Theoretical Tools for Heavy Quark Physics

Thomas Mannel

Theoretische Physik I Universität Siegen

3rd Vienna Central European Seminar on Particle Physics and Quantum Field Theory December 01 - 03, 2006

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ Ξ → < Ξ →</p>

Contents

- Introduction / Motivation

 Why Heavy Quark Physics?
 Effective Field Theories

 Ancient Wisdom

 Heavy Quark Limit
 - Heavy Quark Limit
 - Heavy Quark Symmetries
 - Heavy Quark Effective Theory
- Inclusive Decays
 - Operator Product Expansion
 - Twist Expansion
- 4

Recent Developments

- Soft Collinear Effective Theory
- Towards Understanding Nonleptonic Decays

Why Heavy Quark Physics? Effective Field Theories

Why Heavy Quark Physics?

- Flavour Mixing and CP-Violations are two of the most important topics of contemporary Particle Physics
- It is all encoded in the UNITARY CKM MATRIX appearing in the charged current interaction:

$$\mathcal{L} = \frac{g}{\sqrt{2}} \begin{pmatrix} \bar{u} & \bar{c} & \bar{t} \end{pmatrix} \gamma^{\mu} (1 - \gamma_5) W_{\mu} \quad \bigvee_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

• Entries in the CKM matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Why Heavy Quark Physics? Effective Field Theories

Why Heavy Quark Physics?

- Flavour Mixing and CP-Violations are two of the most important topics of contemporary Particle Physics
- It is all encoded in the UNITARY CKM MATRIX appearing in the charged current interaction:

$$\mathcal{L} = \frac{g}{\sqrt{2}} \begin{pmatrix} \bar{u} & \bar{c} & \bar{t} \end{pmatrix} \gamma^{\mu} (1 - \gamma_5) W_{\mu} \quad \bigvee_{CKM} \begin{pmatrix} a \\ s \\ b \end{pmatrix}$$

• Entries in the CKM matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Why Heavy Quark Physics? Effective Field Theories

- \

Why Heavy Quark Physics?

- Flavour Mixing and CP-Violations are two of the most important topics of contemporary Particle Physics
- It is all encoded in the UNITARY CKM MATRIX appearing in the charged current interaction:

$$\mathcal{L} = rac{g}{\sqrt{2}} (ar{u} \quad ar{c} \quad ar{t}) \gamma^{\mu} (1 - \gamma_5) W_{\mu} \quad oldsymbol{V_{CKM}} \left(egin{array}{c} d \\ s \\ b \end{array}
ight)$$

Entries in the CKM matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Why Heavy Quark Physics? Effective Field Theories

- \

Why Heavy Quark Physics?

- Flavour Mixing and CP-Violations are two of the most important topics of contemporary Particle Physics
- It is all encoded in the UNITARY CKM MATRIX appearing in the charged current interaction:

$$\mathcal{L} = \frac{g}{\sqrt{2}} \begin{pmatrix} \bar{u} & \bar{c} & \bar{t} \end{pmatrix} \gamma^{\mu} (1 - \gamma_5) W_{\mu} \quad \bigvee_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

• Entries in the CKM matrix:

$$V_{CKM} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

Why Heavy Quark Physics? Effective Field Theories

CKM Matrix: Basics

• Tree dimensional (real) Rotation: Three angles θ_{ij}

 $U_{12} = \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} , \quad U_{13} = \begin{bmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{bmatrix} , \quad U_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix}$

• Single phase δ : $U_{\delta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta_{13}} \end{bmatrix}$.

• PDG CKM Parametrization:

$$V_{\mathrm{CKM}} = U_{23} U_{\delta}^{\dagger} U_{13} U_{\delta} U_{12}$$

• Large Phases in $V_{ub} = |V_{ub}|e^{-i\gamma} = s_{13}e^{-i\delta_{13}}$ and $V_{td} = |V_{td}|e^{i\beta}$

ヘロト 人間 とくほとくほとう

1

Why Heavy Quark Physics? Effective Field Theories

CKM Matrix: Basics

• Tree dimensional (real) Rotation: Three angles θ_{ij}

$$U_{12} = \left[\begin{array}{ccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array} \right] \ , \quad U_{13} = \left[\begin{array}{ccc} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{array} \right] \ , \quad U_{23} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array} \right]$$

• Single phase
$$\delta$$
: $U_{\delta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta_{13}} \end{bmatrix}$.

