Quantum field theory on projective modules

T. Krajewski

Centre de Physique Théorique (Marseille) krajew@cpt.univ-mrs.fr

Joint work with V. Gayral, J.-H. Jureit and R. Wulkenhaar based on hep-th/0612048

"Commutative and noncommutative quantum fields" Vienna, November 30 - December 2, 2007

Plan of the talk:

- \blacktriangleright Projective modules over the noncommutative torus
- \blacktriangleright Action functional
- \blacktriangleright Feynman diagrams
- \blacktriangleright Matrix model
- \blacktriangleright Renormalization

T. Krajewski [Quantum field theory on projective modules](#page-0-0)

 \leftarrow \Box

重

 299

一 星下

× ٠

The algebra of functions over the (two dimensional) noncommutative **torus** is associated with a lattice $\mathsf{\Gamma}$ isomorphic to \mathbb{Z}^2

$$
\mathcal{A}_{\theta} = \left\{ \sum_{\gamma = (m.n) \in \Gamma} f_{\gamma} U_{\gamma} \quad \text{with} \quad f_{\gamma} \in \mathbb{C} \right\}
$$

and equipped with a **multiplication law** depending on $\theta \in \mathbb{R}$

$$
U_{\gamma}U_{\gamma'}=\mathrm{e}^{\mathrm{i}\pi\theta(mn'-nm')}U_{\gamma+\gamma'}
$$

Э× э つへへ

The algebra of functions over the (two dimensional) noncommutative **torus** is associated with a lattice $\mathsf{\Gamma}$ isomorphic to \mathbb{Z}^2

$$
\mathcal{A}_{\theta} = \left\{ \sum_{\gamma = (m.n) \in \Gamma} f_{\gamma} U_{\gamma} \quad \text{with} \quad f_{\gamma} \in \mathbb{C} \right\}
$$

and equipped with a **multiplication law** depending on $\theta \in \mathbb{R}$

$$
U_{\gamma}U_{\gamma'}=\mathrm{e}^{\mathrm{i}\pi\theta(mn'-nm')}U_{\gamma+\gamma'}
$$

Structure of the algebra:

ヨト

つへへ

The algebra of functions over the (two dimensional) noncommutative **torus** is associated with a lattice $\mathsf{\Gamma}$ isomorphic to \mathbb{Z}^2

$$
\mathcal{A}_{\theta} = \left\{ \sum_{\gamma = (m.n) \in \Gamma} f_{\gamma} U_{\gamma} \quad \text{with} \quad f_{\gamma} \in \mathbb{C} \right\}
$$

and equipped with a **multiplication law** depending on $\theta \in \mathbb{R}$

$$
U_{\gamma}U_{\gamma'}=\mathrm{e}^{\mathrm{i}\pi\theta(mn'-nm')}U_{\gamma+\gamma'}
$$

Structure of the algebra:

 \blacktriangleright \mathcal{A}_{θ} is the commutative algebra of functions over a torus when $\theta \in \mathbb{Z}$

The algebra of functions over the (two dimensional) noncommutative **torus** is associated with a lattice $\mathsf{\Gamma}$ isomorphic to \mathbb{Z}^2

$$
\mathcal{A}_{\theta} = \left\{ \sum_{\gamma = (m.n) \in \Gamma} f_{\gamma} U_{\gamma} \quad \text{with} \quad f_{\gamma} \in \mathbb{C} \right\}
$$

and equipped with a **multiplication law** depending on $\theta \in \mathbb{R}$

$$
U_{\gamma}U_{\gamma'}=\mathrm{e}^{\mathrm{i}\pi\theta(mn'-nm')}U_{\gamma+\gamma'}
$$

Structure of the algebra:

- \blacktriangleright \mathcal{A}_{θ} is the commutative algebra of functions over a torus when $\theta \in \mathbb{Z}$
- \blacktriangleright \mathcal{A}_{θ} is a bundle of $q \times q$ matrices over a torus when $\theta = \frac{p}{q}$ is rational

