Simulating U(1) Gauge Theory on Non-Commutative Spaces

- I. NC U(1) gauge theory
- II. Wilson loops in d = 2: area-preserving diffeomorphisms
- III. NC QED_4 : the fate of the NC photon

W.B., A. Bigarini, J. Nishimura, Y. Susaki, A. Torrielli and J. Volkholz

I. NC U(1) gauge theory

• NC Euclidean plane

NC space coordinates in d = 2:

$$[\hat{x}_{\mu}, \hat{x}_{\nu}] = i\Theta_{\mu\nu} = i\theta\epsilon_{\mu\nu} \qquad \begin{array}{c} \hat{x}_{\mu} & : \text{ Hermitian operators} \\ \theta & : \text{ NC parameter, const.} \end{array}$$

imply spatial uncertainty

$$\Delta x_1 \, \Delta x_2 \sim \theta$$

(cf. event horizon of a strong gravitation centre), and non-locality.

UV/IR mixing of divergences

 $\rightarrow\,$ perturbation theory beyond one loop is mysterious.

• Lattice structure

Non-perturbative approach :

Imposing the operator identity

$$\exp\left(i\frac{2\pi}{a}\hat{x}_{\mu}\right) = \hat{1}$$

yields a (fuzzy) lattice structure.

Periodicity over the Brillouin zone \rightarrow lattice is also spatially periodic:

$$\frac{1}{2a}\theta \, p_{\mu} \in \mathbb{Z}$$

Periodic $N \times N$ lattice

$$\Rightarrow \qquad \theta = \frac{1}{\pi} N a^2$$

Double Scaling Limit

$$\left. \begin{array}{c} a \to 0\\ N \to \infty \end{array} \right\} \quad \text{at} \quad Na^2 = const.$$

leads to a continuous NC plane of infinite extent.

Simultaneous UV and IR limit.

Return to ordinary coordinates x_{μ} , if all fields are multiplied by *-products:

$$\begin{split} \phi(x) \star \psi(x) &:= \phi(x) \exp\left(\frac{i}{2} \overleftarrow{\partial}_{\mu} \Theta_{\mu\nu} \overrightarrow{\partial}_{\nu}\right) \psi(x) \\ \text{e.g. } [x_{\mu}, x_{\nu}]_{\star} &= i \Theta_{\mu\nu} \\ \\ S[A] &= \frac{1}{4} \int d^2 x \ F_{\mu\nu} \star F_{\mu\nu} \ , \quad F_{\mu\nu} &= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + ig(A_{\mu} \star A_{\nu} - A_{\nu} \star A_{\mu}) \\ S \text{ is } \star \text{-gauge invariant} \qquad (\text{self-interaction !}) \end{split}$$

Cannot be simulated in this form on the lattice (*-unitary link variables)

Way out: equivalence to a matrix model on one point

Twisted Eguchi-Kawai Model

(González-Arroyo/Okawa, '83)

$$S_{\rm TEK}[U] = -N\beta \sum_{\mu \neq \nu} Z_{\mu\nu} {\rm Tr}[U_{\mu}U_{\nu}U_{\mu}^{\dagger}U_{\nu}^{\dagger}]$$

 U_{μ} : unitary $N\times N$ matrices , $\beta\equiv 1/g^2$ Twist: $Z_{21}=Z_{12}^{*}=\exp(2\pi i n/N)$, here: $n=\frac{N+1}{2}$ \rightarrow N odd

Morita equivalence (identical algebras) Aoki et al., '99

 $\operatorname{TEK}_{N\to\infty} \Leftrightarrow \operatorname{NC} U(1)$ gauge theory on infinite lattice

Refinement (Ambjørn et al., '00) :

 $\text{TEK}_{N \text{ finite}} \Leftrightarrow \text{NC } U(1) \text{ gauge theory on } N \times N \text{ lattice}$

Mapping back the matrix model term (Ishibashi et al., Gross et al., '00)

$$W_{\mu\nu}(I \times J) := \frac{1}{N} Z^{I \cdot J}_{\mu\nu} \operatorname{Tr}[U^{I}_{\mu}U^{J}_{\nu}U^{\dagger I}_{\mu}U^{\dagger J}_{\nu}]$$

to the lattice defines the NC Wilson loop.

Note that $W_{\mu\nu} \in \mathbb{C}$, but the action is real (both orientations summed over, $W_{\mu\nu} = W_{\nu\mu}^*$)

\Rightarrow In this form, Monte Carlo simulations are possible !

(W.B./Hofheinz/Nishimura, '02)

Scale : $\beta = 1/a^2$ from Gross-Witten area law in the planar limit \rightarrow fix N/β for Double Scaling

II. Wilson loops in d = 2: area-preserving diffeomorphisms (APDs)

Pure YM theories on a <u>commutative</u> plane: soluble thanks to APD invariance; $\langle Wilson loop \rangle$ only depends on (oriented) area.

NC U(n): Perturbation theory to $O(g^4\theta^{-2})$ reveals sym. breaking down to SL(2, R). (Ambjørn/Dubin/Makeenko '04, Bassetto/De Pol/Torrielli/Vian '05)

Non-perturbative test for NC U(1) with squares, L-shapes, rectangles, stairs

| < W > | for various shapes surrounding the same area, at $~\theta \equiv \frac{1}{\pi} N a^2 = 2.63$.

