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The noncommutative torus

The algebra of functions over the (two dimensional) noncommutative
torus is associated with a lattice Γ isomorphic to Z2

Aθ =

 ∑
γ=(m.n)∈Γ

fγ Uγ with fγ ∈ C


and equipped with a multiplication law depending on θ ∈ R

UγUγ′ = eiπθ(mn′−nm′)Uγ+γ′

Structure of the algebra:

I Aθ is the commutative algebra of functions over a torus when θ ∈ Z
I Aθ is a bundle of q × q matrices over a torus when θ = p

q is
rational

I Aθ is simple when θ is irrational (no commutative interpretation)

The differential calculus is constructed using the derivations
∂µUγ = 2iπγµ Uγ and the trace TrAθ (Uγ) = δγ,0 that plays the role of
an integral.
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Projective modules over the noncommutative torus

Projective modules are the noncommutative analogues of the space of
sections of a vector bundle.

The Heisenberg representation on functions on R defines a projective
module E over Aθ (

φUγ
)
(x) = eiπθmn e2iπnx φ(x + mθ)

with a connection ∇µ : E → E

∇1φ(x) = −2iπx

θ
φ(x) and ∇2φ(x) =

dφ(x)

dx
.

compatible with the hermitian structure E × E → Aθ

(φ, χ)Aθ =
∑
γ∈Γ

(
eiπθmn

∫
R

dx φ(x) e2iπnx χ(x+mθ)

)
U−γ

This projective module corresponds to the wave functions of the lowest
Landau level and the action of Aθ encodes the magnetic translations
along a lattice with θ the magnetic flux through the unit cell measured in
terms of the flux quantum ~

e .
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Definition of the action functional

The action functional defined on the projective module is

S [φ, φ ] = TrAΘ

[
(∇φ,∇φ)AΘ

]
+µ2 TrAΘ

[
(φ, φ)AΘ

]
+
λ

2
TrAΘ

[
(φ, φ)2

AΘ

]
,

For the Heisenberg module it reads

S [φ, φ ] =
∫

R dx φ(x)
(
− d2

dx2 + 4π2

θ2 x2
)
φ(x) + µ2

∫
R dx φ(x)φ(x)

+λ
2

∑
m,n∈Z

∫
R dx φ(x+n+mθ)φ(x+n)φ(x)φ(x+mθ).

Main features of this action:

I The kinetic term is identical to the Harmonic oscillator

I The action is invariant under the Langmann-Szabo duality

Sλ, µ, θ[φ, φ ] = 1
θ2 Sθλ, θ2µ, 1/θ[η, η ]

with η(ξ) =
∫

R dx e−2iπxξ φ(x) the Fourier transform of φ
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Perturbative expansion

To compute the correlation functions

G2N =

∫
E

[Dφ][Dφ†] (φ⊗ φ†) · · · (φ⊗ φ†) e−S[φ,φ†]∫
E

[Dφ][Dφ†] e−S[φ,φ†]

we introduce the Hubbard-Stratonovitch auxiliary field

e−
λ
2 TrAθ

[
(φ,φ)2

Aθ

]
=

∫
Aθ

[DA] e−TrAθ

[
λ
2 A2+iλA(φ,φ)Aθ

]
Feynman rules:

I Trivial A propagator � 1

λ
I Harmonic oscillator φ propagator � H−1

I Interacting vertex between φ and A�iλUγ
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Examples of diagrams

� − λ
∑
γ

U−γ H−1 Uγ

� − λ
∑
γ

Tr
(
U−γ H−1

)
Uγ

� λ2
∑
γ1,γ2

(
U−γ1 H−1 U−γ2

)
⊗
(
Uγ2 H−1 Uγ1

)
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Bundle of rectangular matrices at rational θ

For θ = p/q the projective module can be realized as a bundle of
rectangular p × q matrices on a torus of size 1/q

Mij(x , y) =
∑
n∈Z

φ
(

x +
iq + jp + npq

q

)
e−2iπnqy

with the twisted boundary conditions{
M(x , y + 1

q ) = M(x , y)

M(x + 1
q , y) = Ωa

p(qy)M(x , y)Ω−b
q (−qy)

where a and b are two integers such that aq + bp = 1 and ΩN(y) is the
N × N matrix defined by

ΩN(y) =


0 1

. . .
. . .

1
e2iπy 0



(1)
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Matrix model in the limit p, q →∞ and p/q → θ

For θ = p/q, the action functional identifies with a rectangular matrix
model with twisted boundary conditions

S [φ, φ] = q

∫ 1
q

0

dx

∫ 1
q

0

dy Tr
[
∇µM†∇µM + µ2M†M +

λ

2

(
M†M

)2
]

using the previous correspondence between φ and M.

