Recents results in gauge theories on
noncommutative Moyal spaces

Jean-Christophe Wallet

Laboratoire de Physique Théorique
Université Paris Xl

works in coll. with A. de Goursac, T. Masson, A. Tanasa, R. Wulkenhaar

arXiv:hep-th /0703075, 0708.2471[hep-th], 0709.3950[hep-th]

4th Vienna Central European Seminar on Particle Physics and Quantum field theory
” Commutative and Noncommutative Quantum Fields”, 30 Nov.—02 Dec. 2007

CENTRE NATIONAL , \
% -\>) - PARISSUD 11



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay

Overview

> Attempt to construct possible candidate(s) for renormalisable actions for
gauge theories on NC D = 4 Moyal “space”. The NC analog of the Yang-Mills
action [ d*x(F, * Fu)(x) has UV/IR mixing which spoilts renormalisability.
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Overview

> Attempt to construct possible candidate(s) for renormalisable actions for
gauge theories on NC D = 4 Moyal “space”. The NC analog of the Yang-Mills
action [ d*x(F, * Fu)(x) has UV/IR mixing which spoilts renormalisability.

> First step: Study a possible way to extend the "harmonic solution” leading to
renormalisable ¢* theory to gauge theories. Based on the computation of the
one-loop effective gauge action obtained from the " ‘harmonic” ¢*.
A.de Goursac, JCW, R.Wulkenhaar, Eur.Phys.J.C51(2007)977[hep-th/0703075]. General
structure (agree with Grosse and WohIgenannt[hep—th0703169]):

o Q K
S¢ ~ /d4x<rg2":uu * F;w + rgz{AmAu}i + E-A/l *‘AM>

unexpected problem: v.e.v #0 for gauge potential! Motivates 2nd part...
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Overview

> Attempt to construct possible candidate(s) for renormalisable actions for
gauge theories on NC D = 4 Moyal “space”. The NC analog of the Yang-Mills
action [ d*x(F, * Fu)(x) has UV/IR mixing which spoilts renormalisability.

> First step: Study a possible way to extend the "harmonic solution” leading to
renormalisable ¢* theory to gauge theories. Based on the computation of the
one-loop effective gauge action obtained from the " ‘harmonic” ¢*.
A.de Goursac, JCW, R.Wulkenhaar, Eur.Phys.J.C51(2007)977[hep-th/0703075]. General
structure (agree with Grosse and WohIgenannt[hep—th0703169]):

5 /d4 ( (&% SZ/ {A A }2 K;A A )

~ X I X I nz Ly W L X

f A 2"t / A D) / * 2 f (]
unexpected ploble n: v.e.v #0 or gauge potential! Motivates 2nd palt...

» 2nd part: Study vacuum configurations. Much simpler to start in D=2 scalar
models with harmonic terms. See A. de Goursac talk.
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Overview

> Attempt to construct possible candidate(s) for renormalisable actions for
gauge theories on NC D = 4 Moyal “space”. The NC analog of the Yang-Mills
action [ d*x(F, * Fu)(x) has UV/IR mixing which spoilts renormalisability.

> First step: Study a possible way to extend the "harmonic solution” leading to
renormalisable ¢* theory to gauge theories. Based on the computation of the
one-loop effective gauge action obtained from the " ‘harmonic” ¢*.
A.de Goursac, JCW, R.Wulkenhaar, Eur.Phys.J.C51(2007)977[hep-th/0703075]. General
structure (agree with Grosse and WohIgenannt[hep—th0703169]):

5 /d4 ( (&% SZ/ {A A }2 K;A A )

~ X I X I nz Ly W L X

f A 2"t / A D) / * 2 f (]
unexpected ploble n: v.e.v #0 or gauge potential! Motivates 2nd palt...

» 2nd part: Study vacuum configurations. Much simpler to start in D=2 scalar
models with harmonic terms. See A. de Goursac talk.

> 3rd part: Attempt to clarify the role(s) of A,,. Modification of the
" derivation-based” differential calculus on the Moyal algebras leads to
"Yang-Mills-Higgs" type models (E.Cagnache, T.Masson, JCW, hep-th to appear).



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay

Content
© The noncommutative algebraic set-up
@ Derivation-based differential calculus
@ Noncommutative connections, curvatures
@ Gauge transformations
o Canonical gauge-invariant connections
@ The "simplest” differential calculus.
9 Noncommutative Induced gauge theories
@ Motivations
o Computation of the one-loop effective action
@ Diagramatics
@ The structure of the effective action
© Vacuum configurations
@ The harmonic ¢*-model
@ Vacuum configurations in the matrix base
@ New features - SSB revisited
e Yang-Mills-Higgs type models on Moyal spaces
@ Basic observation
@ Symplectic algebra of derivations
@ Yang-Mills-Higgs type models

3



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay
The noncommutative algebraic set-up

The noncommutative algebraic set-up

0 The noncommutative algebraic set-up
Derivation-based differential calculus

@ Noncommutative connections, curvatures
o Gauge transformations

@ Canonical gauge-invariant connections

@ The "simplest” differential calculus.
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The noncommutative algebraic set-up Derivation-based differential calculus

Derivation-based differential calculus

» The algebraic set-up underlying all the NCFT models considered so far is the
derivation-based differential calculus.
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The noncommutative algebraic set-up Derivation-based differential calculus

Derivation-based differential calculus

» The algebraic set-up underlying all the NCFT models considered so far is the
derivation-based differential calculus.