• PDG CKM Parametrization:

$$V_{\mathrm{CKM}} = U_{23} U_{\delta}^{\dagger} U_{13} U_{\delta} U_{12}$$

• Large Phases in $V_{ub} = |V_{ub}|e^{-i\gamma} = s_{13}e^{-i\delta_{13}}$ and $V_{td} = |V_{td}|e^{i\beta}$

ヘロア 人間 アメヨア 人口 ア

Why Heavy Quark Physics? Effective Field Theories

CKM Matrix: Basics

• Tree dimensional (real) Rotation: Three angles θ_{ij}

 $U_{12} = \left[\begin{array}{ccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array} \right] \ , \quad U_{13} = \left[\begin{array}{ccc} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{array} \right] \ , \quad U_{23} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array} \right]$

• Single phase δ : $u_{\delta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta_{13}} \end{bmatrix}$.

• PDG CKM Parametrization:

$$V_{
m CKM} = U_{23} U_{\delta}^{\dagger} U_{13} U_{\delta} U_{12}$$

• Large Phases in $V_{ub} = |V_{ub}|e^{-i\gamma} = s_{13}e^{-i\delta_{13}}$ and $V_{td} = |V_{td}|e^{i\beta}$

ヘロト 人間 とくほとくほとう

1

Why Heavy Quark Physics? Effective Field Theories

CKM Matrix: Basics

• Tree dimensional (real) Rotation: Three angles θ_{ij}

 $U_{12} = \left[\begin{array}{ccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array} \right] \ , \quad U_{13} = \left[\begin{array}{ccc} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{array} \right] \ , \quad U_{23} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array} \right]$

- Single phase δ : $u_{\delta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta_{13}} \end{bmatrix}$.
- PDG CKM Parametrization:

$$V_{\mathrm{CKM}} = U_{23}U_{\delta}^{\dagger}U_{13}U_{\delta}U_{12}$$

• Large Phases in $V_{ub} = |V_{ub}|e^{-i\gamma} = s_{13}e^{-i\delta_{13}}$ and $V_{td} = |V_{td}|e^{i\beta}$

ヘロト 人間 とくほとくほとう

1

Why Heavy Quark Physics? Effective Field Theories

CKM Matrix: Basics

• Tree dimensional (real) Rotation: Three angles θ_{ij}

 $U_{12} = \left[\begin{array}{ccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array} \right] \ , \quad U_{13} = \left[\begin{array}{ccc} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{array} \right] \ , \quad U_{23} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array} \right]$

- Single phase δ : $u_{\delta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta_{13}} \end{bmatrix}$.
- PDG CKM Parametrization:

$$V_{\mathrm{CKM}} = U_{23}U_{\delta}^{\dagger}U_{13}U_{\delta}U_{12}$$

• Large Phases in $V_{ub} = |V_{ub}|e^{-i\gamma} = s_{13}e^{-i\delta_{13}}$ and $V_{td} = |V_{td}|e^{i\beta}$

Why Heavy Quark Physics? Effective Field Theories

CKM Unitarity: Unitarity Triangle

- Out of six Unitarity Triangles only two have sides of comparable lengths:
- Depict the relation $V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$

Why Heavy Quark Physics? Effective Field Theories

• Heavy Quarks: $m_Q \gg \Lambda_{QCD}$

- Top Quark: $m_t \sim 175$ GeV
- Bottom Quark: m_b ~ 4.5 GeV
- Charm Quark: $m_c \sim 1.5$ GeV
- Strange Quarks: $m_s \sim 0.1$ GeV

(too heavy) (just o.k.) boarderline case) (too light, but ...)