Since the action on the projective module only depends on p/q it is
possible to take the limit of large matrices

lim
p,q→∞
p/q→θ

∫
[DM][DM†]e−qS[M,M†] · · · =

∫
[Dφ][Dφ]e−S[φ,φ] . . .

with S [M,M†] the matrix model action.

As we take the limit of large matrices, the torus shrinks to a single point.
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model with twisted boundary conditions

S [φ, φ] = q

∫ 1
q

0

dx

∫ 1
q

0

dy Tr
[
∇µM†∇µM + µ2M†M +

λ

2

(
M†M

)2
]
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Renormalization at the one loop order

Consider a four dimensional model obtained by a tensor product of two
Heisenberg modules.

Using Schwinger parameters α to write propagators as

H−1 =

∫ ∞
0

dα e−αH

we obtain a integral over α and a sum over γ.

� = −λ
∫ ∞

0

dα
∑
γ

U−γ e−αH Uγ

Sums over γ are convergent (as distributions) as soon as α 6= 0.

The theory is renormalizable for irrational θ satisfying a Diophantine
condition provided we add a new counternterm

λ′
[
TrAθ (φ, φ)Aθ

]2

T. Krajewski Quantum field theory on projective modules



Renormalization at the one loop order

Consider a four dimensional model obtained by a tensor product of two
Heisenberg modules.

Using Schwinger parameters α to write propagators as

H−1 =

∫ ∞
0

dα e−αH

we obtain a integral over α and a sum over γ.

� = −λ
∫ ∞

0

dα
∑
γ

U−γ e−αH Uγ

Sums over γ are convergent (as distributions) as soon as α 6= 0.

The theory is renormalizable for irrational θ satisfying a Diophantine
condition provided we add a new counternterm

λ′
[
TrAθ (φ, φ)Aθ

]2

T. Krajewski Quantum field theory on projective modules



Renormalization at the one loop order

Consider a four dimensional model obtained by a tensor product of two
Heisenberg modules.

Using Schwinger parameters α to write propagators as

H−1 =

∫ ∞
0

dα e−αH

we obtain a integral over α and a sum over γ.

� = −λ
∫ ∞

0

dα
∑
γ

U−γ e−αH Uγ

Sums over γ are convergent (as distributions) as soon as α 6= 0.

The theory is renormalizable for irrational θ satisfying a Diophantine
condition provided we add a new counternterm

λ′
[
TrAθ (φ, φ)Aθ

]2

T. Krajewski Quantum field theory on projective modules



Renormalization at the one loop order

Consider a four dimensional model obtained by a tensor product of two
Heisenberg modules.

Using Schwinger parameters α to write propagators as

H−1 =

∫ ∞
0

dα e−αH

we obtain a integral over α and a sum over γ.

� = −λ
∫ ∞

0

dα
∑
γ

U−γ e−αH Uγ

Sums over γ are convergent (as distributions) as soon as α 6= 0.

The theory is renormalizable for irrational θ satisfying a Diophantine
condition provided we add a new counternterm

λ′
[
TrAθ (φ, φ)Aθ

]2

T. Krajewski Quantum field theory on projective modules



Renormalization at the one loop order

Consider a four dimensional model obtained by a tensor product of two
Heisenberg modules.

Using Schwinger parameters α to write propagators as

H−1 =

∫ ∞
0

dα e−αH

we obtain a integral over α and a sum over γ.

� = −λ
∫ ∞

0

dα
∑
γ

U−γ e−αH Uγ

Sums over γ are convergent (as distributions) as soon as α 6= 0.

The theory is renormalizable for irrational θ satisfying a Diophantine
condition provided we add a new counternterm

λ′
[
TrAθ (φ, φ)Aθ

]2

T. Krajewski Quantum field theory on projective modules



Renormalization at the one loop order

Consider a four dimensional model obtained by a tensor product of two
Heisenberg modules.

Using Schwinger parameters α to write propagators as

H−1 =

∫ ∞
0

dα e−αH

we obtain a integral over α and a sum over γ.

� = −λ
∫ ∞

0

dα
∑
γ

U−γ e−αH Uγ

Sums over γ are convergent (as distributions) as soon as α 6= 0.

The theory is renormalizable for irrational θ satisfying a Diophantine
condition provided we add a new counternterm

λ′
[
TrAθ (φ, φ)Aθ

]2
T. Krajewski Quantum field theory on projective modules



Planar vs non-planar at α = 0

Planar diagrams have an ordinary divergence

�∑
γ1,γ2

Uγ1 Uγ2 ⊗ U−γ1 U−γ2 =
∑

γ=γ1+γ2

Uγ ⊗ U−γ
(∑

γ1

1
)

Non-planar diagrams exhibit a special divergence at γ = 0

�∑
γ1,γ2

Uγ1 Uγ2 ⊗ U−γ2 U−γ1 =
∑

γ=γ1+γ2

Uγ ⊗ U−γ
(∑

γ1

e2iπθ(γ1,γ)
)
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