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Euclidean noncommutative field theory and and Minkowskian
noncommutative field theory have very different properties,
especially regarding renormalization.

There are indications that hard ultraviolet/infrared mixing might
be absent on the noncommutative Minkowski space. Certainly it
would be different: absence proved for a certain class of graphs.

Example [Spoiler]: contrary to Euclidean ncQFT, the insertion ofr i into higher order graphs, e.g.
@�r
����r iri

is well defined in Minkowskian ncQFT.
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Quantum Field Theory on R4

I Starting point: partial differential equation (free field eqn)

(∂2
t ±∆ + m2)ϕ = 0

mass m > 0. The signature matters:
− hyperbolic (Minkowskian) versus
+ elliptic (Euclidean) case.

I ϕ is an operator valued distribution.

I Interaction:

(∂2
t ± ∆ + m2)ϕ = −g P ′(ϕ)

P ′ derivative of a polynomial, g coupling constant
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Operator valued distributions

The free field ϕ is in fact an operator valued distribution. We write

ϕ(f ) =

∫
d4x ϕ(x)f (x)

for a testfunction f ∈ S(R4).

u is an operator valued distribution provided

I it maps a Schwartzfunction f ∈ S(R4)
to an operator on Fockspace u(f )

I such that for any two elements ψ1, ψ2 of Fockspace, the map

S(R4) 3 f 7→ 〈ψ1, u(f )ψ2〉

defines a tempered distribution.
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Free fields

I Free field

ϕ(f ) =

∫
d4x ϕ(x) f (x)

I For signature (∂2
t −∆ + m2) we have:

ϕ(x) =

∫
d3k ω−1

k (a(k) e ikx + a∗(k) e−ikx)|k=(ωk,k)

I with ωk =
√

k2 + m2

annihilation, creation operators a(k), a∗(k) on Fock space
and kx = kµη

µνxν with η = (+1,−1,−1,−1) (signature)

I Eventually, testfunctions f are removed in the formalism
(adiabatic limit).

Dorothea Bahns On the UV/IR problem on ncMinkowski space



Outline
Main point

Quantum Field Theory

Quantum fields in position space
Noncommutative flat spacetime
UV-IR Mixing

Perturbation theory

Idea: interacting theory determined by free field

I Functional integral approach [Euclidean]

I S-matrix approach (Dyson series) [Minkowskian]

I Yang-Feldman approach (based on the field equation) [both
signatures]
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Euclidean Feynman graphs

I On R4, all perturbative setups lead to the Feynman rules.

I Graphs in R2: vertices, edges, labelled open edges
# edges + # open edges at a given vertex determined by P

I Graphs correspond to distributions

x
r

y
r ↔ ∆E (x − y) Euclidean propagator

p
x
r ↔ e ipx p ∈ R4 label

I Signature:
∆E = distributional fundamental solution for (∂2

t +∆ + m2)
px = pµη

µνxν with η = (+,+,+,+).
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Minkowskian Feynman graphs

I Graphs in R2: vertices, edges, labelled open edges
# edges + # open edges at a given vertex determined by P

I Graphs correspond to distributions

x
r

y
r ↔ ∆F (x − y) Feynman propagator

p
x
r ↔ e ipx p ∈ R4 label

I Signature:
∆F = distributional fundamental solution for (∂2

t −∆ + m2)
px = pµη

µνxν with η = (+,−,−,−).
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Feynman graph example

Example: fish graph [Minkowskian]

p1

x
r

y

p2r����
↔

∫
d4xd4y ∆F (x − y)2 e ip1x e ip2y g(x , y)

Same as well known momentum space calculations: remove g ,
replace

∆F (x − y) =

∫
d4k

1

k2 −m2 + iε︸ ︷︷ ︸
=∆̃F (k)

e−ik(x−y)
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The Feynman propagator

I What is the Feynman propagator ∆F ?

I fundamental distributional solution for (∂2
t −∆ + m2).

Signature matters!

I Kernel of the distribution given by

∆F (x) = θ(x0)∆+(x) + θ(−x0)∆+(−x)

for x = (x0, x)

with Heaviside step function (distribution) θ
timeorder: θ(x0 − y0) ↔ x0 later than y0

and 2-point-function (distribution) f 7→ ∆+(f ) with kernel

∆+(x − y) = 〈Ω, ϕ(x)ϕ(y)Ω〉

with ϕ the free field.
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Connection with S-matrix formalism

In S-matrix formalism, two ingredients:
Heaviside functions θ from time order T ,
2-point-functions ∆+ from contractions of fields.