- Almost all CKM matrix elements describe transitions involving one or even two heavy quarks.
- Determination of these matrix elements involve to deal with the strong interaction of heavy quarks.

Why Heavy Quark Physics? Effective Field Theories

• Heavy Quarks: $m_Q \gg \Lambda_{QCD}$

- Top Quark: $m_t \sim 175 \text{ GeV}$
- Bottom Quark: m_b ~ 4.5 GeV
- Charm Quark: $m_c \sim 1.5 \text{ GeV}$
- Strange Quarks: $m_s \sim 0.1 \text{ GeV}$

(too heavy) (just o.k.) boarderline case) (too light, but ...)

イロト 不得 とくほと くほう

- Almost all CKM matrix elements describe transitions involving one or even two heavy quarks.
- Determination of these matrix elements involve to deal with the strong interaction of heavy quarks.

Why Heavy Quark Physics? Effective Field Theories

• Heavy Quarks: $m_Q \gg \Lambda_{QCD}$

- Top Quark: $m_t \sim 175$ GeV
- Bottom Quark: m_b ~ 4.5 GeV
- Charm Quark: $m_c \sim 1.5 \text{ GeV}$
- Strange Quarks: $m_s \sim 0.1 \text{ GeV}$

(too heavy)

(just o.k.) (boarderline case) (too light, but ...)

- Almost all CKM matrix elements describe transitions involving one or even two heavy quarks.
- Determination of these matrix elements involve to deal with the strong interaction of heavy quarks.

Why Heavy Quark Physics? Effective Field Theories

• Heavy Quarks: $m_Q \gg \Lambda_{QCD}$

- Top Quark: $m_t \sim 175 \text{ GeV}$
- Bottom Quark: m_b ~ 4.5 GeV
- Charm Quark: $m_c \sim 1.5$ GeV
- Strange Quarks: $m_s \sim 0.1 \text{ GeV}$

(too heavy) (just o.k.)

(boarderline case) (too light, but ...)

- Almost all CKM matrix elements describe transitions involving one or even two heavy quarks.
- Determination of these matrix elements involve to deal with the strong interaction of heavy quarks.

Why Heavy Quark Physics? Effective Field Theories

• Heavy Quarks: $m_Q \gg \Lambda_{QCD}$

- Top Quark: $m_t \sim 175$ GeV
- Bottom Quark: m_b ~ 4.5 GeV
- Charm Quark: $m_c \sim 1.5 \text{ GeV}$
- Strange Quarks: $m_s \sim 0.1 \text{ GeV}$

(too heavy) (just o.k.) (boarderline case) (too light, but ...)

- Almost all CKM matrix elements describe transitions involving one or even two heavy quarks.
- Determination of these matrix elements involve to deal with the strong interaction of heavy quarks.

Why Heavy Quark Physics? Effective Field Theories

• Heavy Quarks: $m_Q \gg \Lambda_{QCD}$

- Top Quark: $m_t \sim 175$ GeV
- Bottom Quark: m_b ~ 4.5 GeV
- Charm Quark: m_c ~ 1.5 GeV
- Strange Quarks: m_s ~ 0.1 GeV

(too heavy) (just o.k.) (boarderline case) (too light, but ...)

- Almost all CKM matrix elements describe transitions involving one or even two heavy quarks.
- Determination of these matrix elements involve to deal with the strong interaction of heavy quarks.

Why Heavy Quark Physics? Effective Field Theories

• Heavy Quarks: $m_Q \gg \Lambda_{QCD}$

- Top Quark: $m_t \sim 175$ GeV
- Bottom Quark: m_b ~ 4.5 GeV
- Charm Quark: m_c ~ 1.5 GeV
- Strange Quarks: m_s ~ 0.1 GeV

(too heavy) (just o.k.) (boarderline case) (too light, but ...)

- Almost all CKM matrix elements describe transitions involving one or even two heavy quarks.
- Determination of these matrix elements involve to deal with the strong interaction of heavy quarks.