> Der(M): linear space of derivations of some M with associative product x,
that is linear maps satisfying Leibnitz rule
X:M—M, X(axb)=X(a)xb+axX(b), Vabe M (1)
3 Lie Bracket on Der(M) defined by [X, Y]p(a)=X(Y(a))—Y(X(a)) (i)-
Der(M) is a module over Z(M) ((zX)(a)=z * (X(a)), Vz €Z(M).



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay
The noncommutative algebraic set-up Derivation-based differential calculus

Derivation-based differential calculus

> The algebraic set-up underlying all the NCFT models considered so far is the
derivation-based differential calculus.

> Der(M): linear space of derivations of some M with associative product x,
that is linear maps satisfying Leibnitz rule
X:M—M, X(axb)=X(a)xb+axX(b), Vabe M (1)
3 Lie Bracket on Der(M) defined by [X, Y]p(a)=X(Y(a))—Y(X(a)) (i)-
Der(M) is a module over Z(M) ((zX)(a)=z * (X(a)), Vz €Z(M).

» From any Lie subalgebra GCDer(M) (also a Z(M)-submodule), construction of
a differential calculus can be performed. [Space of 0-forms identified with M, action
of the differential d on 0-forms and 1-forms (Z(M)-linear maps from G to M) defined
VX, YE G by dwo(X)=X(wo), dwi(X, Y) =X(wi1(Y)) — Y(wi1(X)) — wi([X, Y]p)(ii).
d?=0 thanks to (i) and (ii). Can be extended to n-forms, Z(M)-multilinear antisymmetric
maps from G to M]
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The noncommutative algebraic set-up Noncommutative connections, curvatures

Noncommutative connections, curvatures

» Once M equipped with diff. calculus related to GCDer(M), construction of
NC connections and curvatures can be done [see: Connes, Dubois-Violette, Kerner,
Madore]. Choose some (projective) right-module 7 over M.
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The noncommutative algebraic set-up Noncommutative connections, curvatures

Noncommutative connections, curvatures

» Once M equipped with diff. calculus related to GCDer(M), construction of
NC connections and curvatures can be done [see: Connes, Dubois-Violette, Kerner,
Madore]. Choose some (projective) right-module 7 over M.

» NC connection: linear map Vx : H — H verifying (ae M, meH, X, YEG):
Vx(mxa) = Vx(m)xa+ mxX(a) (2)
Vxiy(m) = Vx(m) + Vy(m),Vizx)(m) = z % Vx(m) (3)
[Recall Der(M) Z(M)-module; (3) reflects Vx is a morphism of module)]
Curvature: Fx yy(m) = [Vx, Vy](m) = Vix v}, (m)
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The noncommutative algebraic set-up Noncommutative connections, curvatures

Noncommutative connections, curvatures

» Once M equipped with diff. calculus related to GCDer(M), construction of
NC connections and curvatures can be done [see: Connes, Dubois-Violette, Kerner,
Madore]. Choose some (projective) right-module 7 over M.

» NC connection: linear map Vx : H — H verifying (ac M, meH, X, Y€EG):
Vx(mxa) = Vx(m)xa+ mxX(a) (2)
Vx+y(m) :VX(m)—FVy(m),V(Z*X)(m) :Z*Vx(m) (3)
[Recall Der(M) Z(M)-module; (3) reflects Vx is a morphism of module)]
Curvature: Fx yy(m) = [Vx, Vy](m) = Vix v}, (m)

» From now on, M is the Moyal algebra. Recall M=£NTR; L (resp. R): subspace of
elements of S’(RP) whose multiplication from right (resp. left) by any Schwarz function is
Schwartz. [see e.g Gracia-Bondia, Varilly, J.M.P 1988; Grossmann et al., Ann. Inst. Fourier
1968].



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay
The noncommutative algebraic set-up Noncommutative connections, curvatures

Noncommutative connections, curvatures

» Once M equipped with diff. calculus related to GCDer(M), construction of
NC connections and curvatures can be done [see: Connes, Dubois-Violette, Kerner,
Madore]. Choose some (projective) right-module 7 over M.

» NC connection: linear map Vx : H — H verifying (ae M, meH, X, YEG):
Vx(mxa) = Vx(m)xa+ mxX(a) (2)
Vx+y(m) :VX(m)—FVy(m),V(Z*X)(m) :Z*Vx(m) (3)
[Recall Der(M) Z(M)-module; (3) reflects Vx is a morphism of module)]
Curvature: Fx yy(m) = [Vx, Vy](m) = Vix v}, (m)

» From now on, M is the Moyal algebra. Recall M=£NTR; L (resp. R): subspace of
elements of S’(RP) whose multiplication from right (resp. left) by any Schwarz function is
Schwartz. [see e.g Gracia-Bondia, Varilly, J.M.P 1988; Grossmann et al., Ann. Inst. Fourier
1968].

