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It is usually assumed that space-time is a continuum. This assumption is not required by
Lorentz invariance. In this paper we give an example of a Lorentz invariant discrete space-time.

HE problem of the interaction of matter

and fields has not been satisfactorily solved
to this date. The root of the trouble in present
field theories seems to lie in the assumption of
point interactions between matter and felds.
On the other hand, no relativistically invariant
Hamiltonian theory.is known for any form of
interaction other than point interactions.

Even for the case of point interactions the
relativistic invariance is of a formal nature only,
as the equations for quantized interacting fields
have no solutions. The uses of source functions,
or of a cut-off in momentum space to replace
infinity by a finite number are distasteful arbi-

trary procedures, and neither process has vyet
been formulated in a relativistically invariant
manner. It may not be possible to do this.

It is possible that the usual four-dimensional
continuous space-time does not provide a suitable
framework within which interacting matter and
fields can be described. I have chosen the idea
that a modification of the ordinary concept of
space-time may be necessary because the “‘ele-
mentary’’ particles have fixed  masses and
associated Compton wave-lengths.

The special theory of relativity may be based
on the invariance of the indefinite quadratic form

S = —x?—y—2, (1)
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energy hAc / A X C

position measurement with

precision A x, requires... Q

momentum A/ A X




energy hc / A X C

creates horizon
position measurement with of size Gh 3/ AX

precision A x, requires... Q

momentum A/ A X




If horizon GhA c3/A x> A Xx = information is lost




spacetime uncertainty

noncommutative spacetime o
(7t 7] = 9%
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Star broduct

. Noncohmutatlvciassouatlve algebr
ordlnary functions via a bi-diffarential 0
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Field theory on
spacetime



Field theory on NC spacetime

Functions on spacetime; coordinates, as well as
classical fields are promoted to

¢ — &

(»functions on NC spacetime®)

Spacetime noncommutativity Is often
formulated via

e ——

d Y =1 %1



Field theory on NC spacetime

Classical fields are still ordinary functions, but
products of fields are replaced by

2

¥ y _h y
f*g=fg+%20” 0i(1)9j(9)+—— 3 096" 0,0,(1) 0;01(9)+
1,7 i,7,k,1
_R2 .
F— ( N 09 9,(0°) (8:0,(f) 8;(g) — A (f) 82-81(9))) +0(R3)
1,7,k,l



Field theory on NC spacetime

There Is a huge

Any invertible formal differential operator D yields
a new

D(f+« g) = Df xDg



Field theory on NC spacetime

The simplest, most popular and furthermore
translationally symmetric example...

> 1 /ir\" v Un Vi
f*g=z ( ) OFL¥L ... QFnE 1 9y oo Opy fOuy - - Oup g
S—on!\2
R
:E“*a:’/:a:“zvy-Fz—@'uya [z 5 2"] = iRO™”
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Field theory on NC spacetime

... arises from an abelian

F = exp (—%H'LWQLL 0% 8;/)

frg=p(F (f®9))



Field theory on NC spacetime

... It can be generalized:
F=eoxp (-0 Va@ V), [Va, Vil =0

frg=u(FHfg)



Field theory on NC spacetime

... and It fixes two directions in spacetime that badly
break global as well as local spacetime symmetry.

> 1 /ir\" v Un Vi
f*g=z ( ) OFL¥L ... QFnE 1 9y oo Opy fOuy - - Oup g
S—on!\2
R
:E“*a:’/:a:“zvy-Fz—@'uya [z 5 2"] = iRO™”
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Lorentz violation, new interactions, SM forbidden decays

« Plasmon decay: VYp| — vV |
Neutrino-photon interaction from

star commutator

Neutrino dipole moments

e (Gauge sector: Z — vy Y
New triple gauge boson interaction

violates Yang theorem: spin & parity



« Ultraviolet-infrared mixing (UV/IR)

/\2—|p“9w/p’/| l 300 for p—0

 Non-abelian character of abelian NC gauge theory
2y ___22g*N?
8(97) 8In/\ — S50

(like SU(N) — but formula holds also for N = 1)

» Discrete structure of non-commutative spacetime



t

Spectrum of g-Minkowski space Cerchiai, Wess (1998)



Noncommutative
symmetry



Global versus local symmetries

We should consider x-dependent 4

[z * Y] = i hOMY ()

_R2 .
N 090% 8,0, () 9;0,(9)+
i7j7k7l

' .
fxg = fot— 3267 8i(f) 9;(9)-
t,J

_F2 .
Ll (z ewaﬂekl)(aﬁk(f)az(g)—@(f)az-al(g)))w(ﬁ%

6 \ijk




Global versus local symmetries

symmetries are as in the commutative theory
(iIf &1s transformed as well).

