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I. NC U(1) gauge theory

• NC Euclidean plane

NC space coordinates in d = 2 :

[x̂µ, x̂ν] = iΘµν = iθǫµν
x̂µ : Hermitian operators
θ : NC parameter, const.

imply spatial uncertainty

∆x1 ∆x2 ∼ θ

(cf. event horizon of a strong gravitation centre), and non-locality.

UV/IR mixing of divergences
→ perturbation theory beyond one loop is mysterious.
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• Lattice structure

Non-perturbative approach :

Imposing the operator identity

exp
(

i
2π

a
x̂µ

)

= 1̂1

yields a (fuzzy) lattice structure.

Periodicity over the Brillouin zone → lattice is also spatially periodic:

1

2a
θ pµ ∈ ZZ
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Periodic N ×N lattice

⇒ θ =
1

π
Na2

Double Scaling Limit

a→ 0
N →∞

}

at Na2 = const.

leads to a continuous NC plane of infinite extent.

Simultaneous UV and IR limit.
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Return to ordinary coordinates xµ, if all fields are multiplied by ⋆-products:

φ(x) ⋆ ψ(x) := φ(x) exp
( i

2

←
∂µΘµν

→
∂ν

)

ψ(x)

e.g. [xµ, xν]⋆ = iΘµν

U(1) Gauge Theory

S[A] =
1

4

∫

d2x Fµν ⋆Fµν , Fµν = ∂µAν−∂νAµ + ig(Aµ ⋆Aν−Aν ⋆Aµ)

S is ⋆-gauge invariant (self-interaction !)

Cannot be simulated in this form on the lattice (⋆-unitary link variables)
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Way out: equivalence to a matrix model on one point

Twisted Eguchi-Kawai Model (González-Arroyo/Okawa, ’83)

STEK[U ] = −Nβ
∑

µ 6=ν

ZµνTr[UµUνU
†
µU

†
ν ]

Uµ: unitary N ×N matrices , β ≡ 1/g2

Twist: Z21 = Z∗
12 = exp(2πin/N) , here: n = N+1

2 → N odd

Morita equivalence (identical algebras) Aoki et al., ’99

TEKN→∞ ⇔ NC U(1) gauge theory on infinite lattice

Refinement (Ambjørn et al., ’00) :

TEKN finite ⇔ NC U(1) gauge theory on N ×N lattice
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Mapping back the matrix model term (Ishibashi et al., Gross et al., ’00)

Wµν(I × J) :=
1

N
ZI·J

µν Tr[U I
µU

J
ν U

† I
µ U † J

ν ]

to the lattice defines the NC Wilson loop.

Note that Wµν ∈ CI , but the action is real
(both orientations summed over, Wµν = W ∗

νµ)

⇒ In this form, Monte Carlo simulations are possible !

(W.B./Hofheinz/Nishimura, ’02)

Scale : β = 1/a2 from Gross-Witten area law in the planar limit

→ fix N/β for Double Scaling
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II. Wilson loops in d = 2:

area-preserving diffeomorphisms (APDs)

Pure YM theories on a commutative plane: soluble thanks to APD
invariance; 〈Wilson loop〉 only depends on (oriented) area.

NC U(n) : Perturbation theory to O(g4θ−2) reveals sym. breaking down to
SL(2, R). (Ambjørn/Dubin/Makeenko ’04, Bassetto/De Pol/Torrielli/Vian ’05)

Non-perturbative test for NC U(1) with squares, L-shapes, rectangles, stairs
(W.B./Bigarini/Torrielli ’07)
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| < W > | for various shapes surrounding the same area,
at θ ≡ 1

πNa
2 = 2.63 .

Results for different volumes (Na)2 and different a agree.
Area law at small (dimensional) area, but deviations beyond

→ shape dependence persists in the Double Scaling Limit.
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Focus on the rectangles to check sym. under the APD subgroup SL(2,R) .

Here we fix θ = 1.63 at different volumes and lattice spacings:
we see again DSL convergence with (minor) sym. breaking.

⇒ On the non-pert. level, the APD sym. breaks completely.
Analytic solution hard to find. Simulations are crucial, as in 4d YM theory.
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III. NC QED4 : the fate of the NC photon

We consider again a NC plane [x̂1, x̂2] = iθ = const. , plus x3, t : commutative.

