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1) Introduction

1) Introduction to QFT on NC spacetime

@ 1)Snyder 1947, Yang 1947:

Hope to remove divergences by introducing a minimum length

2)Gedankenexperiment:

(Doplicher, Fredenhagen, Roberts: [DFR 1995])

Creation of micro—black holes in scattering events with high
energy transfer restricts possible resolution of spacetime events.
Below Planck scale, measurements become meaningless.

—> spacetime uncertainty relations

3)String theory:

(Connes, Douglas, Schwarz; Schomerus ; Seiberg, Witten (1998/ 1999))
Low energy limit of open string attached to a

D—brane in a constant background magnetic

field can be desribed by QFT on NC space (, not NC spacetime).



I1) Particular set—up of QFT on NC spacetime (1)

Path Integral
for
NC Theories . . .
Popular idea to implement non—commutative structure :
@ Use Weyl-Moyal correspondence & replace the pointwise
defined product of functions by Moyal-product (x—product):
I1) Set-up

(f* B)(x) = [exp(40 8500)A(x)(y)]

y=x

@ [X,, %] =:i6,,1; %X, X,: coordinate operators;
6, real, antisymmetric, constant matrix (d =1+ 3)

@ trace property: [ d*xfxg(x)= [d*xf-g(x) for
f,g e S(R>)

@ here: time/space non—commutativity (6% # 0, i = 1,2, 3)



I1) Particular set—up of QFT on NC spacetime (2)

Path Integral Starting point for QFT on NC spacetime

for

NG Theories @ Consider, e. g., free part of action (neutral massive scalar
fields):
S,ync = % [ d*x: (%qﬁ* %¢)(x) :
1) Set-up +: (819 0'P)(x) - +m* : (¢ )(x) : = Skin

@ due to trace property of star product

= free QFT in NC case equals free (ordinary) QFT

@ Consider then interaction part of action:

SNC =1 [ d**X: (¢*...x9)(x):

5 KOk

=N [d*i... [ d*kn: G(ke)...P(kn) e T 4> ki)

® — Perturbation theory (generally): Vertices contain
trigonometric functions of momenta



llla) Path Integral
corresponding to T*—Ordering (1)

Path Integral

NC T orics @ Naive ansatz for path integral (o; # 0, ie{1,2,3}):
Start from a nonlocal interaction Hamiltonian density
Hint(9)« := ¢ x ¢+ ¢(x), e. g.,
and plug it in the formula for generating functional of /ocal case
(Ac(z2): causal propagator):
Illa) Path - . 4 5
I;&egéizduct Z[J] = eXp[—I f d ZH,‘nt( I'(SJ(Z))*] X

x exp[5t [ d*a [ d*bJ(a)Ac(a— b)J(b)]

@ Perturbative expansion leads to naive Feynman rules: Graphs
with causal propagators as internel lines and vertices that are
multiplied by trigonometric functions of momenta

@ Example (fishgraph in momentum space):

i 2 [ d'q i 2(Pub""qy i
(p2—m2+ie) f (27)* g2—m?+ie cos ( 2 )(p—q)Z—m2+ie



llla) Path Integral
corresponding to T*—Ordering (2)

Path Integral

for @ These Feynman rules are also obtained by starting from
NS ULESIEE Gell-Mann - Low formula (canonical approach = operator
approach) and applying T*-operator.
@ Gell-Mann Low formula with T* — product :

* _ OIT*{i(x)d1 (y)expli [ d*xHine(¢1(x))]}10)
llla) Path QT {®o(x)®0(y)}D) = (O T*{expli | d*xHine(¢1(x))+]}|0)
Integral:

T+ Shroduct ®y: Heisenberg field; |Q): ground state of interacting theory;

|0): ground state of free theory; ¢,: Dirac picture field

@ T*—product: all time derivatives of star product act after time
ordering, see Heslop & Sibold [11/04].

@ According to Gomis & Mehen [02,00]: Feynman rules violate
unitarity.

@ See K. Fujikawa [06/04]: path integral from equation of motion
(not Hamiltonian approach !): same Feynman rules as above



llla) Path Integral
corresponding to T*—Ordering (3)

Path Integral
for

NC Theories
@ Example (fishgraph in position space):
2) L d* pe—izP ; o (i)2 COS2(P“9‘“’qu)
Ty (2) = | o (=) | oy @it ar )
. 2 2
o) Path then with A € SO(1,3): | T\(Az) = T2,y 1), (2)
I_]’:Efﬁ;?'(;(j uct

@ continuous part of the spectral representation for the fishgraph:

(2, 2) = e Am S e") (1 | Sy BP)

with p* := p, 0", y(p?) := /1 — % and p? := p? — |B|*.



llla) Path Integral
corresponding to T*—Ordering (4)

Path Integral
for

@ However: Causal (or rather chronological) time ordering is lost

e Theens (C. Dehne, to appear)!

@ Example for causal time ordering:
(QT®g(x1)Po(x2)Pa(x3)[2) =
(Q|Pp(x1)Po(x2)Po(x3)|2), if XV > 52 > X2,

I11a) Path (Q|Pp(x1)Po(33)Po (x2)|Q), if XV > x> XD,
T oroduct (QPg(x2) Py (x1)Po(x3)|2), if X > x) > x3,
(Q|Pg(x2) Do (33)Pa(x1)[Q), if X2 > x¥ > X,
<Q|¢9(X3)¢9(X1)¢9(X2)|Q> if Xg? > X? > Xg,
(Q|Po(x3) P (3x2) P (x1)|), if xJ > x§ > x?