> We now assume: H=M. Then, Vx determined by Vx(I), I: the unit eM.
Indeed, one has from (2)

Vx(a) =Vx([M)xa+ X(a), YVae M, VXeg (4)
V x(I) will serve as a NC analog of a gauge potential.
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The noncommutative algebraic set-up Gauge transformations

Gauge transformations

» Convenient hermitian structure is hy(ay, a,) = a} * a, so that V in (2)
hermitean provided (Vx(I))T=—Vx(I).
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The noncommutative algebraic set-up Gauge transformations

Gauge transformations

» Convenient hermitian structure is hy(ay, a,) = a} * a, so that V in (2)
hermitean provided (Vx(I))T=—Vx(I).

» Gauge transformations are defined by the automorphisms of the " module M"
preserving the hermitian structure h: v € Auty(M). One has

v(@)=7v(I*a)=7(I)xa, VaeM
ho(v(a1),v(a2)) = ho(ar, a2) Vay, a2 € M
This implies
YD * (@) =1

so that the gauge transformations are determined by ~(I) € U(M), where
U(M) is the group of unitary elements of M. From now on, we set () = g.
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The noncommutative algebraic set-up Gauge transformations

Gauge transformations

» Convenient hermitian structure is hy(ay, a,) = a} * a, so that V in (2)
hermitean provided (Vx(I))T=—Vx(I).
» Gauge transformations are defined by the automorphisms of the " module M"
preserving the hermitian structure h: v € Auty(M). One has
v(@)=7v(I*a)=7(I)xa, VaeM
ho(v(a1),v(a2)) = ho(ar, a2) Vay, a2 € M
This implies
YD * (@) =1
so that the gauge transformations are determined by ~(I) € U(M), where
U(M) is the group of unitary elements of M. From now on, we set () = g.
» The action of Z(M) on Vx and curvature are
(Vx)(a) =7(Vx(v7'(a))), YaeM, VXeg (6)
(Fix,v)(a)" = g * Fix,v)(a) x g! (7)
This yields
(Vx(M) =g+ Vx()*g" +gxX(g"), VeeuUM), vXeg (8)
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The noncommutative algebraic set-up Canonical gauge-invariant i

Canonical gauge-invariant connections

> Existence of inner derivations (9) implies existence of gauge invariant
connections [Cf. Dubois-Violette, Kerner, Madore; Dubois-Violette, Masson]. All
derivations of Moyal algebra are inner, i.e for any X€Der(M):

X(a) = [nx,al., nx € M (9)
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The noncommutative algebraic set-up Canonical gauge-invariant

Canonical gauge-invariant connections

> Existence of inner derivations (9) implies existence of gauge invariant
connections [Cf. Dubois-Violette, Kerner, Madore; Dubois-Violette, Masson]. All
derivations of Moyal algebra are inner, i.e for any X€Der(M):

X(a) = [nx,al., nx € M (9)

» Here, gauge-invariant connection defined by
Ve = —nx, VX eg (10)
VR“(a) = VX (I) % a+ [nx. al. = —axnx (11)

Invariance: (V2¥(a)) =—g x (g' x ax nx)=—ax nx=V2"(a)
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The noncommutative algebraic set-up Canonical gauge-invariant

Canonical gauge-invariant connections

> Existence of inner derivations (9) implies existence of gauge invariant
connections [Cf. Dubois-Violette, Kerner, Madore; Dubois-Violette, Masson]. All
derivations of Moyal algebra are inner, i.e for any X€Der(M):

X(a) = [nx,als, nx €M (9)

» Here, gauge-invariant connection defined by
Ve = —nx, VX eg (10)
V' (a) = V(D) x a+ [x, al = —axx (11)

Invariance: (V2¥(a))'=—g % (g1 x ax nx)=—axnx=V"2"(a)
> Tensor forms Ax (covariant coordinates):
(Vx — V) (a) = Ax xa = (Vx(I) +nx) * a (12)
(Ax)' = gx Ax x gl (13)
Curvature takes the form
Fix.vy(a) = ([Ax, Ayl = A, vy, — (o nvls = nix,vgp)) x @ (14)
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The noncommutative algebraic set-up The "simplest” differential calculus.

The simplest differential calculus

> It is convenient to set V,(I)=—iA,,.
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The noncommutative algebraic set-up The "simplest” differential calculus.

The simplest differential calculus

> It is convenient to set V,(I)=—iA,,.

» The most widely used differential calculus obtained from those space
derivations 0,,.
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The noncommutative algebraic set-up The "simplest” differential calculus.

The simplest differential calculus

> It is convenient to set V,(I)=—iA,,.

» The most widely used differential calculus obtained from those space
derivations 0,,.

» The gauge-invariant connection is simply obtained from 9,,a=[i¢,,, a].,
£,=—©; X" so that n,=i,
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The noncommutative algebraic set-up The "simplest” differential calculus.