NC photon: Θ-deformed dispersion relation ?

1-loop calculations suggest the form (Matusis/Susskind/Thoumbas, ’00)

E2 = ~p 2 +
C

(pΘ)2

Test with data from cosmic photons ! General ansatz:

E = | ~p |
(

1 +
E

M

)

(M : ′′quantum gravity foam′′ )

E.g. different time of flight for 35 Gamma Ray Bursts
⇒ M > 0.001MPlanck (Ellis/Mavromatos/Nanopoulos/Sakharov/Sarkisyan , ’04)
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Bounds for θ in Nature ? (Amelino-Camelia et al. ’98)

But: 1-loop perturbation theory : IR singularity is negative (C < 0)
(Landsteiner/Lopez/Tytgat, ’00, . . . )

IR instability, ill defined, to be cured by SUSY . . .

• NC QED4 revisited non-perturbatively (W.B./Nishimura/Susaki/Volkholz, ’06)

• comm. plane → L× L lattice
• NC plane → matrix model (TEK) (N ≈ L)

First goal: search for physical scale → identify a Double Scaling Limit.

Successful ansatz:

a ∝ 1/β → θ ∝ N/β2

(different from NC QED2, fine-tuned scaling at each N differs slightly)

11



Double Scaling for the Wilson loops : (here N/β2 ≡ 20)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

R
e 

(W
ils

on
 lo

op
s)

physical area  Ι x Ι / β2

N=45
N=55
N=65
N=71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

R
e 

(W
ils

on
 lo

op
s)

physical area  Ι x Ι / β2

N=45
N=55
N=65
N=71

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

R
e 

(W
ils

on
 lo

op
s)

physical area  Ι x Ι / β2

N=45
N=55
N=65
N=71

commutative plane mixed plane NC plane

comm. and mixed planes: 〈W 〉 ∈ RI due to sym. in signs of x3 and t
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Order parameter for translation sym. in NC plane : open Wilson line
⋆-gauge invariant, carries momentum p (Ishibashi/Iso/Kawai/Kitazawa ’00)

|Pµ(n)| :=
1

N
|Tr[Un

µ ]|

Wilson line of lenght p̃µ ≡ Θµνpν = naµ̂
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Phase diagram : Weak ↔ Moderate ↔ Strong coupling (cf. Ishikawa/Okawa, Teper/Vairinhos)
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Double Scaling Limit β ∼
√

N always leads to the broken phase (Na2 ≃ N/β2).

In this limit, we found stability of all observables that could be measured well.

Broken phase could describe a stable cont. limit for the NC photon.
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Dispersion Relation

determined from exp. decay in the comm. plane E(p = p3)|p1=p2=0
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V. Conclusions

We studied QED2, and QED4 on spaces with a NC plane.

Discretised NC plane can be mapped onto a TEK matrix model;

enables MC simulations (heat-bath after linearisation through auxiliary matrix field)

A Double Scaling Limit to a continuous, infinite NC space converges

→ non-pert. renormalisable.

• QED2 :

small area : Wilson loops obey area law for all shapes

large area : complex phase for many shapes = ( area / θ ) ,

corresponds to AB effect with B = 1/θ (cf. W.B./Hofheinz/Nishimura ’02)

At large area the APD sym. is broken, including the SL(2,R) subgroup.

⇒ Unlike 2d YM theory: not analytically soluble with commutative techniques

but rich structure, can be explored numerically.
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• QED4 :

Double Scaling Limit identified by matching of Wilson loops at various N .

Other observables follow the same scaling law.

Open Polyakov line as order parameter for transl. invariance:

Phases

8
<

:

β < 0.35 (strong coupling) symmetric

intermediate broken

large β symmetric

Transition line intermediate–weak : βc(N) ∝ N2

→ Double Scaling Limit β ∝
√

N leads to broken phase, IR stable.

Photon may survive in a NC world.

• Here and in λφ4 model : Strong IR effects due to short-range non-locality

⇒ UV/IR mixing persists as a non-perturbative effect in NC field theory.
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