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Introduction

Higher dimensions provide a framework for unification of inter-
actions.
Coset Space Dimensional Reduction (CSDR) provides:

• Gauge-Higgs-Yukawa unification

• Interesting GUT models/Chiral fermions in 4-dims

• N=1 Softly broken SUSY Langrangians

Important issue for the effective theory: Consistency of the
reduction→ CSDR consistency has to be examined.
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Reduction on Group Manifold

Reduction of gauge field A on group manifold S (Scherk-Schwarz

’79).

Ansatz:

A = Aµdxµ + AI(x)e
I(y),

I = 1, . . . ,dimS,

eI → left-invariant 1-forms.

↪→ Keep only SL singlets under the full isometry group SL × SR.

Invariance Condition:

LXIA = 0,

XI→ Killing vectors dual to right-invariant 1-forms.
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Reduction on Coset Space

Reduction of gauge field A on coset space S/R (Forgacs-Manton
’79).
Generalized Invariance Condition:

LXIA = DWI ,

WI→ gauge transformation parameter.

↪→ Constraints on the gauge field.

Analysis of constraints provides:

• 4-dim fields

• gauge group of effective 4-dim theory
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Consistency

Definition. (Pons-Talavera ’04) A truncation is said to be con-

sistent if its implementation at the level of the variational princi-

ple agrees with its implementation at the level of the equations

of motion.

The following diagram has to be commutative:

δL
δΦ= 0

L

?

e.o.m.

-Red.

-Red.

(
δL
δΦ

)
R
= 0⇔ δLR

δΦ = 0

LR

?

e.o.m.
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In general this diagram is not commutative.

• For reductions on Group Manifolds consistency is guaranteed

(Scherk-Schwarz ’79, Cvetic et.al. ’03)

• For coset spaces consistency has to be examined explicitly

Check the consistency of CSDR (A.C., P.Manousselis, N.Prezas,

G.Zoupanos, PLB 656 (2007))
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Set up

D-dim Einstein-Yang-Mills Langrangian:

L = R̂ ∗D 1−
1

2
TrF̂(2) ∧ ∗DF̂(2) − λ(D) ∗D 1,

with Lie(G)-valued field strength:

F̂(2) = dÂ(1) + Â(1) ∧ Â(1),

and λ(D)→D-dim cosmological constant.
Background metric on M4 × S/R:

g(D) = ηmnemen + δabe
aeb,

ηmn→Minkowski metric
δab→ S-invariant metric on the internal space.
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Reduction of the Action

Action (YM part):

S = −
1

2

∫
TrF̂ ∧ ∗DF̂ ,

Ansatz:

ÂĨ(x, y) = AĨ(x) + χĨ
α(x, y)dyα,

where

χĨ
α(x, y) = φĨ

A(x)eA
α(y)

and Ĩ G-index, A S-index, α (S/R)-index.
↪→

F̂ Ĩ = F Ĩ + DφĨ
A ∧ eA −

1

2
F Ĩ

ABeA ∧ eB,
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where

F Ĩ = dAĨ +
1

2
f Ĩ
J̃K̃

AJ̃ ∧AK̃,

DφĨ
A = dφĨ

A + f Ĩ
J̃K̃

AJ̃φK̃
A ,

F Ĩ
AB = fC

ABφĨ
C − [φA, φB]Ĩ .

Dualize:

∗DF̂ Ĩ = ∗4F Ĩ ∧ vold + ∗4DφĨ
A ∧ ∗de

A −
1

2
FABvol4 ∧ ∗d(eA ∧ eB).

↪→

L = −
1

2
TrF ∧ ∗4F +

1

2
TrDφa ∧ ∗4Dφa −

1

4
FabF

abvol4,

by imposing constraints:

DφĨ
i = F Ĩ

ai = F Ĩ
ij = 0.

where i R-index.
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or

Fib = f c
ib φc − [φi, φb] = 0,

Fij = f k
ij φk − [φi, φj] = 0,

[Aµ, φi] = 0.

# Exactly the CSDR constraints.

• Residual gauge group: H = CG(R)

• 4-dim scalars φa:

S ⊃ R, adjS = adjR +
∑

si,

G ⊃ R, adjG = (adjR,1) + (1, adjH) +
∑

(ri, hi).

→ ∀ri ≡ si  multiplet hi ∈ H
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Reduction of e.o.m.

Higher-dim Yang-Mills:

D̂ ∗D F̂ Ĩ = d̂ ∗D F̂ Ĩ + f Ĩ
J̃K̃

ÂJ̃ ∧ ∗DF̂ K̃ = 0.

Substituting the ansatz we obtain:

D ∗4 F Ĩ ∧ vold − f Ĩ
J̃K̃

φJ̃
A ∗4 DφK̃

B ∧ eA ∧ ∗deB − ∗4DφĨ
A ∧ d ∗d eA = 0

and

D∗4DφĨ
A∧∗de

A−
1

2
f Ĩ

J̃K̃
φJ̃

AF K̃
BCvol4∧eA∧∗d(eB∧eC)−

1

2
F Ĩ

BCvol4∧d∗d(eB∧eC) = 0.

By imposing the same constraints as before, namely

DφĨ
i = F Ĩ

ai = F Ĩ
ij = 0.
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↪→

D ∗4 F Ĩ = f Ĩ
J̃K̃

φJ̃
a ∗4 DφK̃

a ,

D ∗4 DφĨ
a = −(f Ĩ

J̃K̃
φJ̃

c F K̃
ca +

1

2
F Ĩ

bcfbca)vol4.

These are the equations of motion for a Yang-Mills theory cou-

pled to charged scalars with non-trivial potential, namely the

e.o.m. coming from the variation of the reduced Langrangian.

 The truncation is consistent.
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Conclusions and current work

There is no standard recipe for consistent coset space reductions.

Utilizing a particular ansatz and a set of constraints (CSDR con-

straints) we proved the consistency of coset reduction.

• Including Fermions is straightforward

• Include Kaluza-Klein fluctuations

dŝ2(D) = ds2(4) + hαβ(x, y)(dyα −Aα(x, y))(dyβ −Aβ(x, y))

For general S-invariant metric the reduction can remain con-

sistent
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 Modified constraints, 4-dim potential modified from new scalar

fields and new rules for the 4-dim gauge theory

• Application to reduction of Heterotic SuGra on suitable coset

spaces
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