Path Integral for NC Theories

Outline of Talk

Introduction

II) Set-up

IIIa) Path
Integral:
T*-Product

IIIb) Path Integral: T-Product

IV) Summary & Outlook

On the Path Integral in a Quantum Field Theory (QFT) on Non–Commutative (NC) Spacetime

Christoph Dehne

Institut für Theoretische Physik Fakultät für Physik und Geowissenschaften Universität Leipzig, Germany

Talk given at the 4th Vienna Central European Seminar Vienna, November 30, 2007

Outline of Talk

Path Integral for NC Theories

Outline of Talk

- Introduction
- II) Set-up

IIIa) Path
Integral:

T*-Product

IIIb) Path Integral: T-Product

IV) Summary & Outlook

- I) Introduction to QFT on non-commutative (NC) spacetime
- II) Particular set-up of QFT on NC spacetime
- III) Path integral (Hamiltonian approach):
 - a) in time/space NC QFT corresponding to T^* -ordering
 - b) in time/space NC QFT corresponding to T-ordering
- IV) Summary & Outlook

I) Introduction to QFT on NC spacetime

Path Integral for NC Theories

Outline of Talk

I) Introduction

II) Set-u

IIIa) Path Integral: T^* -Product

IIIb) Path Integral: T-Product

IV) Summary

• 1)Snyder 1947, Yang 1947: Hope to remove divergences by introducing a minimum length

• 2)Gedankenexperiment:

(Doplicher, Fredenhagen, Roberts: [DFR 1995]) Creation of micro-black holes in scattering events with high energy transfer restricts possible resolution of spacetime events. Below Planck scale, measurements become meaningless.

⇒ spacetime uncertainty relations

• 3)String theory:

(Connes, Douglas, Schwarz; Schomerus; Seiberg, Witten (1998/1999))
Low energy limit of open string attached to a
D-brane in a constant background magnetic
field can be desribed by QFT on NC space (, not NC spacetime).

II) Particular set-up of QFT on NC spacetime (1)

Path Integral for NC Theories

Outline of Talk

I) Introduction

II) Set-up

IIIa) Path
Integral:
T*-Product

IIIb) Path Integral: *T*-Product

IV) Summary & Outlook

Popular idea to implement non-commutative structure :

 Use Weyl–Moyal correspondence & replace the pointwise defined product of functions by Moyal–product (*-product):

$$(f_1*f_2)(x) := \left[\exp\left(\frac{i}{2}\theta^{\mu\nu}\partial^x_\mu\partial^y_\nu\right)f_1(x)f_2(y)\right]_{y=x}$$

- $[\hat{x}_{\mu}, \hat{x}_{\nu}] =: i\theta_{\mu\nu}1; \hat{x}_{\mu}, \hat{x}_{\nu}:$ coordinate operators; $\theta_{\mu\nu}:$ real, antisymmetric, constant matrix (d=1+3)
- trace property: $\int d^4x \, f * g(x) = \int d^4x \, f \cdot g(x)$ for $f, g \in \mathcal{S}(\mathbb{R}^{3+1})$
- ullet here: time/space non-commutativity ($heta^{0i}
 eq 0$, i=1,2,3)

II) Particular set-up of QFT on NC spacetime (2)

Path Integral for NC Theories

Outline o Talk

I) Introductio

II) Set-up

IIIa) Path
Integral:

T*-Product

IIIb) Path Integral: *T*-Product

IV) Summary & Outlook

Starting point for QFT on NC spacetime

 Consider, e. g., free part of action (neutral massive scalar fields):

$$S_{kin}^{NC} = \frac{1}{2} \int d^4x : (\frac{\partial}{\partial t} \phi * \frac{\partial}{\partial t} \phi)(x) : + : (\partial_i \phi * \partial^i \phi)(x) : + m^2 : (\phi * \phi)(x) : = S_{kin}$$

- due to trace property of star product
 - \Longrightarrow free QFT in NC case equals free (ordinary) QFT
- Consider then interaction part of action:

$$S_{I}^{NC} = \frac{1}{2} \int d^{4}x \lambda : (\phi * ... * \phi)(x) :$$

$$= \frac{1}{2} \lambda \int d^{4}k_{1} ... \int d^{4}k_{n} : \check{\phi}(k_{1}) ... \check{\phi}(k_{n}) : e^{\frac{-i}{2} \sum_{i < j} k_{i}^{\mu} \theta_{\mu\nu} k_{j}^{\nu}} \delta^{4}(\sum k_{i})$$