S-matrix:

S =
∞∑

n=0

in

n!
T

∫
dt1 . . . dtn HI (t1) · · ·HI (tn)

with interaction Hamiltonian HI (t) =
∫
x0=t d3x g P(ϕ),

time ordering T, the free field ϕ i.e. (∂2
t −∆ + m2)ϕ = 0.
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Connection with S-matrix formalism – fish graph

Example: HI (t) =
∫
x0=t d3x g ϕ3(x)

S2 ∝
∫

d4xd4y
(
θ(x0 − y0) : ϕ(x)3 : : ϕ(y)3 : + (x ↔ y)

)
g(x)g(y)

〈p| : ϕ(x)3 : : ϕ(y)3 : |q〉 → e−ipx e iqy ∆2
+(x − y) + . . .

θ and ∆+ appear such that together they yield product of
Feynman propagators ∆F .

long known – success story of Feynman over Dyson rules.
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Euclidean vs. Minkowskian on R4

The Euclidean propagator ∆E is distributional fundamental
solution for (∂2

t +∆ + m2),

∆E (x) =

∫
d4p

1

p2 + m2
e−ikx

It is the only propagator in the theory: ∆E is the
2-point-function – there is no time ordering via Heaviside!

Theorem (Osterwalder+Schrader): Perturbation theory based on
∆E is in 1:1 relation with that based on ∆F . They can be
transformed into one another via the Wick rotation.
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Excursion: Renormalization in position space

I Products of Feynman propagators ∆n
F (in position space) are

ill-defined.

I Idea: products of Feynman propagators are well-defined
distributions on testfunctions g : Rn \ {0} → C, not on
testfunctions g with 0 ∈ supp(g) (method: wavefront sets).

I Renormalization ' extension of distributions.
I Example: q q���

, for g ∈ S(R4),∫
dxdy (∆F (x − y)2

)
R

e ip1x e ip2y g(x) g(y)

=

∫
dudy ∆F (u)2

(
e ip1(u+y) e ip2y g(u + y) g(y)

− w(u) e i(p1+p2)yg(y) g(y)
)

w renormalization functions (counterterms) with w(0) = 1,
fixed by renormalization conditions.
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Main Tool of renormalization

To renormalize a complicated graph

take it apart into smaller graphs, renormalize those lower
order graphs

insert renormalized lower order graphs into the big graph, take
care only of the remaining “overall divergences”

The combinatorics is taken care of by Zimmermann’s forest
formula (more recently reformulated in the framework of the
Hopf algebras by Connes+Kreimer)
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Noncommutative flat spacetime: Mθ and Eθ

Weyl algebra generated by e ikq, k ∈ R4, q0, . . . , q3 generators of
the Heisenberg algebra, i.e.

e ikqe ipq = e i(k+p)qe−
i
2
kθp , k, p ∈ R4

with θ antisymmetric maximal rank 4× 4-matrix over R.

Signature: linear combinations kq = kµη
µνqν with

η = (1,+1,+1,+1) → Eθ (Euclidean)
η = (1,−1,−1,−1) → Mθ (Minkowski)

and accordingly for the twisting.
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Quantum Fields on Mθ and Eθ

1. Let S be the set of states ω on the Weyl algebra whose
associated Wigner functions ψω are Schwartzfunctions. The
free field φ on the Weyl algebra Eθ or Mθ is the operator
valued distribution S 3 ω 7→ φ(ω) := ϕ(ψω) with ϕ the
ordinary free field of Euclidean or Lorentz signature.

2. Effective picture: define S(Mθ) and S(Eθ) via (S(R4), ?) with
twisted convolution product ?,

f ? g(x) =

∫
d4kd4p f̃ (k) g̃(p) e−

i
2
kθp e i(k+p)x

Signature enters via η in kx = kµη
µνxν and the twisting.

3. Formally, we do the same with free fields ϕ. Formulas for φ
look the same as when definition 1. is extended to products of
fields. Interaction term: ϕ ?n(x).
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Perturbation theory on Eθ

I Graphs in R3: vertices, edges, labelled open edges
# edges + # free edges at a given vertex determined by P

Recall: there is only one propagator ∆E . Only one way to do
perturbation theory.

