutative limit.
Possess kink, anti-kink solutions.
Causal S-matrix at tree-level.

What further properties it may have?.
Semi-Classical behavior: spectrum of quadratic
fluctuations around the vacuum and kink solutions.
Behavior at one-loop level; quantum corrections to Mkink .
SUSY extensions and their properties...



Commutative Warm-up NC Spacetime Finding the Model Properties of the Model Conclusions and Outlook

We would like to have a NC sine-Gordon theory which...

Properties
Classically Integrable: There is a linear system of
equations, whose compatibility condition implies a
noncommutative version of sine-Gordon field equations.
Correct commutative limit.
Possess kink, anti-kink solutions.
Causal S-matrix at tree-level.

What further properties it may have?.
Semi-Classical behavior: spectrum of quadratic
fluctuations around the vacuum and kink solutions.
Behavior at one-loop level; quantum corrections to Mkink .
SUSY extensions and their properties...



Commutative Warm-up NC Spacetime Finding the Model Properties of the Model Conclusions and Outlook

SDYM theory and dimensional reduction

1 Consider the self-dual U(2) SDYM on Aθ(R(2,2)). (We
follow Lechtenfeld et. al. Nucl.Phys.B705(2005)).

Fµν =
1
2
εµνρσF ρσ , Fµν = ∂µAν − ∂νAµ + [Aµ ,Aν ]?

2 In Aθ(R(2,1)), after gauge fixing, self-duality equation
becomes

∂x (Φ−1 ? ∂x Φ)− ∂v (Φ−1 ? ∂uΦ) = 0 , Φ ∈ U(2) .

3 This is the compatibility condition for the linear system

(ζ∂x −∂u)Ψ = Φ−1 ?∂uΦ?Ψ , (ζ∂v −∂x )Ψ = Φ−1 ?∂x Φ?Ψ

Ψ(x ,u, v , ζ) is valued in U(2) and ζ ∈ CP1

There is the reality condition Ψ(·, ζ) ?Ψ†(·, ζ̄) = 1.
We further have Ψ(· , ζ → 0) = Φ−1.
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Reduction to 1 + 1-dimensions

Let’s assume that x-direction is commuting with t and y .
We take the ansatz

Φ(t , x , y) = V (x)

(
g+ 0
0 g−

)
V †(x) .

V (x) = eiαxσ1 , g± ∈ U(1).

Compatibility equation implies

∂v (g−1
+ ? ∂ug+) + α2(g−1

− ? g+ − g−1
+ ? g−) = 0

∂v (g−1
− ? ∂ug−) + α2(g−1

+ ? g− − g−1
− ? g+) = 0
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Reduction to 1 + 1-dimensions

It is possible to parameterize g± by g± = e∓
i
2 (ϕ±ρ)

?

Commutative limit θ → 0, reproduces the standard sine-Gordon
field equation:

∂u∂vϕ = −4α2sinϕ , ∂u∂vρ = 0 .

Action

If α = 0, we would have had

∂v (g−1
+ ? ∂ug+) = 0 , ∂v (g−1

− ? ∂ug−) = 0 .

These imply that the action should be consisting of WZW actions
for g+ and g−, plus an interaction term:

S[g+,g−] = SWZW [g+] + SWZW [g−]+

α2
∫

dtdy (g†+ ? g− + g†− ? g+ − 2) .
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The model has the standard static kink, anti-kink solutions.

Kink, Anti-Kink

ϕ0 = ±4 arctan e2αy , ρ0 = 0 , g0 = e−
i
2ϕ0

Multi-soliton configurations can be constructed using the
linear system via the "dressing" method.
We will study the quadratic fluctuations around the kink
solution. Invoking the semi-classical reasoning, the energy
spectrum for the kink particle will be

Ekink−sector = 16α +
1
2

∑
n

(ωn + νn) + O(α2)

where ωn and νn are the frequencies for the normal modes.
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Background field method

Let’s split the fields g+ ,g− by setting

g+ = g0e−i(η+ξ) , g− = ei(η−ξ)g−1
0 ,

η , ξ are fluctuations in the static background g0.
We expand S[g+,g−] up to cubic order in η and ξ.