The simplest differential calculus

v

It is convenient to set V,(I)=—iA,.
The most widely used differential calculus obtained from those space
derivations 0,,.

v

» The gauge-invariant connection is simply obtained from 9,,a=[i¢,,, a].,
£,=—©; X" so that n,=i,
The tensor form (" covariant coordinates”) and curvature are
Ay = —i(Ay = &) = _iAg
= —i0 + [Au, Al = —i(0;,} — i[AS, A%).) = —iFy,
F/SV = 8HAV - &,AH - i[Aua Au]*

v

F

nv

The gauge transformations are given by
(AZ)g = g*A% *xgl, (FSV)g =gx* Fﬁy x gl

(15)
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Noncommutative Induced gauge theories

Noncommutative Induced gauge theories

e Noncommutative Induced gauge theories
@ Motivations
o Computation of the one-loop effective action
@ Diagramatics
@ The structure of the effective action

10
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Noncommutative Induced gauge theories Motivations

Motivations

» Start from the complex-valued (} with harmonic term.

[Grosse, Woulkenhaar; Gurau, Magnen, Rivasseau, Vignes-Tourneret]: (}“ = 2@;3XV)

S(¢) = / d*x(0,0" x 0,0 + Q2 (X,0) * (Xu0) + m*¢! x ) (x) + Sine

» Couple S(¢) to external gauge potential A, via minimal coupling prescription
(de Goursac, JCW, Wulkenhaar): 8H¢ — Vﬁ(ﬁ:aﬂd) — A, * @,

Xy = —2iV4h + IVio=X,0+A, * ¢

11
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Noncommutative Induced gauge theories Motivations

Motivations

» Start from the complex-valued (} with harmonic term.

[Grosse, Woulkenhaar; Gurau, Magnen, Rivasseau, Vignes-Tourneret]: (}“ = 2@;3Xy)

S(6) = [ d*x(@,61 0,6 + (F0)' x (%,0) + 6! % 8)(x) + S
» Couple S(¢) to external gauge potential A, via minimal coupling prescription
(de Goursac, JCW, Wulkenhaar): 8H¢ — Vﬁ(ﬁ:aﬂd) — A, * @,
Xy = —2iV4h + IVio=X,0+A, * ¢
> Next step: Compute at the one-loop order the effective action ['(A) obtained
by integrating over the scalar field ¢ in S(¢, A), for any value of Q € [0, 1]

11
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Noncommutative Induced gauge theories Motivations

Motivations

» Start from the complex-valued (} with harmonic term.

[Grosse, Wulkenhaar; Gurau, Magnen, Rivasseau, Vignes-Tourneret]: (;“ = 2@;3Xy)

S(¢) = / d*x(0,0" x 0,0 + Q2 (X,0) * (Xu0) + m*¢! x ) (x) + Sine

» Couple S(¢) to external gauge potential A, via minimal coupling prescription
(de Goursac, JCW, Wulkenhaar): 8.u¢ — Vﬁqﬁ:aﬂd) — A, * @,
Xy = —2iV4h + IVio=X,0+A, * ¢
> Next step: Compute at the one-loop order the effective action ['(A) obtained
by integrating over the scalar field ¢ in S(¢, A), for any value of Q € [0, 1]
> Goals:
» Guess possible form(s) for a candidate as a renormalisable gauge action
> Is there some additional terms that appear in the action, beyond the expected
Fuv x Fuu.
» How does the harmonic term survive in the resulting effective action?

11
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Noncommutative Induced gauge theories Computation of the one-loop effective action

The one-loop effective action

» The effective action is formally obtained through the evaluation of the
following functional integral

oA = / DDt e=S(6.A) — / DDt e=S@)e=Sn(0.A),

Sint(¢, A) denotes the terms involving the external gauge potential A,,.

12
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Noncommutative Induced gauge theories Computation of the one-loop effective action

The one-loop effective action

» The effective action is formally obtained through the evaluation of the
following functional integral

oA = / DDt e=S(6.A) — / DDt e=S@)e=Sn(0.A),

Sint(¢, A) denotes the terms involving the external gauge potential A,,.
> At the one-loop order, the above functional reduces to

efrlloop(A) = /D¢D¢T Sfree ¢)e INt(¢7A)

12
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Noncommutative Induced gauge theories Computation of the one-loop effective action

The one-loop effective action

» The effective action is formally obtained through the evaluation of the
following functional integral

e (A E/D({)D(bTe_sw’ )_/D¢D¢T —5(9) g=Sin(#:4)

Sint(¢, A) denotes the terms involving the external gauge potential A,,.
> At the one-loop order, the above functional reduces to

efrlloop(A) = / D¢D¢T Sfree ¢)e mt(¢yA)

> The effective action I1jo0,(A) can be conveniently obtained in the x-space
formalism. Compute relevant diagrams using the Mehler-type propagator

C(x,y) = (p(x)pt(y)) (set Q= 22 and x Ay = 2x,050y1)

0?2 o dt Q 3 2_8 S 2_ 2

C x,y) = / _ exp(_f coth(Qt)(x—y)"— % tanh(Qt)(x+y) —m"t)
(o) 7202 Jo sinh?(2Qt)

combined with the vertex whose generic expression is

/ dx(fix o fyx B)() = o / T o)) ) )