The algebra of functions over the (two dimensional) noncommutative **torus** is associated with a lattice $\mathsf{\Gamma}$ isomorphic to \mathbb{Z}^2

$$
\mathcal{A}_{\theta} = \left\{ \sum_{\gamma = (m.n) \in \Gamma} f_{\gamma} U_{\gamma} \quad \text{with} \quad f_{\gamma} \in \mathbb{C} \right\}
$$

and equipped with a **multiplication law** depending on $\theta \in \mathbb{R}$

$$
U_{\gamma}U_{\gamma'}=\mathrm{e}^{\mathrm{i}\pi\theta(mn'-nm')}U_{\gamma+\gamma'}
$$

Structure of the algebra:

- \blacktriangleright \mathcal{A}_{θ} is the commutative algebra of functions over a torus when $\theta \in \mathbb{Z}$
- \blacktriangleright \mathcal{A}_{θ} is a bundle of $q \times q$ matrices over a torus when $\theta = \frac{p}{q}$ is rational
- \blacktriangleright \mathcal{A}_{θ} is simple when θ is irrational (no commutative interpretation)

The algebra of functions over the (two dimensional) noncommutative **torus** is associated with a lattice $\mathsf{\Gamma}$ isomorphic to \mathbb{Z}^2

$$
\mathcal{A}_{\theta} = \left\{ \sum_{\gamma = (m.n) \in \Gamma} f_{\gamma} U_{\gamma} \quad \text{with} \quad f_{\gamma} \in \mathbb{C} \right\}
$$

and equipped with a **multiplication law** depending on $\theta \in \mathbb{R}$

$$
U_{\gamma}U_{\gamma'}=\mathrm{e}^{\mathrm{i}\pi\theta(mn'-nm')}U_{\gamma+\gamma'}
$$

Structure of the algebra:

- \blacktriangleright \mathcal{A}_{θ} is the commutative algebra of functions over a torus when $\theta \in \mathbb{Z}$
- \blacktriangleright \mathcal{A}_{θ} is a bundle of $q \times q$ matrices over a torus when $\theta = \frac{p}{q}$ is rational
- \blacktriangleright \mathcal{A}_{θ} is simple when θ is irrational (no commutative interpretation)

The differential calculus is constructed using the derivations $\partial_\mu U_\gamma=2{\rm i} \pi\gamma_\mu\ U_\gamma$ and the ${\rm trace\,\,} {\rm Tr}_{\cal A_\theta}(U_\gamma)=\delta_{\gamma,0}$ that plays the role of an integral.

つへへ

T. Krajewski [Quantum field theory on projective modules](#page-0-0)

경기 G

Projective modules are the noncommutative analogues of the space of sections of a vector bundle.

 $2Q$

Э× э

Projective modules are the noncommutative analogues of the space of sections of a vector bundle.

The **Heisenberg representation** on functions on $\mathbb R$ defines a projective module $\mathcal E$ over $\mathcal A_\theta$

$$
(\phi U_{\gamma})(x) = e^{i\pi\theta mn} e^{2i\pi nx} \phi(x + m\theta)
$$

with a **connection** $\nabla_{\mu}: \mathcal{E} \rightarrow \mathcal{E}$

$$
\nabla_1 \phi(x) = -\frac{2i\pi x}{\theta} \phi(x) \quad \text{and} \quad \nabla_2 \phi(x) = \frac{d\phi(x)}{dx}.
$$

compatible with the **hermitian structure** $\mathcal{E} \times \mathcal{E} \rightarrow \mathcal{A}_{\theta}$

$$
(\phi, \chi)_{A_{\theta}} = \sum_{\gamma \in \Gamma} \left(e^{i\pi \theta mn} \int_{\mathbb{R}} dx \, \overline{\phi}(x) e^{2i\pi nx} \chi(x+m\theta) \right) U_{-\gamma}
$$

4 重 下

重

Projective modules are the noncommutative analogues of the space of sections of a vector bundle.