@ In the time/space NC case, vertex becomes fuzzy and
decompostion into six different terms is not possible, e. g.:

e d*pr d*pr d'py (i )Be—itpl-xl+p2'xz+p3'><3) cos(pt* 0, p5) (277)46(4)(p1+p2+p3)
31 J (2m)* (2m)* (2n)* p?—m?+ie p3—m2+ie p3—m2+ie




llIb) Path Integral
corresponding to T—Ordering (1)

Pty el @ Question: In the case of 6p; # 0 (ie{1,2,3}), can one derive a

NC Theories generating functional (or modify the usual one in such a way)
that the resulting Feynman rules preserve causal time ordering?

@ Answer: Yes!

Z[J] = exp[—/fd“z[H,,,t(”SJ 7)+lg 1%
x exp[5t [d*a [ d*bJ(a TA+(a — b)J(b)]

I1Ib) Path
S TAi(z) )A(2) +D(=2°) A (~2) = Acl2),
= ] e PO — )

o [(+ 5569 ) ]o”: For each time—ordered configuration take first the
time derivative (associated to ;) of Ay (x). Then, realize the
time ordering by multiplication with step function. (The
argument of the step function never contains 6p;).
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111b) Path
Integral:
T—-Product

llIb) Path Integral
corresponding to T—Ordering (2)

Main result: Feynman rules are the same as those derived within the
canonical (operator) approach and leading to old—fashioned pertur-
bation theory (TOPT) (equivalence between canonical approach and
path integral)

@ Old—fashioned perturbation theory (TOPT) (Liao & Sibold
[05/02], [06/02]; see also Liao & Dehne [11/02] ): Start from
Gell-Mann - Low formula and apply T—ordering.

@ Gell-Mann Low formula with T—product:

O e)r)expli [ d xHim(n()-110)
(QUT{Po()Po(y)}H) = 6T axpli T d*5Hme (31 00)-T710)

®y: Heisenberg field; |Q): ground state of interacting theory;
|0): ground state of free theory; ¢,: Dirac picture field

@ T—product: all time derivatives of star product act before time
ordering is applied (See also Fujikawa [06/04], [10/04]; Heslop
& Sibold [11/04].)




llIb) Path Integral
corresponding to T—Ordering (3)

e @ Perturbative example:
J d*2(01 Ty (x1)d1(x2) 61 (x3) 1 * 61 * $1(2)[0)

NC Theories
f d4ple—IP1 X1 d4p2e—lp2 X9 d4p3e ip3-x3 Z %
(2m)*2wp,  (2m)%2wp,  (2m)*2wp, A1,A2,A3 € {—,+}

(27)*6™ (p1+p2+P3) expli(Por (1) Ao (1) P (2) Ao (2) Por(3) Aer(3))]

X ZUGP?: 6()\1p§)—w51+i6)()\2p8—w52 +ie)()\3pg—w53+ie)
I1b) Path = fd4z ZUGP_,, [exp[ (ax 0’ 8x 78x )]]
Integral:
T—Product XAC(X]_ — Z)AC(X2 - Z)AC(X3 - Z),

where (a,b,c):=(aAb+aAc+bAc), alb:=3a"d,,b",
Pix; = (/\;wf-,*l.,ﬁ;)T and Wp;, 1= 4/ |[_)),'|2 + m2.

@ These Feynman rules maintain unitarity and by construction
causal time—ordering.

@ Generating functional is less tedious than operator approach!
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111b) Path
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T—-Product

llIb) Path Integral
corresponding to T—Ordering (4)

@ Example (fishgraph in position space):

@)y .
Ty (2) = '
d'pe ?* &) &gy 5N (G1+d—P) (wpthip’) (wptdap’) |
@r)*  wg wg, 4i wp w5

Arpe{—,+}

(Z e—l'(—PA1,q1+,q2+)e—i(—P>\2y<71+,lI2+))
e=
————
P’ —wg —wg, tie

(Zsym efi(fp,\l~q1_yqz_)eff(fpx2~q1_yqz_)))
)

T — P —wg; —wg, Hie

then with A ¢ SO(1,3): | TS2(A2) # T2 gn-1)-(2) | !

@ continuous part of the spectral representation for the fishgraph:

2 N
o) # (0%, B°)
(in contrast to the case of covariant time—ordering)

@ — different quantization prescription



IV) Summary and Outlook (1)

Path Integral
for
NC Theories
@ Main result: successful derivation of path integral formula
corresponding to the T—product in canonical case (Hamiltonian
approach)
@ Feynman rules are identical to those of TOPT and thus preserve
unitarity and causal time—ordering.
@ time—ordering (or rather quantization prescription) not rigidly
implemented in the path integral
1V) Summary X X
& Outlook @ in progress: path integral based on T—operator

[) in u—coordinates, Il) starting from field equation
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1V) Summary
& Outlook

IV) Summary and Outlook (2)

in progress: Wick rotation and Euclidean Feynman rules for
causally time—ordered (and naively canonically quantized) path
integral

in this case: reflection positivity requires fpx — i
(k=1,2,3)

in this case: one—loop diagramm for theory with
¢ * ¢ * ¢ * p(x)—self—interaction remains finite for any
configuration of external momentum p

— no UV/IR connection for these (new) reflection positive
Euclidean Feynman rules !!!

in progress: Wick rotation and Euclidean Feynman rules for
covariantly (quantized and) time—ordered path integral



IV) Summary and Outlook (3)

Path flntegral
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