_ 1)L A
X (5(X1 — Xp + X3 — X4)e i2ic(=1) NG
12
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Noncommutative Induced gauge theories Diagramatics

Diagramatics

o
o

R
-G+l

13
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Noncommutative Induced gauge theories The structure of the effective action

The structure of the effective action

> The result for any Q€(0, 1] can be writen as

— Q2 4 1~2 1 2
r(A)—W(/dU(Au*AHLLU )> (€+m |n(€)>
(1-Q2)*
1927r2 1+Q2 (/ d*u F“”*F“”> in(e)

T ey 1+§22 </d4”( Fuw + { A A Y = (~2) )) In(e) + ...,

14
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Noncommutative Induced gauge theories The structure of the effective action

The structure of the effective action

> The result for any Q€(0, 1] can be writen as

r(A) = 47T2(§2j92)3 (/d“u (A, x A, — iﬂ2)> (1 + m? In(e))

(1-02)* A
1927r2 1707 d*u Fu, % Fpuy ) In(e)

em%(/d“(Fv*Fﬁ{AmAF <~2)))ln(e)+...,

» It is similar to the expression obtained by Grosse and Wohlgenannt from a
matrix base approach using heat kernel expansion.

14
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Noncommutative Induced gauge theories The structure of the effective action

The structure of the effective action

> The result for any Q€(0, 1] can be writen as

r(A) = 47T2(§2j92)3 (/d“u (A, x A, — iﬂ2)> (1 + m? In(e))

(1-02)* A
1927r2 1707 d*u Fu, % Fpuy ) In(e)

af 2 ~2
+ grarirays (4 (o= P L A2 = 5@ ) () + ..
» It is similar to the expression obtained by Grosse and Wohlgenannt from a

matrix base approach using heat kernel expansion.

> It involves, beyond the usual expected Yang-Mills contribution
~ [ d*x Fuv * F,., additional gauge invariant terms of quadratic and quartic

order in A, ~ [d*x A, x A, and ~ [d*x {A4,, A, }2.

14
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Noncommutative Induced gauge theories The structure of the effective action

14

The structure of the effective action

The result for any Q€[0, 1] can be writen as

r(A) = 47T2(§2j92)3 (/d“u (A, x A, — ia2)> (1 + m? In(e))

(1-92)* A
1927r2 1707 d*u Fu, % Fpuy ) In(e)

wim(/d“(FV*Fﬁ{AM,AV <~2)))ln(e)+...,

It is similar to the expression obtained by Grosse and Wohlgenannt from a

matrix base approach using heat kernel expansion.

It involves, beyond the usual expected Yang-Mills contribution
~ [ d*x Fuv * F,., additional gauge invariant terms of quadratic and quartic

order in A, ~ [d*x A, x A, and ~ [d*x {A4,, A, }2.

It involves a mass-type term for the gauge potential A,
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The structure of the effective action Il

» The fact that the tadpole is non-vanishing is a rather unusual feature for a
Yang-Mills type theory. Indicates that A, has a non vanishing expectation
value.
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The structure of the effective action Il

» The fact that the tadpole is non-vanishing is a rather unusual feature for a
Yang-Mills type theory. Indicates that A, has a non vanishing expectation
value.

> The following class of actions
/
S [ a3 Fon P+ gz (A A+ 5 A5 A, )

may well involve suitable candidates for renormalisable actions for gauge
theory defined on Moyal spaces.

15



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay
Noncommutative Induced gauge theories The structure of the effective action

The structure of the effective action Il

» The fact that the tadpole is non-vanishing is a rather unusual feature for a
Yang-Mills type theory. Indicates that A, has a non vanishing expectation
value.

> The following class of actions
/
S [ a3 Fon P+ gz (A A+ 5 A5 A, )

may well involve suitable candidates for renormalisable actions for gauge
theory defined on Moyal spaces.

> Appears to be related possibly to a spectral triple (Grosse, Wulkenhaar).

15



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay
Noncommutative Induced gauge theories The structure of the effective action

The structure of the effective action Il

» The fact that the tadpole is non-vanishing is a rather unusual feature for a
Yang-Mills type theory. Indicates that A, has a non vanishing expectation
value.

> The following class of actions
4 ' 2 7
S~ [ gz * P+ gzt A2+ 5405 Ay)
may well involve suitable candidates for renormalisable actions for gauge
theory defined on Moyal spaces.
> Appears to be related possibly to a spectral triple (Grosse, Wulkenhaar).