S[g+,g−] = S[g0]−
∫

dtdy (∂µη)2 + (∂µξ)2 + interaction terms

1 First, we find the field equations for η and ξ and expand
them to second order in θ.

2 Next, we expand the fluctuations in modes by assuming

η(t , y) =
∑

n

eiωntψn(y) , ξ(t , y) =
∑

n

eiνntχn(y) .
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Equations for fluctuations

Eigenmodes fulfil the Schrödinger-type equations:

Equations, (z := 2αy )

[
− ∂2

z + V0(z) + θV1(z) + θ2V2(z)
]
ψ̃n(z) =

ω2
n

4α2 ψ̃n(z) ,

[
− ∂2

z + θW1(z) + θ2W2(z)
]
χ̃n(z) =

ν2
n

4α2 χ̃n(z) .

Potentials

V0 = (2 tanh2 z − 1) ,V1 = −ω2
n

sinh z
cosh2 z

V2 = −ω2
nα

2
( 2

cosh4 z
− sinh2 z

cosh4 z

)

Potentials

W1(z) = −ν2
n

sinh z
cosh2 z

W2(z) = ν2
nα2 sinh2 z

cosh4 z
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Spectrum of fluctuations

We consider θ-dependent potentials as perturbations.

1 For θ = 0, the spectrum is exactly known. It consists of a
zero mode followed by a continuum of states.

ψ0(z) = ∂zϕ0 = − 2
cosh z

, ψq(z) = eiqz(tanh z − iq) .

2 ψ0(z) = − 2
cosh z is static, and remains a zero-mode to all

orders in θ.
3 At order θ: V1 and W1 are odd under parity, so first order

perturbations in θ give no corrections to the normal
frequencies.



Commutative Warm-up NC Spacetime Finding the Model Properties of the Model Conclusions and Outlook

Spectrum of fluctuations

At order θ2:

Corrections to normal frequencies due to V2 and W2 via
first order perturbation theory in θ2 also vanish.
It does not seem possible to obtain analytic results for V1
and W1 at second order in perturbation theory.
Qualitatively, it seems unlikely that they change the
spectrum considerably:

Potential Profiles
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Feynman rules and two-point functions

Propagators

≡ 〈ϕϕ〉 =
2

k2 + 4α2 , ≡ 〈ρρ〉 =
2
k2

Vertices
The vertices at quartic order in the fields ϕ and ρ
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Feynman rules and two-point functions

Feynman rules for these vertices read

= − 1
22 (k1 ∧ k2) sin

(
θ

k1 ∧ k2

2
)
e−

i
2 θ(k1∧k2+k2∧k3)

=
1

12
α2e(− i

2 θ
∑n

i<j ki∧kj ) − i
22 · 4!

k1 · (k3 − k2)

× sin
(
θ

k2 ∧ k3

2
)
e−

i
2 θ(k1∧k2+k1∧k3+k1∧k4+k2∧k4+k3∧k4)

a ∧ b = atby − aybt



Commutative Warm-up NC Spacetime Finding the Model Properties of the Model Conclusions and Outlook

Feynman rules and two-point functions

Feynman rules for these vertices read

= − 1
22 (k1 ∧ k2) sin

(
θ

k1 ∧ k2

2
)
e−

i
2 θ(k1∧k2+k2∧k3)

=
1

12
α2e(− i

2 θ
∑n

i<j ki∧kj ) − i
22 · 4!

k1 · (k3 − k2)

× sin
(
θ

k2 ∧ k3

2
)
e−

i
2 θ(k1∧k2+k1∧k3+k1∧k4+k2∧k4+k3∧k4)

a ∧ b = atby − aybt



Commutative Warm-up NC Spacetime Finding the Model Properties of the Model Conclusions and Outlook

Feynman rules and two-point functions

Scattering amplitudes

It was shown by Lechtenfeld et. al.Nucl.Phys.B705(2005)) that
this model do not exhibit any acausal behavior at tree level.