The **Heisenberg representation** on functions on $\mathbb R$ defines a projective module $\mathcal E$ over $\mathcal A_\theta$

$$
(\phi U_{\gamma})(x) = e^{i\pi\theta mn} e^{2i\pi nx} \phi(x + m\theta)
$$

with a **connection** $\nabla_{\mu}: \mathcal{E} \rightarrow \mathcal{E}$

$$
\nabla_1 \phi(x) = -\frac{2i\pi x}{\theta} \phi(x) \quad \text{and} \quad \nabla_2 \phi(x) = \frac{d\phi(x)}{dx}.
$$

compatible with the **hermitian structure** $\mathcal{E} \times \mathcal{E} \rightarrow \mathcal{A}_{\theta}$

$$
(\phi, \chi)_{A_{\theta}} = \sum_{\gamma \in \Gamma} \left(e^{i\pi \theta mn} \int_{\mathbb{R}} dx \, \overline{\phi}(x) e^{2i\pi nx} \, \chi(x + m\theta) \right) \, U_{-\gamma}
$$

This projective module corresponds to the wave functions of the lowest **Landau level** and the action of A_{θ} encodes the **magnetic translations** along a lattice with θ the magnetic flux through the unit cell measured in terms of the flux quantum $\frac{\hbar}{e}$. 重

T. Krajewski [Quantum field theory on projective modules](#page-0-0)

 \leftarrow \Box

4. 로 게

目

The action functional defined on the projective module is

$$
S[\phi,\overline{\phi}] = \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\nabla \phi, \nabla \phi \right)_{\mathcal{A}_{\Theta}} \right] + \mu^2 \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}} \right] + \frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}}^2 \right],
$$

 \mathbb{B} + G

The action functional defined on the projective module is

$$
S[\phi,\overline{\phi}] = \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\nabla \phi, \nabla \phi \right)_{\mathcal{A}_{\Theta}} \right] + \mu^2 \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}} \right] + \frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}}^2 \right],
$$

For the Heisenberg module it reads

$$
S[\phi,\overline{\phi}] = \int_{\mathbb{R}} dx \overline{\phi}(x) \left(-\frac{d^2}{dx^2} + \frac{4\pi^2}{\theta^2} x^2 \right) \phi(x) + \mu^2 \int_{\mathbb{R}} dx \overline{\phi}(x) \phi(x) + \frac{\lambda}{2} \sum_{m,n \in \mathbb{Z}} \int_{\mathbb{R}} dx \overline{\phi}(x+n+m\theta) \phi(x+n) \overline{\phi}(x) \phi(x+m\theta).
$$

 $2Q$

œ э

The action functional defined on the projective module is

$$
S[\phi,\overline{\phi}] = \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\nabla \phi, \nabla \phi \right)_{\mathcal{A}_{\Theta}} \right] + \mu^2 \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}} \right] + \frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}}^2 \right],
$$

For the Heisenberg module it reads

$$
S[\phi,\overline{\phi}] = \int_{\mathbb{R}} dx \overline{\phi}(x) \left(-\frac{d^2}{dx^2} + \frac{4\pi^2}{\theta^2} x^2 \right) \phi(x) + \mu^2 \int_{\mathbb{R}} dx \overline{\phi}(x) \phi(x) + \frac{\lambda}{2} \sum_{m,n \in \mathbb{Z}} \int_{\mathbb{R}} dx \overline{\phi}(x+n+m\theta) \phi(x+n) \overline{\phi}(x) \phi(x+m\theta).
$$

Main features of this action:

Э× э

The action functional defined on the projective module is

$$
S[\phi,\overline{\phi}] = \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\nabla \phi, \nabla \phi \right)_{\mathcal{A}_{\Theta}} \right] + \mu^2 \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}} \right] + \frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\Theta}} \left[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}}^2 \right],
$$

For the Heisenberg module it reads

$$
S[\phi,\overline{\phi}] = \int_{\mathbb{R}} dx \overline{\phi}(x) \left(-\frac{d^2}{dx^2} + \frac{4\pi^2}{\theta^2} x^2 \right) \phi(x) + \mu^2 \int_{\mathbb{R}} dx \overline{\phi}(x) \phi(x) + \frac{\lambda}{2} \sum_{m,n \in \mathbb{Z}} \int_{\mathbb{R}} dx \overline{\phi}(x+n+m\theta) \phi(x+n) \overline{\phi}(x) \phi(x+m\theta).
$$