> Next problem that must be solved: Vacuum determination. Appears to be (at
least technically) difficult.
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Vacuum configurations

© Vacuum configurations
@ The harmonic ¢*-model
@ Vacuum configurations in the matrix base
@ New features - SSB revisited

16
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The harmonic ¢*-model

» D=2 action for the harmonic (R-valued) ¢*-model (A>0) and eqn of motion
1 Q2 _ » 2
S(6) = [ dx50,0% 0,0+ - () * (ud) — b0 Mo xx6x6 (16)

—PPp+ 0°X°p — 12+ 4N xpxp =0 (17)
(17) does not support ¢p=Cte solutions whenever Q0.
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The harmonic ¢*-model
» D=2 action for the harmonic (R-valued) ¢*-model (A>0) and eqn of motion
1 Q2 _ » 2
S(6) = [ dx50,0% 0,0+ - () * (ud) — b0 Mo xx6x6 (16)

—PPp+ 0°X°p — 12+ 4N xpxp =0 (17)
(17) does not support ¢p=Cte solutions whenever Q0.
» Assume Q=1. Then, using {x?, ¢},=2(x?¢ — 9%9)

1 ., o
§{x2,¢>}* — PP+ AN xdpxd=0 (18)
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The harmonic ¢*-model

» D=2 action for the harmonic (R-valued) ¢*-model (A>0) and eqn of motion
Q 2
S(6) = [ dx50,0% 0,0+ - () * (ud) — b0 Mo xx6x6 (16)

—3 @+Q2x2@7/1, O+ dN\p*pxd =0 (17)
(17) does not support ¢p=Cte solutions whenever Q0.
» Assume Q=1. Then, using {x?, ¢},=2(x?¢ — 9%9)

1 ., ‘
§{x2, O}y — PPh+4Ad*pxd =0 (18)

> It is convenient to use the matrix basis of the Moyal algebra: f,,,(x), m, neN.

fon(r, 9)= (=1)72y/ Bk eiemm)( [2p)omm) 2o (2o~ ...,
fnn * Foqg=0npfmq, [ d* xfm,,:27r96m,, - Set azﬁ(al—/az), (9:72(814—/82),

1 3 1
afmn:\/gfm,nfl_ %fm%»l,m afmn:\/ %fmfl,n_\/ %fm,l‘H*l!

(%2) mn="3(2M+1)6mn

17
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The harmonic ¢*-model

» D=2 action for the harmonic (R-valued) ¢*-model (A>0) and eqn of motion
02 2
S(6) = [ dx50,0% 0,0+ - () * (ud) — b0 Mo xx6x6 (16)
—3 @+Q2x2@7/1, O+ dN\p*pxd =0 (17)
(17) does not support ¢p=Cte solutions whenever Q0.
» Assume Q=1. Then, using {x?, ¢},=2(x?¢ — 9%9)
1 ., ‘
§{X2,d)}* — PP+ A4Apxpxp=0 (18)
> It is convenient to use the matrix basis of the Moyal algebra: f,,,(x), m, neN.

fon(r, 9)= (=1)72y/ Bk eiemm)( [2p)omm) 2o (2o~ ...,
fnn * Foqg=0npfmq, [ d* xfm,,:27r96m,, - Set azﬁ(al—/az), (9:72(814—/82),

afmn:\/gfm,nfl_ mT—Hfm+1,ny 5fmn:\/?fmfl,n_\/ %fm,l‘H’l!
() mn=4(2m+1)6mn
> Eqn of motion in the matrix basis ¢(x)=>_,, cx@mnfmn(X)

4
g(m +n+ 1)Omn — MK @mn 4 4A(,)mkok/0/n =0 (19)
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Vacuum configurations

» Look for radial solutions v(x)=>", _ amfmm(x). Eqn. of motion yields

2 1 p2 > 4
am(am+ﬁ(2m+1—u—%)):0, o = g méeN (20)
so that a,,=0 or afn:%(% —2m — 1). Consistency requires RHS>0. This

yields %(Z—i — 1)>m (meN!) so that the sum is truncated:
0
M . 2

V(X)=" o amfmm(x) with M=[[3(4z — D)]].

18
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Vacuum configurations

» Look for radial solutions v(x)=>", _ amfmm(x). Eqn. of motion yields

2
W 4
am(ak, +E(2m+1—u—0)):0, MS:E, méeN (20)
so that a,,=0 or a2,= )\10( —2m — 1). Consistency requires RHS>0. This
yields E(L —1)>m (meNl) so that the sum is truncated:

v(x)=z¥ o amfinm(x) with M=[[3(% — 1)]].

> Expanding the action around v(x), one has v(x) a minimum of the action
provided the resulting quadratic part S; is positive.

Sq = Z Gmnl mn,pa®pqs  Tmnpg = T mndmpdng (21a)
m,n,p,qgeN
M
Fmn= Y 4r(m+n+1-= + Aeza (mp + 6np) + A0 Y 3pagdmpdng)
m,neN MO p=0 p,q=0

(21b)

18



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay
Vacuum configurations New features - SSB revisited

Discussion

» Ajust the sequence of a,,'s in such a way that I, is positive for all m, n.
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Vacuum configurations New features - SSB revisited

Discussion
> Ajust the sequence of a,,’s in such a way that I, is positive for all m, n.
> Recall M=[[3 (— —1)]].
1)M<0. Whenever (2<3. ap=0, ¥m and [ my=47(m + n+ 1 — £)>0.
2) M>0. Whenever 12> p3.
» mn>M, Tpp=4r(m+n+1— “—§)>0.
» m<M, n>M, a%= %(“—2 —2m — 1) insures that
Mon=4m(m+n+1— ;Té + )\Oam)>0.