But partial derivatives in the star product still cause
problems with symmetries.
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Global versus local symmetries

Partial derivatives are replaced by
In gauge theories and In general relativity.

But this will 1.g. of the star product.
th i _—h? i7 okl
fxg = fg-l-E > 640;(f)9;(g)H 2 > 0907 0,01(1)0;0,(9)+
2,] i,9,k,1
_R2

| ( > 090;(6°) (8:0(£) 91(g) — Op(f) 8i8l(9))) +0(%7)

6 \ijki



Global versus local symmetries

Partial derivatives are replaced by
In gauge theories and In general relativity.

But this will 1.g. of the star product.

The problem can be addressed Iin two ways:
« Noncommutative gauge symmetry

« Noncommutative twisted symmetry



Noncommutative gauge symmetry

Star products are not compatible with ordinary
gauge transformations, but they are compatible
with :

SD;L :’i[/\TD,u]a SF;W :i[A’fFlw],

W = iAW, oW = — W % A



Consider two scalar functions f,g
and a vector field &= ¢(x) 0,

Under an
X/’lHXlLl+§’Ll 5§f:'§f, 5§g:'§gv

the star product is not covariant
oAt Q) zo. T *g+1#5.0.

In fact
S(t#g) =T »g+1=C5Q



The simple star product of two
f, g fails to be covariant:

f*g
IS

Instead,

p(f) *xp(g) = p(f*"g)

We need to consider equivalence classes of
star products:



Noncommutative
symmetry



Twisted gauge theory

(as iIn NC gauge theory)

Dy =0y —iAy * 1)

AXN=EIANOAy =FA@1+10NF !

for the transformation of products of fields

OA(P* ) =D _(6x1,®) * (Ox 0y %)



Twisted gauge theory

...of matter fields

Syip = i - b = idg(z) Ty -

...0of gauge fields
NAy = O + X alTw ; Ayl

...of covariant derivatives

5)\(D,u¢) — 5>\<a,u¢ — iA,u* YP) =i (D,uw)



Tensor fields on NC spacetime

For two V, W
VxW

should be a tensor too.

For two f, g

J*xg
should be a scalar function.



f*xg

0c(f*g) = —&(f % g)

and diffeomorphisms are generated by
ordinary vector fields

The vector field € does not ,see” the star product;
We need a product rule: the

AE=D 1) ®ED
Sﬁ(f*g) — 55(1)f* gﬁ(z)g’



In the commutative case the coproduct is

AR) =E®1+1®¢

For the Moyal-Weyl star product (6 const. ) the
coproduct is obtained by an

. 1 . 297’]
A= FAF L F = exp(——-0;® 0))

On scalar functions, the twist generates the
star product itself:

frg=plF 1(f®9)]



o Symmetry transformations are undeformed.
 The product rule is deformed by a twist.

e The failure of co-commutativity induces the
noncommutativity of fields.



noncommutative/
gravity



noncommutative/
gravity
with Julius Wess

Paolo Aschieri, Christian Blohmann
Marija Dimitrijevic, Frank Meyer



e The transformation of individual tensors Is
undeformed

e Tensors must be star-multiplied



Twisted nc differential geometry

scalar field
0cp = —E, = ¢ ()0

covariant vector
0¢Viy = —€P0p Vi — (Ou€”)Vp
contravariant vector

ngu — _gpapvu + (apgu)vp



Twisted nc differential geometry

star products of tensors are again tensors

Note that the star product may act non-trivially on
tensor indices: To ensure covariance and associativity
the derivatives in the twist must be Lie-derivatives.

For the simple Moyal-Weyl star product this does not happen.
The following formulas are given for that case.



Twisted nc differential geometry

covariant derivative
D’u,Vy — a'u,vl/ - I_/Ojl/ * Va
curvature and torsion

RluJypO- — 81/er — a'u,l_gp —I— I_gp * I_UB — I_gp * I_gﬁ

I
o (8% (8
T =T%, -T2,



Noncommutative gravity

an invertible real symmetric tensor G,
whose covariant derivative vanishes.