• Perturbation theory (generally): Vertices contain trigonometric functions of momenta

IIIa) Path Integral corresponding to T^* -Ordering (1)

Path Integral for NC Theories

Outline of Talk

I) Introduction

II) Set-up

IIIa) Path
Integral:
T*-Product

IIIb) Path Integral: T-Product

IV) Summary & Outlook

• Naïve ansatz for path integral ($\theta_{0i} \neq 0$, $i \in \{1, 2, 3\}$):

Start from a nonlocal interaction Hamiltonian density

$$\mathcal{H}_{int}(\phi)_* := \phi * \phi * \phi(x)$$
, e. g.,

and plug it in the formula for generating functional of *local* case $(\Delta_c(z))$: causal propagator):

$$Z[J] = \exp[-i \int d^4z \mathcal{H}_{int}(\frac{\delta}{i\delta J(z)})_*] \times \\ \times \exp[\frac{-1}{2} \int d^4a \int d^4b J(a) \Delta_c(a-b) J(b)]$$

- Perturbative expansion leads to naïve Feynman rules: Graphs with causal propagators as internel lines and vertices that are multiplied by trigonometric functions of momenta
- Example (fishgraph in momentum space):

$$\left(\frac{i}{p^2 - m^2 + i\epsilon}\right)^2 \int \frac{d^4q}{(2\pi)^4} \frac{i}{a^2 - m^2 + i\epsilon} \cos^2\left(\frac{p_\mu \theta^{\mu\nu} q_\nu}{2}\right) \frac{i}{(p-q)^2 - m^2 + i\epsilon}$$

IIIa) Path Integral corresponding to T^* -Ordering (2)

Path Integral for NC Theories

> tline c k

I) Introducti

II) Set-up
IIIa) Path

Integral:

T*-Product

IIIb) Path

IV) Summar

```
• These Feynman rules are also obtained by starting from <u>Gell-Mann - Low formula</u> (canonical approach = operator approach) and applying T^*-operator.
```

• Gell-Mann Low formula with $T^* - product$:

$$\langle \Omega | T^* \{ \Phi_{\theta}(x) \Phi_{\theta}(y) \} | \Omega \rangle = \frac{\langle 0 | T^* \{ \phi_I(x) \phi_I(y) \exp[i \int d^4 x \mathcal{H}_{int}(\phi_I(x))_*] \} | 0 \rangle}{\langle 0 | T^* \{ \exp[i \int d^4 x \mathcal{H}_{int}(\phi_I(x))_*] \} | 0 \rangle}$$

 Φ_{θ} : Heisenberg field; $|\Omega\rangle$: ground state of interacting theory; $|0\rangle$: ground state of free theory; ϕ_{I} : Dirac picture field

- T^* -product: all time derivatives of star product act after time ordering, see Heslop & Sibold [11/04].
- According to Gomis & Mehen [02,00]: Feynman rules violate unitarity.
- See K. Fujikawa [06/04]: path integral from equation of motion (not Hamiltonian approach!): same Feynman rules as above

IIIa) Path Integral corresponding to T^* -Ordering (3)

Path Integral for NC Theories

Outline of Talk

I) Introduction

II) Set-u

IIIa) Path
Integral:
T*-Product

IIIb) Path Integral: T-Product

IV) Summary & Outlook

• Example (fishgraph in position space):

$$T_{\theta}^{(2)}(z) := \int \frac{d^4 p e^{-iz \cdot p}}{(2\pi)^4} \left(\frac{i}{p^2 - m^2 + i\epsilon}\right)^2 \int \frac{d^4 q}{(2\pi)^4} \frac{(i)^2 \cos^2\left(\frac{p_{\mu} \theta^{\mu \nu} q_{\nu}}{2}\right)}{(q^2 - m^2 + i\epsilon)((p - q)^2 - m^2 + i\epsilon)},$$

then with
$$\Lambda \in SO(1,3)$$
: $T_{ heta}^{(2)}(\Lambda z) = T_{\Lambda^{-1} heta(\Lambda^{-1})^{ au}}^{(2)}(z)$