> same a2,#0 for other cases
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Discussion
» Ajust the sequence of a,,'s in such a way that I, is positive for all m, n.
> Recall ME[[%(% —1)]].
1)M<0. Whenever 2<i2. am=0, Ym and [ mp=47(m+n+1— £)>o.
2) M>0. Whenever 12> p3.
» mn>M, Tpp=4r(m+n+1— Z—g)>0.

» m<M, n>M, afn:%(%ﬁ —2m — 1) insures that
0
Fn=dm(m+ 0+ 1 — £ + Apa3,)>0.
0
> same a2,#0 for other cases
> Summary:
Whenever p?<p3, v=0 is the (global) minimum while in the commutative
situation (or when Q=0 ie, no harmonic term), vacuum configurations v=0
(that trigger SSB) are supported. In some sense, the presence of a harmonic
term prevents SSB to occur.

Whenever p?>p3, the action has a non trivial vacuum configuration given by

M
1 2
v(x) = amfum(x), 2% = %(% —2m—1) (22)
m=0 0
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Yang-Mills-Higgs type models on Moyal spaces

0 Yang-Mills-Higgs type models on Moyal spaces
@ Basic observation
@ Symplectic algebra of derivations
@ Yang-Mills-Higgs type models
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Basic observation

> Go: [04,0,]p=0 leads to the simplest diff. calculus on M.
([0 0v1p(2)=0= [[£u, Evx, al« trivially verified. nx—"np," =nu=E).
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Basic observation

> Go: [04,0,]p=0 leads to the simplest diff. calculus on M.

([0, 0v]p(a)=0= [[£, Ev«, a« trivially verified. nx—"na," =nu=Eu).

Observe Gy is linked with [x,, f],=i©,,, 0" f which can be interpreted as Lie
derivative along (V},), such that 9¥(V,), =0, i.e Hamiltonian vector field
linked with area-preserving diffeomorphisms. A.P.D. can also be generated
from polynomials of degree 2: [(x,.x,), al,=i(x,©.,3+x,©,.3)03a=Lw(a)
where (W) verifies 9°(W/,,)3=0. This would be no longer true for
degree >3. Note too surprising because the Moyal bracket [a, b]. reduces to
the Poisson bracket {a, b}pgzel‘”g—jg—f when restricted to polynomials of
degree 2.



Results in gauge theories on noncommutative Moyal spaces, Central European Seminar, 30 Nov- 02 Dec 2007 Jean-Christophe Wallet, LPT-Orsay
Yang-Mills-Higgs type models on Moyal spaces Basic observation

21

Basic observation

> Go: [04,0,]p=0 leads to the simplest diff. calculus on M.

([0, 0v]p(a)=0= [[£, Ev«, a« trivially verified. nx—"na," =nu=Eu).

Observe Gy is linked with [x,, f],=i©,,, 0" f which can be interpreted as Lie
derivative along (V},), such that 9¥(V,), =0, i.e Hamiltonian vector field
linked with area-preserving diffeomorphisms. A.P.D. can also be generated
from polynomials of degree 2: [(x,.x.), al,=i(x,©.5+x.©,3)03a=Lw(a)
where (W) verifies 9°(W/,,)3=0. This would be no longer true for
degree >3. Note too surprising because the Moyal bracket [a, b]. reduces to
the Poisson bracket {a, b}pgzel‘”g—jg—f when restricted to polynomials of
degree 2.

Suggest to consider the differential calculus generated by those polynomials
with degree 2: [(x,.x,), a]. combined with X(a)=[nx, a|, yields a new diff.
calculus.
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Symplectic algebra of derivations

» Case D=2 to simplify the presentation. Algebra of derivations generated by

! 2 2 ! 2 2 !
= —(x + X5 ), = —IXy — X5), = —| X1 X 23
nx1 4\@9( 1+%3),  nxe 4\@9( 1—%), Tx3 2\@9( 1x2) (23)
and satisfying the commutation rules for a symplectic algebra sp(2, R).
Extension to any D straighforward and yields of course sp(D,R).
1 1 1
[77x1,77x2]* = EHX& [7]x27 7]x3]* = —ﬁnm, [TIX3, 7]X1]* = ﬁnxz

(24)

22
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Symplectic algebra of derivations

» Case D=2 to simplify the presentation. Algebra of derivations generated by
i 2 2 i 2 2 i
= —(x2 + x3), = —(xt —x3), = ——(x1x 23
TIX1 4\&9( 1 2),  Tixz 4\@0( 1 2),  TIx3 2\@9( 1%2) (23)

and satisfying the commutation rules for a symplectic algebra sp(2, R).

Extension to any D straighforward and yields of course sp(D,R).

1 1 1
X1, /X2 = —=1]X3, X2,7/X3 = — —=TIXx1, X3, TIX1 = —=TIX2
[1x1, nx2] 7" [x2,1x3]« Wil [1x3, x1]« 7"

(24)
» Enlarge with inhomogeneous "spatial part” with those 9, to isp(2,R)
[77X1,77u]* = 2\/76,11,1/77V7 etc.. [n/\/lanN]* - CI\IjIana M = My, a = ]-a 27 3.
(25)
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Symplectic algebra of derivations

» Case D=2 to simplify the presentation. Algebra of derivations generated by
i 2 2 i 2 2 i
= —(x2 + x3), = —(xt —x3), = ——(x1x 23
TIX1 4\&9( 1 2),  Tixz 4\@0( 1 2),  TIx3 2\@9( 1%2) (23)

and satisfying the commutation rules for a symplectic algebra sp(2, R).