Main features of this action:

 \triangleright The kinetic term is identical to the **Harmonic oscillator**

œ э

The action functional defined on the projective module is

$$
S[\phi,\overline{\phi}] = \text{Tr}_{\mathcal{A}_{\Theta}} \Big[\left(\nabla \phi, \nabla \phi \right)_{\mathcal{A}_{\Theta}} \Big] + \mu^2 \text{Tr}_{\mathcal{A}_{\Theta}} \Big[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}} \Big] + \frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\Theta}} \Big[\left(\phi, \phi \right)_{\mathcal{A}_{\Theta}}^2 \Big],
$$

For the Heisenberg module it reads

$$
S[\phi,\overline{\phi}] = \int_{\mathbb{R}} dx \overline{\phi}(x) \left(-\frac{d^2}{dx^2} + \frac{4\pi^2}{\theta^2} x^2 \right) \phi(x) + \mu^2 \int_{\mathbb{R}} dx \overline{\phi}(x) \phi(x) + \frac{\lambda}{2} \sum_{m,n \in \mathbb{Z}} \int_{\mathbb{R}} dx \overline{\phi}(x+n+m\theta) \phi(x+n) \overline{\phi}(x) \phi(x+m\theta).
$$

Main features of this action:

- \triangleright The kinetic term is identical to the **Harmonic oscillator**
- \triangleright The action is invariant under the Langmann-Szabo duality

$$
\mathcal{S}_{\lambda,\,\mu,\,\theta}[\phi,\overline{\phi}]=\tfrac{1}{\theta^2}\mathcal{S}_{\theta\lambda,\,\theta^2\mu,\,1/\theta}[\eta,\overline{\eta}]
$$

with $\eta(\xi) = \int_\mathbb{R} d\mathsf{x} \, \mathrm{e}^{-2i\pi\mathsf{x}\xi} \, \phi(\mathsf{x})$ the Fourier [tra](#page-16-0)[nsf](#page-18-0)[o](#page-11-0)rm [of](#page-0-0) ϕ

T. Krajewski [Quantum field theory on projective modules](#page-0-0)

 \leftarrow **B** È

3. 동 >

÷ × 299

To compute the correlation functions

$$
G_{2N} = \frac{\displaystyle\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] \ (\phi \otimes \phi^{\dagger}) \cdots (\phi \otimes \phi^{\dagger}) \ \mathrm{e}^{-S[\phi,\phi^{\dagger}]}}{\displaystyle\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] \ \mathrm{e}^{-S[\phi,\phi^{\dagger}]}}
$$

we introduce the Hubbard-Stratonovitch auxiliary field

$$
e^{-\frac{\lambda}{2}\text{Tr}_{\mathcal{A}_{\theta}}\left[(\phi,\phi)_{\mathcal{A}_{\theta}}^{2}\right]} = \int_{\mathcal{A}_{\theta}} [DA] e^{-\text{Tr}_{\mathcal{A}_{\theta}}\left[\frac{\lambda}{2}A^{2} + i\lambda A(\phi,\phi)_{\mathcal{A}_{\theta}}\right]}
$$

Þ

œ

To compute the correlation functions

$$
G_{2N} = \frac{\displaystyle\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] \ (\phi \otimes \phi^{\dagger}) \cdots (\phi \otimes \phi^{\dagger}) \ \mathrm{e}^{-S[\phi,\phi^{\dagger}]}}{\displaystyle\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] \ \mathrm{e}^{-S[\phi,\phi^{\dagger}]}}
$$

we introduce the Hubbard-Stratonovitch auxiliary field

$$
e^{-\frac{\lambda}{2}\text{Tr}_{\mathcal{A}_{\theta}}\left[(\phi,\phi)_{\mathcal{A}_{\theta}}^{2}\right]} = \int_{\mathcal{A}_{\theta}} [DA] e^{-\text{Tr}_{\mathcal{A}_{\theta}}\left[\frac{\lambda}{2}A^{2} + i\lambda A(\phi,\phi)_{\mathcal{A}_{\theta}}\right]}
$$