I Correspondence graphs ↔ distributions [finite set of rules]:
p

x
r ↔ e ipx p ∈ R4 label

x
r

y
r ↔ ∆E (x − y)

x
r

y
r ↔ ∆E (x − y) ?∆E (x − y)

. . .

nonplanar graphs (crossing lines): twisted convolution
products of ∆E .

I Rules comparatively simple (ribbon graphs).
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Perturbation theory on Mθ

I There are different perturbative setups generalizing the
ordinary rules [Doplicher+Fredenhagen,
B+Doplicher+Fredenhagen+Piacitelli].
No longer equivalent for maximal rank θ [B04].

I There are different ways to define the interaction term
[B+Doplicher+Fredenhagen+Piacitelli].

I Fundamental open issues, e.g. Lorentz invariance.

I This talk: approach which bears most similarity with
noncommutative Euclidean Field Theory (cf. V. Rivasseau’s
talk): S-matrix with interaction term ϕ ?n.
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Perturbation theory on Mθ – continued

I S-matrix formalism. Described as an effective
noncommutative field theory on R4, by replacing products of
fields by twisted convolution products ?, i.e. with interaction
Hamiltonian

HI (t) =

∫
x0=t

d3x g ϕ?3(x)

I Free theory and 2-point-function unchanged
Consequence: distributions are the same as in QFT on R4:
• Heaviside θ and 2-point-function ∆+ on Mθ

• (compare to ∆E on Eθ).

But: in general no Feynman propagators on Mθ.
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A Glimpse at the Dyson series on Mθ

Example: HI (t) =
∫
x0=t d3x g ϕ?3(x)

S2 ∝
∫

d4xd4y
(
θ(x0 − y0) : ϕ(x)?3 : : ϕ(y)?3 : + (x ↔ y)

)
g(x)g(y)

〈p| : ϕ(x)?3 : : ϕ(y)?3 : |q〉 → e−ipx e iqy ∆?2
+ (x − y) + ...

θ ∆?2
+ (x − y) + θ ∆?2

+ (y − x) 6= ∆?2
F (x − y)
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Perturbation theory on Mθ

I In nonplanar graphs (with crossing lines), time ordering
(Heaviside function θ) and 2-point function ∆+ can not in
general be joined to yield (twisted convolution products of)
Feynman propagators [B04].

I If one naively puts Feynman propagators in nonplanar graphs
⇒ violation of unitarity [Gomis+Minwalla 02].
No problem with unitarity in careful analysis (based on
effective Hamiltonian), where Heaviside and 2-point-function
treated on a different footing [B, Doplicher, Fredenhagen,
Piacitelli 03] as sketched above.

I Price to pay: rules very complicated [B04, Piacitelli 04,
Sibold 04, Denk+Schweda 04]. Not many calculations done
so far.
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What is UV-IR mixing?

I Seiberg + Raamsdonck: The main tool of renormalization
does not work on Eθ!

I How so? r����
is well defined

but when inserted into higher order graph, e.g. (in D = 4)r
����r iri

these subgraphs suddenly turn ill defined!

I Only way out: special models with translation invariance
breaking term (harmonic oscillator) [Grosse+Wulkenhaar] →
resummable? [Rivasseau]
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Calculations were done in momentum space, actual mechanism not
very well understood. Let’s have another look (ordinary QFT):

r rr rr ...

r rr rr


JJ

6

75

84

1 n2

n-13

u1

K

∫
dDx1 . . . d

Dxn u1(x1 − x2) u2(x2 − x3) · · · un(xn − x1) e iKx1

= δ(K )

∫
dDp ũ1(p) ũ2(p) · · · ũn(p)

The product of Fourier transforms of the distributions ui appears!
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On Eθ: exactly the same expression for the circle graph, different
only in the distributions u that can appear,
e.g. r

x y
r����

↔ uE (x − y)

with

uE (x − y) =

∫
dDkdDp

1

k2 + m2

1

p2 + m2
e−ikθp e ip(x−y)

which is a C∞-function if and only if twisting is present. In fact,

uE (x − y) =

∫
dDp ∆E (θp) ∆̃E (p) e ip(x−y)

⇒ the Fourier transform of uE contains both the Fourier transform
∆̃E and ∆E itself!

Dorothea Bahns On the UV/IR problem on ncMinkowski space



Outline
Main point

Quantum Field Theory

Quantum fields in position space
Noncommutative flat spacetime
UV-IR Mixing

Origin of UV-IR mixing:

I In circle graph, products of distributions’ Fourier transforms ũ
appear (via convolution of distributions u).