Aϕϕ→ϕϕ = + + + = 2iα2

All other amplitudes, Aρρ→ρρ, Aϕρ→ϕρ, Aϕϕ→ρρ and Aρρ→ϕϕ
vanish.
Thus the model has no acausal effects.
Amplitudes for ϕϕ→ ϕϕϕϕ and ϕϕϕ→ ϕϕϕ also vanish.
This is in agreement with the commutative sine-Gordon
model.
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One-Loop Behavior

One-loop two-point functions in vacuum sector...

Two-point function for ϕ is Iϕ(P2)

Iϕ(P2) = + +
I
3

Non-planar diagram I2(P2) leads to UV/IR mixing. We
observe this from

I2(P2) =
−α2

6π
log
[
α2θ2P2 +

4α2

Λ2

]
+ subleading terms ,

I3(P2) and I4(P2) are present purely due to the
noncommutativity, they vanish as θ → 0. There is no UV/IR
mixing due to I1(P2), I3(P2) and I4(P2).
Iρ(P2) is present also purely due to the noncommutativity,
but it does not lead to any UV/IR mixing.
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One-Loop Behavior

Renormalization in the Euclidean signature.

For P 6= 0, θ 6= 0, the leading terms for Iϕ(P2) reads

Iϕ(P2) ≈
[
−α2

3π
+

P2

26π

]
log

4α2

Λ2 +finite terms+subleading terms

Mass and field strength counter terms are found using
standard renormalization methods.
There is only field strength renormalization for the field ρ.
Remark1: When θ → 0 the standard answer for the
commutative sine-Gordon model is recovered.
Remark2: I(P2) leads to unitarity violation, when it is
analytically continued to the Minkowski space.
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One-Loop Behavior

SUSY extensions

A natural N = 1 SUSY extension of the action is

S = SSWZW [G+] + SSWZW [G−]

− 2α
∫

dtdyd2θG−
1
2

+ ?G
1
2
− + G−

1
2
− ?G

1
2
+

SSWZW (G) =
1
2

∫
dtdyd2θD̄G−1 ? DG

+
1
2

∫
dtdyd2θdλG−1∂λG ? D̄G−1 ? γ5DG .

D and D̄ are standard SUSY covariant derivatives.

Standard SUSY kink is a solution of the field equations.

Classical integrability of the field equations are under
investigation. It seems that there indeed exits a linear system for
this model, its details are being worked out.

It will certainly be useful to see if SUSY helps in regularizing the
divergences of the bosonic theory.
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Summarizing...

1 We have studied the quantum aspects of sine-Gordon model in
noncommutative spacetime. Our aim has been to infer to what
extent the classical integrability is useful in this respect.

We have presented a perturbative treatment of
noncommutativity to study the spectrum of fluctuations
around the kink. This implied that the latter is in good
agreement with that of the ordinary sine-Gordon model.

2 Two-point functions at one-loop level show UV/IR mixing due to
interactions coupled via α2, but it appears that there are
non-planar diagrams which do not lead to UV/IR mixing effects.

In Euclidean signature, mass and field strength
renormalizations are obtained for non-exceptional
momenta. However, in Minkowski signature there is still
unitarity violation.
Although, the usual vacuum subtraction can be performed it
is not clear, how to regularize the divergences of the theory
in Minkowski space.
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3 It maybe be helpful to study the quantum effects in the
2 + 1-dimensional Ward-model to gain more insights on
the structure of the present class of models.

4 It will certainly be useful to study the SUSY generalizations
of this model and see if it helps in regularizing the
divergences of the bosonic theory. Investigations in this
direction are already underway.
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