• continuous part of the spectral representation for the fishgraph:

$$\begin{split} &\sigma_{\theta}^{(2)}(\rho^2,\tilde{p}^2) = \frac{\vartheta(\rho^2 - 4m^2)\vartheta(\rho^0)\gamma(\rho^2)}{64\pi^2(\rho^2 - m^2)^2} \Big(1 + \frac{\sin(\frac{\gamma(\rho^2)}{2}\sqrt{-\rho^2(\tilde{p})^2})}{\frac{\gamma(\rho^2)}{2}\sqrt{-\rho^2(\tilde{p})^2}}\Big) \\ &\text{with } \tilde{p}^{\mu} := p_{\nu}\theta^{\mu\nu}, \ \gamma(\rho^2) := \sqrt{1 - \frac{4m^2}{(\rho)^2}} \ \text{and } \ p^2 := p_0^2 - |\vec{p}|^2. \end{split}$$

IIIa) Path Integral corresponding to T^* -Ordering (4)

Path Integral for NC Theories

Outline of Talk

I) Introduction

II) Set-up

IIIa) Path
Integral:
T*-Product

IIIb) Path Integral: T-Product

IV) Summary & Outlook

- However: Causal (or rather chronological) time ordering is lost (C. Dehne, to appear)!
- Example for causal time ordering:

$$\begin{split} &\langle \Omega | T \Phi_{\theta}(x_1) \Phi_{\theta}(x_2) \Phi_{\theta}(x_3) | \Omega \rangle = \\ &\langle \Omega | \Phi_{\theta}(x_1) \Phi_{\theta}(x_2) \Phi_{\theta}(x_3) | \Omega \rangle, \text{ if } x_1^0 > x_2^0 > x_3^0, \\ &\langle \Omega | \Phi_{\theta}(x_1) \Phi_{\theta}(x_3) \Phi_{\theta}(x_2) | \Omega \rangle, \text{ if } x_1^0 > x_3^0 > x_2^0, \\ &\langle \Omega | \Phi_{\theta}(x_2) \Phi_{\theta}(x_1) \Phi_{\theta}(x_3) | \Omega \rangle, \text{ if } x_2^0 > x_1^0 > x_3^0, \\ &\langle \Omega | \Phi_{\theta}(x_2) \Phi_{\theta}(x_3) \Phi_{\theta}(x_1) | \Omega \rangle, \text{ if } x_2^0 > x_3^0 > x_1^0, \\ &\langle \Omega | \Phi_{\theta}(x_3) \Phi_{\theta}(x_1) \Phi_{\theta}(x_2) | \Omega \rangle, \text{ if } x_3^0 > x_1^0 > x_2^0, \\ &\langle \Omega | \Phi_{\theta}(x_3) \Phi_{\theta}(x_2) \Phi_{\theta}(x_1) | \Omega \rangle, \text{ if } x_3^0 > x_2^0 > x_1^0. \end{split}$$

 In the time/space NC case, vertex becomes fuzzy and decompostion into six different terms is not possible, e. g.:

$$\frac{g}{3!} \int \frac{d^4p_1}{(2\pi)^4} \frac{d^4p_2}{(2\pi)^4} \frac{d^4p_3}{(2\pi)^4} \frac{(i)^3 e^{-i(p_1 \cdot x_1 + p_2 \cdot x_2 + p_3 \cdot x_3)}}{p_1^2 - m^2 + i\epsilon} \frac{\cos(p_1^{\prime\prime} \theta_{\mu\nu} p_2^{\nu})}{p_2^2 - m^2 + i\epsilon} \frac{(2\pi)^4 \delta^{(4)}(p_1 + p_2 + p_3)}{p_2^2 - m^2 + i\epsilon}$$

IIIb) Path Integral corresponding to *T*-Ordering (1)

Path Integral for NC Theories

Outline of Talk

I) Introductio

II) Set-u

IIIa) Path

IIIb) Path
Integral:
T-Product

IV) Summary & Outlook • Question: In the case of $\theta_{0i} \neq 0$ ($i \in \{1, 2, 3\}$), can one derive a generating functional (or modify the usual one in such a way) that the resulting Feynman rules preserve causal time ordering?

Answer: Yes!

$$Z[J] = \exp[-i \int d^4 z [\mathcal{H}_{int}(\frac{\delta}{i\delta J(z)})_*]_{\theta}^{\rightarrow}] \times \\ \times \exp[\frac{-1}{2} \int d^4 a \int d^4 b J(a) T \Delta_+(a-b) J(b)]$$

- $$\begin{split} \bullet \quad & T\Delta_{\pm}(z) := \vartheta(z^0)\Delta_{+}(z) + \vartheta(-z^0)\Delta_{+}(-z) = \Delta_c(z), \\ & \Delta_{+}(z) := \int \frac{d^4p}{(2\pi)^3} e^{-ip\cdot z} \vartheta(p^0)\delta(p^2 m^2) \end{split}$$
- $[(\frac{\delta}{\delta J(x)})_*]_{\theta}^{\rightarrow}$: For each time-ordered configuration take first the time derivative (associated to θ_{0i}) of $\Delta_+(x)$. Then, realize the time ordering by multiplication with step function. (The argument of the step function never contains θ_{0i}).