Results for different volumes $(Na)^2$ and different a agree. Area law at small (dimensional) area, but deviations beyond \rightarrow shape dependence persists in the Double Scaling Limit.

Focus on the rectangles to check sym. under the APD subgroup SL(2,R).

Here we fix θ = 1.63 at different volumes and lattice spacings:
we see again DSL convergence with (minor) sym. breaking.
⇒ On the non-pert. level, the APD sym. breaks completely.
Analytic solution hard to find. Simulations are crucial, as in 4d YM theory.

III. NC QED_4 : the fate of the NC photon

We consider again a NC plane $[\hat{x}_1, \hat{x}_2] = i\theta = const.$, plus x_3 , t : commutative.

NC photon: Θ -deformed dispersion relation ?

1-loop calculations suggest the form (Matusis/Susskind/Thoumbas, '00)

$$E^2 = \vec{p}^2 + \frac{C}{(p\Theta)^2}$$

Test with data from cosmic photons ! General ansatz:

$$E = |\vec{p}| \left(1 + \frac{E}{M} \right) \qquad (M : "quantum gravity foam")$$

E.g. different time of flight for 35 Gamma Ray Bursts $\Rightarrow \qquad M > 0.001 \, M_{\rm Planck} \qquad ({\rm Ellis/Mavromatos/Nanopoulos/Sakharov/Sarkisyan}, '04)$

Bounds for θ in Nature ? (Amelino-Camelia et al. '98)

But: 1-loop perturbation theory : IR singularity is negative (C < 0)(Landsteiner/Lopez/Tytgat, '00, ...) IR instability, ill defined, to be cured by SUSY ...

• NC QED₄ revisited non-perturbatively

(W.B./Nishimura/Susaki/Volkholz, '06)

- comm. plane $\rightarrow L \times L$ lattice
- NC plane \rightarrow matrix model (TEK) $(N \approx L)$

First goal: search for physical scale \rightarrow identify a Double Scaling Limit.

Successful ansatz:

$$a \propto 1/\beta \qquad \rightarrow \qquad \theta \propto N/\beta^2$$

(different from NC QED₂, fine-tuned scaling at each N differs slightly)

comm. and mixed planes: $\langle W \rangle \in \mathbb{R}$ due to sym. in signs of x_3 and t

Order parameter for translation sym. in NC plane : open Wilson line
 \star -gauge invariant, carries momentum p(Ishibashi/Iso/Kawai/Kitazawa '00)

$$|P_{\mu}(n)| := \frac{1}{N} |\operatorname{Tr}[U_{\mu}^{n}]|$$

Wilson line of lenght $\tilde{p}_{\mu} \equiv \Theta_{\mu\nu} p_{\nu} = n a \hat{\mu}$

Phase diagram : Weak ↔ Moderate ↔ Strong coupling (cf. Ishikawa/Okawa, Teper/Vairinhos)

Double Scaling Limit $\beta \sim \sqrt{N}$ always leads to the **broken** phase $(Na^2 \simeq N/\beta^2)$. In this limit, we found stability of all observables that could be measured well.

Broken phase could describe a stable cont. limit for the NC photon.

Dispersion Relation

determined from exp. decay in the comm. plane $E(p = p_3)|_{p_1 = p_2 = 0}$

sym. phase
consistent with
neg. IR divergence
("tachyonic" behaviour)

broken phase IR stable Nambu-Goldstone boson (SSB of transl. sym.)

V. Conclusions

We studied QED_2 , and QED_4 on spaces with a NC plane.

Discretised NC plane can be mapped onto a **TEK matrix model**; enables MC simulations (<u>heat-bath</u> after linearisation through auxiliary matrix field)

A Double Scaling Limit to a continuous, infinite NC space converges

 \rightarrow non-pert. renormalisable.

• $\underline{\mathsf{QED}}_2$:

- small area : Wilson loops obey area law for all shapes
- large area : complex phase for many shapes = (area / θ), corresponds to AB effect with $B = 1/\theta$ (cf. W.B./Hofheinz/Nishimura '02)

At large area the APD sym. is broken, including the SL(2,R) subgroup.

⇒ Unlike 2d YM theory: not analytically soluble with commutative techniques but rich structure, can be explored numerically. • **QED**₄ :

Double Scaling Limit identified by matching of Wilson loops at various N. Other observables follow the same scaling law.

Open Polyakov line as order parameter for transl. invariance:

Phases <	$\beta < 0.35 \text{ (strong coupling)}$	symmetric
	intermediate	broken
	large β	symmetric

Transition line intermediate–weak : $eta_c(N) \propto N^2$

- \rightarrow Double Scaling Limit $\beta \propto \sqrt{N}$ leads to broken phase, IR stable. Photon may survive in a NC world.
- Here and in $\lambda \phi^4$ model : Strong IR effects due to short-range non-locality \Rightarrow UV/IR mixing persists as a non-perturbative effect in NC field theory.