Feynman rules:

 \mathbb{B} + Þ

To compute the correlation functions

$$
G_{2N} = \frac{\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] (\phi \otimes \phi^{\dagger}) \cdots (\phi \otimes \phi^{\dagger}) e^{-S[\phi,\phi^{\dagger}]}}{\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] e^{-S[\phi,\phi^{\dagger}]}}
$$
\ne introduce the **Hubbard-Stratonovitch** auxiliary field

\n
$$
e^{-\frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\theta}} \left[(\phi,\phi)_{\mathcal{A}_{\theta}}^2 \right]} = \int_{\mathcal{A}_{\theta}} [DA] e^{-\text{Tr}_{\mathcal{A}_{\theta}} \left[\frac{\lambda}{2} A^2 + i\lambda A(\phi,\phi)_{\mathcal{A}_{\theta}} \right]}
$$
\nsymbol rules:

\nTrivial *A* propagator

we introduce the Hubbard-Stratonovitch auxiliary field

$$
e^{-\frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\theta}} \left[(\phi, \phi)_{\mathcal{A}_{\theta}}^2 \right]} = \int_{\mathcal{A}_{\theta}} [DA] e^{-\text{Tr}_{\mathcal{A}_{\theta}} \left[\frac{\lambda}{2} A^2 + i \lambda A(\phi, \phi)_{\mathcal{A}_{\theta}} \right]}
$$

Feynman rules:

$$
\sim\!\!\sim\!\!\sim\quad \frac{1}{\lambda}
$$

 \Rightarrow Þ

To compute the correlation functions

$$
G_{2N} = \frac{\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] (\phi \otimes \phi^{\dagger}) \cdots (\phi \otimes \phi^{\dagger}) e^{-S[\phi,\phi^{\dagger}]}}{\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] e^{-S[\phi,\phi^{\dagger}]}}
$$
\ne introduce the **Hubbard-Stratonovitch** auxiliary field

\n
$$
e^{-\frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\theta}} \left[(\phi,\phi)_{\mathcal{A}_{\theta}}^2 \right]} = \int_{\mathcal{A}_{\theta}} [DA] e^{-\text{Tr}_{\mathcal{A}_{\theta}} \left[\frac{\lambda}{2} A^2 + i\lambda A(\phi,\phi)_{\mathcal{A}_{\theta}} \right]}
$$
\nsymbol rules:

\nTrivial *A* propagator

we introduce the **Hubbard-Stratonovitch** auxiliary field

$$
\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] e^{-S[\phi,\phi^{\dagger}]}
$$
\nFind the **Hubble** method:

\n
$$
e^{-\frac{\lambda}{2}\text{Tr}_{\mathcal{A}_{\theta}}\left[(\phi,\phi)^{2}_{\mathcal{A}_{\theta}}\right]} = \int_{\mathcal{A}_{\theta}} [DA] e^{-\text{Tr}_{\mathcal{A}_{\theta}}\left[\frac{\lambda}{2}A^{2} + i\lambda A(\phi,\phi)_{\mathcal{A}_{\theta}}\right]}
$$
\nbynman rules:

\nTrivial *A* propagator

\nHarmonic oscillator ϕ propagator

Feynman rules:

-
-

∋ »

つへへ

To compute the correlation functions

$$
G_{2N} = \frac{\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] (\phi \otimes \phi^{\dagger}) \cdots (\phi \otimes \phi^{\dagger}) e^{-S[\phi,\phi^{\dagger}]}}{\int_{\mathcal{E}} [D\phi][D\phi^{\dagger}] e^{-S[\phi,\phi^{\dagger}]}}
$$
\ne introduce the **Hubbard-Stratonovitch** auxiliary field

\n
$$
e^{-\frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\theta}} \left[(\phi,\phi)_{\mathcal{A}_{\theta}}^2 \right]} = \int_{\mathcal{A}_{\theta}} [DA] e^{-\text{Tr}_{\mathcal{A}_{\theta}} \left[\frac{\lambda}{2} A^2 + i\lambda A(\phi,\phi)_{\mathcal{A}_{\theta}} \right]}
$$
\nsymbol rules:

\nTrivial *A* propagator

we introduce the **Hubbard-Stratonovitch** auxiliary field

$$
e^{-\frac{\lambda}{2} \text{Tr}_{\mathcal{A}_{\theta}} \left[(\phi, \phi)_{\mathcal{A}_{\theta}}^2 \right]} = \int_{\mathcal{A}_{\theta}} [DA] e^{-\text{Tr}_{\mathcal{A}_{\theta}} \left[\frac{\lambda}{2} A^2 + i \lambda A(\phi, \phi)_{\mathcal{A}_{\theta}} \right]}
$$

Feynman rules:

 \leftarrow \Box

不适下

∍ × È

 299

 299

3. 동 >

× ٠

目

T. Krajewski [Quantum field theory on projective modules](#page-0-0)

4日)

 \leftarrow \Box

 $\leftarrow \Xi \rightarrow$

Þ

 299

Bundle of rectangular matrices at rational θ

 299

Ξ, Ε

Bundle of rectangular matrices at rational θ

For $\theta = p/q$ the projective module can be realized as a **bundle** of rectangular $p \times q$ matrices on a torus of size $1/q$

$$
M_{ij}(x, y) = \sum_{n \in \mathbb{Z}} \phi\left(x + \frac{iq + jp + npq}{q}\right) e^{-2i\pi nqy}
$$

(1)

∍

Bundle of rectangular matrices at rational θ

For $\theta = p/q$ the projective module can be realized as a **bundle** of rectangular $p \times q$ matrices on a torus of size $1/q$

$$
M_{ij}(x,y) = \sum_{n \in \mathbb{Z}} \phi\left(x + \frac{iq + jp + npq}{q}\right) e^{-2i\pi nqy}
$$

with the **twisted boundary conditions**

$$
\begin{cases}\nM(x, y + \frac{1}{q}) = M(x, y) \\
M(x + \frac{1}{q}, y) = \Omega_p^2(qy)M(x, y)\Omega_q^{-b}(-qy)\n\end{cases}
$$

where a and b are two integers such that $aq + bp = 1$ and $\Omega_N(y)$ is the $N \times N$ matrix defined by

$$
\Omega_N(y) = \begin{pmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 1 & & \\ e^{2i\pi y} & & & 0 \end{pmatrix}
$$
 (1)

 \leftarrow \Box

4. 동)

目

 299

For $\theta = p/q$, the action functional identifies with a **rectangular matrix** model with twisted boundary conditions

$$
S[\phi,\overline{\phi}] = q \int_0^{\frac{1}{q}} dx \int_0^{\frac{1}{q}} dy \quad \text{Tr}\left[\nabla_\mu M^\dagger \nabla^\mu M + \mu^2 M^\dagger M + \frac{\lambda}{2} (M^\dagger M)^2\right]
$$

using the previous correspondence between ϕ and M.

ヨト э 200

For $\theta = p/q$, the action functional identifies with a **rectangular matrix** model with twisted boundary conditions

$$
S[\phi,\overline{\phi}] = q \int_0^{\frac{1}{q}} dx \int_0^{\frac{1}{q}} dy \quad \text{Tr}\left[\nabla_\mu M^\dagger \nabla^\mu M + \mu^2 M^\dagger M + \frac{\lambda}{2} (M^\dagger M)^2\right]
$$

using the previous correspondence between ϕ and M.

Since the action on the projective module only depends on p/q it is possible to take the limit of large matrices

$$
\lim_{\rho,q\to\infty\atop p/q\to\theta}\int[DM][DM^{\dagger}] {\rm e}^{-qS[M,M^{\dagger}]} \cdot\cdot\cdot = \int [D\phi][D\overline{\phi}] {\rm e}^{-S[\phi,\overline{\phi}]} \cdot\cdot\cdot
$$

with $S[M,M^\dagger]$ the matrix model action.

For $\theta = p/q$, the action functional identifies with a **rectangular matrix** model with twisted boundary conditions

$$
S[\phi,\overline{\phi}] = q \int_0^{\frac{1}{q}} dx \int_0^{\frac{1}{q}} dy \quad \text{Tr}\left[\nabla_\mu M^\dagger \nabla^\mu M + \mu^2 M^\dagger M + \frac{\lambda}{2} (M^\dagger M)^2\right]
$$

using the previous correspondence between ϕ and M.