IIIb) Path Integral corresponding to *T*-Ordering (2)

Path Integral for NC Theories

Talk

I) Introduction

II) Set-u_l

IIIa) Path
Integral:
T*-Product

IIIb) Path Integral: T-Product

IV) Summary & Outlook Main result: Feynman rules are the same as those derived within the canonical (operator) approach and leading to old–fashioned perturbation theory (TOPT) (equivalence between canonical approach and path integral)

- Old–fashioned perturbation theory (TOPT) (Liao & Sibold $\overline{[05/02]}$, $\overline{[06/02]}$; see also Liao & Dehne $\overline{[11/02]}$): Start from $\overline{\text{Gell-Mann Low formula}}$ and apply $\overline{T\text{-ordering}}$.
- Gell-Mann Low formula with *T*-product:

$$\langle \Omega | T\{\Phi_{\theta}(x)\Phi_{\theta}(y)\} | \Omega \rangle = \frac{\langle 0 | T\{\phi_{I}(x)\phi_{I}(y) \exp[i \int d^{4}x \mathcal{H}_{int}(\phi_{I}(x))_{*}]\} | 0 \rangle}{\langle 0 | T\{\exp[i \int d^{4}x \mathcal{H}_{int}(\phi_{I}(x))_{*}]\} | 0 \rangle}$$

- Φ_{θ} : Heisenberg field; $|\Omega\rangle$: ground state of interacting theory;
- $|0\rangle$: ground state of free theory; ϕ_I : Dirac picture field
- <u>T-product</u>: all time derivatives of star product act before time ordering is applied (See also Fujikawa [06/04], [10/04]; Heslop & Sibold [11/04].)

IIIb) Path Integral corresponding to *T*–Ordering (3)

Path Integral for NC Theories

Outline o Talk

I) Introduction

II) Set-up

T*-Productillb) Path Integral:

T-Product

IV) Summary

• Perturbative example:
$$\int d^4z \langle 0 | T\phi_I(x_1)\phi_I(x_2)\phi_I(x_3)\phi_I * \phi_I * \phi_I(z) | 0 \rangle$$

$$= \int \frac{d^4p_1 e^{-ip_1 \cdot x_1}}{(2\pi)^4 2\omega_{\vec{p}_1}} \frac{d^4p_2 e^{-ip_2 \cdot x_2}}{(2\pi)^4 2\omega_{\vec{p}_2}} \frac{d^4p_3 e^{-ip_3 \cdot x_3}}{(2\pi)^4 2\omega_{\vec{p}_3}} \sum_{\lambda_1, \lambda_2, \lambda_3} \sum_{\epsilon \{-,+\}} \times \sum_{\sigma \in P_3} \frac{(2\pi)^4 \delta^{(4)}(p_1 + p_2 + p_3) \exp[i(p_{\sigma(1)\lambda\sigma(1)}, p_{\sigma(2)\lambda\sigma(2)}, p_{\sigma(3)\lambda\sigma(3)})]}{6(\lambda_1 p_1^0 - \omega_{\vec{p}_1} + i\epsilon)(\lambda_2 p_2^0 - \omega_{\vec{p}_2} + i\epsilon)(\lambda_3 p_3^0 - \omega_{\vec{p}_3} + i\epsilon)}$$

where $(a, b, c) := (a \wedge b + a \wedge c + b \wedge c)$, $a \wedge b := \frac{1}{2} a^{\mu} \theta_{\mu\nu} b^{\nu}$, $p_{i\lambda_i} := (\lambda_i \omega_{\vec{p}_i}, \vec{p}_i)^{\tau}$ and $\omega_{\vec{p}_i} := \sqrt{|\vec{p}_i|^2 + m^2}$.

• These Feynman rules maintain unitarity and by construction causal time–ordering.

 $=\frac{(-1)^3}{6}\int d^4z \sum_{\sigma\in P_3} \left[\exp\left[i\left(\frac{\partial}{\partial x_{\sigma(1)}},\frac{\partial}{\partial x_{\sigma(2)}},\frac{\partial}{\partial x_{\sigma(3)}}\right)\right]\right]_{\theta}^{\rightarrow} \times$

 $\times \Delta_c(x_1-z)\Delta_c(x_2-z)\Delta_c(x_3-z)$.