I For the distributions that usually appear in QFT (∆+, θ etc.)
such products are well-defined distributions in momentum
space.

I But products of the Fourier transform ofr
x y

r����
= uE (x − y) are not well-defined:

ũE (p) = ∆E (θp)∆̃(p). In D dimensions, products ∆n
E are

ill-defined for n ≥ D − 2 due to well-known singularity in 0.
Here: p = 0 (infrared).

⇒ If uE appears more than (D − 2) times in a circle graph:
divergence.
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ũE (p) = ∆E (θp)∆̃(p). In D dimensions, products ∆n
E are

ill-defined for n ≥ D − 2 due to well-known singularity in 0.
Here: p = 0 (infrared).

⇒ If uE appears more than (D − 2) times in a circle graph:
divergence.

Dorothea Bahns On the UV/IR problem on ncMinkowski space



Outline
Main point

Quantum Field Theory

Quantum fields in position space
Noncommutative flat spacetime
UV-IR Mixing

Origin of UV-IR mixing:

I In circle graph, products of distributions’ Fourier transforms ũ
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What is different on Mθ?

I Time ordering and 2-point-function come separately:r
x y

r����
↔ u(x − y)

with

u(x − y) = Θ(x0 − y0)

∫
dDkdDp ∆̃+(k) ∆̃+(p) e−ikθp e ip(x−y)

+ (x ↔ y)

I u is a well-defined distribution if and only if twisting is
present. Makes sense as oscillatory integral:

u(x−y) = Θ(x0−y0)

∫
dDp ∆+(θp) ∆̃+(p) e ip(x−y) + (x ↔ y)

I The Fourier transform of u contains both the Fourier
transform ∆̃+ and ∆+ itself.
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Why no UV-IR mixing?

Products of the Fourier transform ũ ofr
x y

r����
= u(x − y) are well-defined:

ũ(p) =

∫
dk0 Θ̃(p0 − k0) ∆̃+(k0,p) ∆+(θ(ωp,p)) + . . .

Time order Θ only affects ∆̃+, not tadpole part.

Theorem UV-IR mixing via convolutions with tadpole-like graphs is
absent on Mθ [B07].

So far for ϕn for n = 3, 4, 5, 6, 7, since only a finite number of
possible distributions has to be checked.

Dispersion relation: IR behaviour is strange but (possibly) no hard
mixing.
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Outlook

I Exciting new possibilities: do full renormalization of quantum
field theory in Dyson framework with interaction term ϕ?n on
Mθ. Investigate further whether UV-IR truly absent!

What makes this so difficult?

• No cyclic symmetry,
only 3-momentum conservation at vertex.

• Often graphs only make sense as oscillatory integrals, whereas
in Euclidean framework, often finite graphs correspond to
C∞-functions.

• Mixture of position/momentum space renormalization methods
needed.

• Lack of Feynman propagators ⇒ only limited use of known
techniques.
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Outlook – continued

I Complementary step in the direction of general
renormalization proof combinatorics of quasiplanar Wick
products [BDFP] understood in terms of shuffle Hopf algebra
on chord diagrams [B07].

I Test other models (non-central commutator, κ-deformed...)
for UV/IR properties – is this special for Mθ?

I Is there some analytic continuation of nc Lorentzian field
theory? What sort of Euclidean field theory could it yield?

I Euclidean and Lorentz field theory shown to be quite different
from one another. Look again at low energy limits in string
theory in Lorentzian framework.

I Is there an analytic continuation of the Grosse-Wulkenhaar
model to Mθ?
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Outlook (speculation)

I On a more general level: understand Lorentz invariance
violation... Gauge theories: where is the S of SU(n)?...

I Possibly necessary: think about noncommutative space as a
space of internal degrees of freedom – as in Connes’ standard
model!

Framework [?]: tensor products of fields defined for
quasiplanar Wick products [BDFP]:∫

dx1 . . . dxn f (x1, . . . , xn) φ(q + x1) . . . φ(q + xn)

Rethink: not xi ∈ R4 are auxilliary, but the noncommuting
coordinates q!

I Connection with work by Grosse and Lechner? Buchholz and
Lechner?

Dorothea Bahns On the UV/IR problem on ncMinkowski space


	Outline
	Main point
	Quantum Field Theory
	Quantum fields in position space
	Noncommutative flat spacetime
	UV-IR Mixing