1
I_gﬁ = 5(8046?@7 —l— aﬁGory — 87G04ﬁ> * G’}/O"k



Noncommutative gravity
Ruy = Ryuwp”

R = GM* x R,y

1
S = /dnaj \/—gR (—|—CC) R’uy — ER* G/u/ — 87TGT/U/



Noncommutative gravity equations

1
R'uy — ER * Gluy == 87TGT/M/

Formidable task, considering that the
noncommuative Einstein equations contain
derivatives to all orders.

e Perturbative corrections to known solutions

e Use symmetries



Noncommutative gravity equations

1
R'uy— ER*GMV: O

A solution of the NC gravity equation is a

e an algebra / twist

. x| F gt”
e a metric /



noncommutative gravity

with Sergey Solodukhin



solution no.1

B » Minkowski, Robertson W,
o | » Moyal-Weyl star product -

. L] | i & 1 = "I:-
. ! . LY et |
¥ L Tk B

i ' - . i



solution no.2




solution no.2

="

pherical symmetry

Wﬂh S



Killing vectors

€5 §5] = i€ 51Ek Legt” =0

[z; ¥ x;] = 2ide; 07k

note:
* X may also depend on casimir
 the product acts non-trivially on tensors



e A
fxg=17Ffg+ ) Cn(;)§+nf £ g
n=1

Ay p
Cn(;) — B(nax)
)\’I’L
n!p(p—A)(p—2X)---(p—(n—1)N)

Grosse, Presnajder; Alekseev, Lachowska; Samann...



e A
fxg=17Ffg+ ) C’n(;)§+nf £ g
n=1

Ay p
Cn(;) — B(nax)
)\’I’L
n!p(p—A)(p—2X)---(p—(n—1)N)

projective twist:  (Kurkcuoglu, Samann: ,Pseudotwist")

F = Z Cn(p)£€+n X Lé‘_n



ISotropic metric

ds® = —A(p)dt*+ B(p)(dz’+dy>+dz?)+C(p)dp?

p? = gija'e! = a4+ y% + 22

metric and algebra are compatible:

W *g/u/ — Toz...wg,ul/ — g,uy* W



ISotropic metric

ds® = —A(p)dt*+ B(p)(dz’+dy*+dz?)+C(p)dp?

p? = gija'e! = a4+ y% + 22

metric and algebra are compatible:

W *g/u/ — Toz...wg,ul/ — g,uy* W



The components of the Killing vectors are
linear in the coordinates

&i = €170k

It can be shown that

L:fiaO'T,Ul-",Uk — 80£§iTM1...,uk L:S@-@Ul ... 8<7kglw =

and hence

Ta"w*aa'l .« &ykgw/ == Ta"'waa'l .« 8gkg'LW = 80'1 .« . 8akgMV*Ta"'w



The components of the Killing vectors are
linear in the coordinates

&i = €170k

It can be shown that

L:fiaO'T,Ul-",Uk — 80£§iTM1...,uk L:S@-@Ul c . 8nglw =

and hence

Ta"w*aa'l .« e 80']{:9’“]/ == Ta"'waa'l .« 8akgMV = 80'1 .« . 8akgMV*Ta"'w



The coefficients A, B, C can be determined in the
usual way and a change of coordinates

r=(p+a/4)2/p, a=2M
gives the Schwarzschild metric
ds? = —g(r)dt2+dr2/g(r)+r2dw2, g(r) =1—a/r

but with quantized coordinates



Coordinates should be real — we consider only
unitary representations of

[z; ¥ @] = 2iXe; 17y,

These are the usual angular momentum
irreducible representations:

>k
X

2. . D, ) )
7,m) = (A2 (G+1)|5,m), 2§=0,1,2,...



In terms of

we find

)2 =Y zixz; = p(p+ 2X)

p=29A=n\;, n=0,1,2,...




schematically (in isotropic coordinates):
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schematically (in isotropic coordinates):

=\
©




schematically (in isotropic coordinates):
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schematically (in isotropic coordinates):
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nc black hole = sphere minus fuzzy sphere

7
L)







,fuzzy black hole*
Umation hidden

Inside the horizon
scales with Its area




slices of constant time are no longer conformal
to Euclidean flat space-time, so the fuzzy sphere
construction cannot be used directly

constant time slices are conformal to
de Sitter space-time

ds® = —daz% + dm% + da:% + da3

we can now quantize zi, z2, z3 as before ...
two fuzzy sphere copies are needed



J —> 00 r=—a

J = Imin h j r=a/2

J —> o0 r=20




J —> 00 r=—a

J = Jmin h j r = a/2
_alp—/p?—a?)
2p

r =

7 — 00 r=20
central singularity




J — 00 r—a
horizon

_alp+ /2 —a?)
_ 5

r

J = Imin h j r=a/2
_alp—/p? = o?)

r =
2p

7 — 00 r=20
central singularity




Summary and Outlook

- simple covariant construction via twisted
tensor calculus
- dynamics of noncommutativity?

- spherically symmetric solution

- discrete, quasi-2D onion-type spacetime
- entropy naturally scales with area

- quantization of mass?



Thank you