Since the action on the projective module only depends on p/q it is possible to take the limit of large matrices

$$
\lim_{\rho,q\to\infty\atop p/q\to\theta}\int[DM][DM^{\dagger}] {\rm e}^{-qS[M,M^{\dagger}]} \cdot\cdot\cdot = \int [D\phi][D\overline{\phi}] {\rm e}^{-S[\phi,\overline{\phi}]} \cdot\cdot\cdot
$$

with $S[M,M^\dagger]$ the matrix model action.

As we take the limit of large matrices, the torus shrinks to a **single point**.

つへへ

T. Krajewski [Quantum field theory on projective modules](#page-0-0)

 \leftarrow

4. 로 게

目

 299

Consider a four dimensional model obtained by a tensor product of two Heisenberg modules.

 \Rightarrow

э

Consider a four dimensional model obtained by a tensor product of two Heisenberg modules.

Using Schwinger parameters α to write propagators as

$$
H^{-1} = \int_0^\infty d\alpha \, \mathrm{e}^{-\alpha H}
$$

we obtain a integral over α and a sum over γ .

œ

つへへ

Consider a four dimensional model obtained by a tensor product of two Heisenberg modules.

Using Schwinger parameters α to write propagators as

$$
H^{-1} = \int_0^\infty d\alpha \, \mathrm{e}^{-\alpha H}
$$

we obtain a integral over α and a sum over $\gamma.$

Consider a four dimensional model obtained by a tensor product of two Heisenberg modules.

Using Schwinger parameters α to write propagators as

$$
H^{-1} = \int_0^\infty d\alpha \, \mathrm{e}^{-\alpha H}
$$

we obtain a integral over α and a sum over $\gamma.$

SET 3 for all elements of the original model obtained by a tensor product (e.g.,
$$
S_{\text{chwinger parameters}} \alpha
$$
 to write propagators as

\n
$$
H^{-1} = \int_{0}^{\infty} d\alpha \, e^{-\alpha H}
$$

\nAgain a integral over α and a sum over γ .

\n
$$
= -\lambda \int_{0}^{\infty} d\alpha \, \sum_{\gamma} U_{-\gamma} e^{-\alpha H} U_{\gamma}
$$

Sums over γ are convergent (as distributions) as soon as $\alpha \neq 0$.

∢ ヨ ≯

Consider a four dimensional model obtained by a tensor product of two Heisenberg modules.

Using Schwinger parameters α to write propagators as

$$
H^{-1} = \int_0^\infty d\alpha \, \mathrm{e}^{-\alpha H}
$$

we obtain a integral over α and a sum over $\gamma.$

SET 3 for all the original model obtained by a tensor product (e.g., the following equations:

\nSchwinger parameters α to write propagators as

\n
$$
H^{-1} = \int_{0}^{\infty} d\alpha \, e^{-\alpha H}
$$
\nand a sum over γ.

\n
$$
= -\lambda \int_{0}^{\infty} d\alpha \, \sum_{\gamma} U_{-\gamma} e^{-\alpha H} \, U_{\gamma}
$$

Sums over γ are convergent (as distributions) as soon as $\alpha \neq 0$.

The theory is renormalizable for irrational θ satisfying a Diophantine condition provided we add a new counternterm

$$
\lambda'\left[\text{Tr}_{\mathcal{A}_{\theta}}\left(\phi,\phi\right)_{\mathcal{A}_{\theta}}\right]^{2}
$$

T. Krajewski [Quantum field theory on projective modules](#page-0-0)

4日)

重

3. 동 >

× ٠

 299

Planar vs non-planar at $\alpha = 0$

Planar diagrams have an ordinary divergence

 \Box

 $2Q$

∢∄⇒

Planar vs non-planar at $\alpha = 0$

Planar diagrams have an ordinary divergence

Non-planar diagrams exhibit a special **divergence** at $\gamma = 0$