Generating functional is less tedious than operator approach!

IIIb) Path Integral corresponding to *T*-Ordering (4)

Path Integral for NC Theories

Outline o Talk

- I) Introduction
- II) Set-up

IIIb) Path Integral:

IV) Summary & Outlook • Example (fishgraph in position space):

$$\begin{split} \mathcal{T}^{(2)}_{\theta}(z) &:= \\ &\sum_{\lambda_{1,2} \in \{-,+\}} \int \frac{d^4 p e^{-ip \cdot z}}{(2\pi)^4} \frac{d^3 q_1}{\omega_{\vec{q}_1}} \frac{d^3 q_2}{\omega_{\vec{q}_2}} \frac{\delta^{(3)}(\vec{q}_1 + \vec{q}_2 - \vec{p})}{4i} \frac{(\omega_{\vec{p}} + \lambda_1 p^0)}{\omega_{\vec{p}}} \frac{(\omega_{\vec{p}} + \lambda_2 p^0)}{\omega_{\vec{p}}} \times \\ &\times \left(\frac{(\sum_{\textit{sym}} e^{-i(-p_{\lambda_1}, q_{1+}, q_{2+})} e^{-i(-p_{\lambda_2}, q_{1+}, q_{2+})})}{p^0 - \omega_{\vec{q}_1} - \omega_{\vec{q}_2} + i\epsilon} + \frac{(\sum_{\textit{sym}} e^{-i(-p_{\lambda_1}, q_{1-}, q_{2-})} e^{-i(-p_{\lambda_2}, q_{1-}, q_{2-})})}{-p^0 - \omega_{\vec{q}_1} - \omega_{\vec{q}_2} + i\epsilon} \right), \end{split}$$

then with
$$\Lambda \in SO(1,3)$$
: $T_{\theta}^{(2)}(\Lambda z) \neq T_{\Lambda^{-1}\theta(\Lambda^{-1})^{\tau}}^{(2)}(z)$!

 \bullet continuous part of the spectral representation for the fishgraph:

$$\sigma_{\theta}^{(2)} \neq f(p^2, \tilde{p}^2)$$

(in contrast to the case of covariant time-ordering)

• — different quantization prescription

IV) Summary and Outlook (1)

Path Integral for NC Theories

- Talk
- I) Introductio
- II) Set-up
- IIIa) Path
 Integral:

 T*-Product
- IIIb) Path Integral: T-Product
- IV) Summary & Outlook

- Main result: successful derivation of path integral formula corresponding to the *T*-product in canonical case (Hamiltonian approach)
- Feynman rules are identical to those of TOPT and thus preserve unitarity and causal time–ordering.
- time-ordering (or rather quantization prescription) not rigidly implemented in the path integral
- in progress: path integral based on T-operator
 l) in u-coordinates, II) starting from field equation

IV) Summary and Outlook (2)

Path Integral for NC Theories

Outline of Talk

I) Introductio

II) Set-up

IIIa) Path
Integral:
T*-Product

IIIb) Path Integral: T-Product

IV) Summary & Outlook

- in progress: Wick rotation and Euclidean Feynman rules for causally time-ordered (and naïvely canonically quantized) path integral
- in this case: reflection positivity requires $heta_{0k} o \pm i heta_{0k}$ (k=1,2,3)
- in this case: one–loop diagramm for theory with $\phi*\phi*\phi*\phi(x)$ –self–interaction remains finite for any configuration of external momentum p
 - \longrightarrow no UV/IR connection for these (new) reflection positive Euclidean Feynman rules !!!

 in progress: Wick rotation and Euclidean Feynman rules for covariantly (quantized and) time-ordered path integral

IV) Summary and Outlook (3)

Path Integral for NC Theories

Outline of Talk

I) Introductio

II) Set-up

IIIa) Path
Integral:

T*-Product

IIIb) Path Integral: T-Product

IV) Summary & Outlook C.D. is grateful to Prof. K. Sibold for advice.

Furthermore, C.D. considers it as a great pleasure to thank the sponsors, namely

- the Austrian Federal Ministry of Science and Research,
- the High Energy Physics Institute of the Austrian Academy of Sciences and
- the Erwin Schroedinger International Institute of Mathematical Physics,

for financial support!