Extension to any D straighforward and yields of course sp(D,R).

1 1 1
[Mx1, Nx2)x = ﬁnxa [Mx2, Nx3ls = _%UXM [nx3, nx1]x = ﬁnxz

(24)
» Enlarge with inhomogeneous "spatial part” with those 9, to isp(2,R)
[77X1,77u]* = 2\/76,LL1/7]V7 etc.. [WIVIJIN]* - CI\IjIana M = My, a = 1a 27 3.
(25)
» Once the Lie algebra of derivations has been choosen, simple application to
the general machinery yields curvatures. Compared to the simplest situation:

the pattern of covariant coordinates Ay, larger. New derivations act as
associated to "internal coordinates”.
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Yang-Mills-Higgs type models

Curvature has new terms beyond F,,,,. Call A,=®,, a=1,2,3.
F;La = [Au; <Da]* - /-‘LC;;‘;AV7 [Fap = [Cba, cbb]* - ,UCaCbcbc (26)

When plugged into an action Nf dxFyn Fan, the second can be viewed as a
Higgs potential: Higgs role played by those A,. The (first term)? involves a
mass term for the gauge potential.

Can be interpreted as Yang-Mills-Higgs type models on Moyal spaces.

Additional couplings of the type A,®® and A,A,P® that should in principle
contribute to the singular part of the polarisation tensor, to be computed.
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Vertices involving A,

of & ot A,

of Ay of
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Tadpole diagram |
The amplitude for the tadpole diagram is
Q? > dt e .
T = /d4x d*u d4z/ = € = Au(u) e~ u=nz

4m°0 o sinh*(Qt) cosh*(Qt)

X e~ 9 (coth(Qt)z +tanh(§2t)(2x+z)2((1 _ 92)(2}H + EH) . 2?1”)
Introduce the following 8-dimensional vectors X, J and the 8 x 8 matrix K defined
by

N o 4tanh(Qt)I 2tanh(Qt)I — 2i©~1 S (0
~\z)7 7 \2tanh(Qt)[ +2i©~1 (tanh(Qt) +coth(Qt)I)’ ~  \il

This permits one to reexpress the amplitude in a form such that some Gaussian
integrals can be easily performed:

Q? > dt e—tm’
Tzi/d4xd4ud4z/ — — A, (u
" 4n06 0 sinh?(Qt) cosh?(Qt) ()

x @ BXKXHS. X((l - Qz)(ZZL +2,) — 24,)

By performing the Gaussian integrals on X, we find

dt e=tm ~ tanh(Qt)
- o[ AT o
LT e (1+ Q2)3 1-|-Q2 sinh?(Qt) cosh?(Qt) p ()t

25
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Tadpole diagram |l

Inspection of the behaviour of 7; for t — 0 shows that this latter expression has a
quadratic as well as a logarithmic UV divergence. From Taylor expansion:

02 . 1 m2Q? 4 ~
73——47.[_2(1_'_&22)3</d UU“AH(U)> g _M(/d UUN'A:U'(U)> In

Q' 4 o~
T PP D) (/d uu uuAﬂ(u)> In(e) +...,
where € — 0 is a cut-off and the ellipses denote finite contributions.

26
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Higher order terms

> The regularisation of the diverging amplitudes is performed in a way that
preserves gauge invariance of the most diverging terms. In D = 4, these are
UV quadratically diverging so that the cut-off € on the various integrals over
the Schwinger parameters ( f:o dt) must be suitably chosen.

> We find that this can be achieved with [ dt for 7," while for 7, the
regularisation must be performed with f€/4.

» In field-theoretical language, gauge invariance is broken by the naive
e-regularisation of the Schwinger integrals and must be restored by adjusting

the regularisation scheme. Note that the logarithmically divergent part is
insensitive to a finite scaling of the cut-off.
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Higher order terms |l

» The one-loop effective action can be expressed in terms of heat kernels:

1 [ dt _ _
M l00p(®, A) = —5/0 = T (e~ *H(#A) _ ¢=H#H(00) (27)

1 . —s -S
=== I|m0 r(s) Tr(H (p,A)—H (070))7

where H(¢, A) = 5;2((%’?)_ Expanding:

H=*(6,A) = (1+ a1(6, A)s + ax(6, A)s® + ... |H™*(0,0),  (28)
we obtain
Mioop(9, A) = f% lim Te( (I (s+1)a1(6, A)+5T (s+1)a2(, A)+...)H~(0,0) ).
With T(s +1) =1—sy+ ... we have

Mioop(6, A) = — lim T (a1(6, A)H~*(0,0))

— SReso Tr((a2(6,4) ~ 7216, A)H(0,0)).  (29)
The second line is the Wodzicki residue which corresponds to the
logarithmically divergent part of the one-loop effective action. The
quadratically divergent part f% lims_o Tr(alH*S(O, 0)) in the action which

.,  Cannot be gauge-invariant.
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