Why Heavy Quark Physics? Effective Field Theories

• Heavy Quarks: $m_Q \gg \Lambda_{QCD}$

- Top Quark: $m_t \sim 175$ GeV
- Bottom Quark: m_b ~ 4.5 GeV
- Charm Quark: m_c ~ 1.5 GeV
- Strange Quarks: m_s ~ 0.1 GeV

(too heavy) (just o.k.) (boarderline case) (too light, but ...)

- Almost all CKM matrix elements describe transitions involving one or even two heavy quarks.
- Determination of these matrix elements involve to deal with the strong interaction of heavy quarks.

Why Heavy Quark Physics? Effective Field Theories

Effective Field Theories

• Weak decays:

- Λ_{QCD} ~ 200 MeV: Scale of strong interactions
- *m_c* ~ 1.5 GeV: Charm Quark Mass
- *m_b* ~ 4.5 GeV: Bottom Quark Mass
- *m_t* ~ 175 GeV and *M_W* ~ 81 GeV:
 - Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

Why Heavy Quark Physics? Effective Field Theories

Effective Field Theories

• Weak decays:

- $\Lambda_{QCD}\sim 200$ MeV: Scale of strong interactions
- $m_c \sim 1.5$ GeV: Charm Quark Mass
- $m_b \sim 4.5$ GeV: Bottom Quark Mass
- $m_t \sim 175 \text{ GeV}$ and $M_W \sim 81 \text{ GeV}$:
 - Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

Why Heavy Quark Physics? Effective Field Theories

Effective Field Theories

• Weak decays:

- $\Lambda_{QCD}\sim 200$ MeV: Scale of strong interactions
- $m_c \sim 1.5$ GeV: Charm Quark Mass
- $m_b \sim 4.5$ GeV: Bottom Quark Mass
- $m_t \sim 175 \text{ GeV}$ and $M_W \sim 81 \text{ GeV}$:
 - Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

Why Heavy Quark Physics? Effective Field Theories

Effective Field Theories

• Weak decays:

- $\Lambda_{QCD}\sim 200$ MeV: Scale of strong interactions
- $m_c \sim$ 1.5 GeV: Charm Quark Mass
- $m_b \sim 4.5$ GeV: Bottom Quark Mass
- $m_t \sim 175 \text{ GeV}$ and $M_W \sim 81 \text{ GeV}$:
 - Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

Why Heavy Quark Physics? Effective Field Theories

Effective Field Theories

• Weak decays:

- $\Lambda_{QCD}\sim 200$ MeV: Scale of strong interactions
- $m_c \sim 1.5$ GeV: Charm Quark Mass
- $m_b \sim 4.5$ GeV: Bottom Quark Mass
- $m_t \sim 175 \text{ GeV}$ and $M_W \sim 81 \text{ GeV}$:
 - Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

Why Heavy Quark Physics? Effective Field Theories

Effective Field Theories

• Weak decays:

- $\Lambda_{QCD}\sim 200$ MeV: Scale of strong interactions
- $m_c \sim 1.5$ GeV: Charm Quark Mass
- $m_b \sim 4.5$ GeV: Bottom Quark Mass
- $m_t \sim 175 \text{ GeV}$ and $M_W \sim 81 \text{ GeV}$:
 - Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

Why Heavy Quark Physics? Effective Field Theories

Effective Field Theories

• Weak decays:

- $\Lambda_{QCD}\sim 200$ MeV: Scale of strong interactions
- $m_c \sim 1.5$ GeV: Charm Quark Mass
- $m_b \sim 4.5$ GeV: Bottom Quark Mass
- *m_t* ~ 175 GeV and *M_W* ~ 81 GeV: Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

Why Heavy Quark Physics? Effective Field Theories

Effective Field Theories

• Weak decays:

- $\Lambda_{QCD}\sim 200$ MeV: Scale of strong interactions
- $m_c \sim 1.5$ GeV: Charm Quark Mass
- $m_b \sim 4.5$ GeV: Bottom Quark Mass
- *m_t* ~ 175 GeV and *M_W* ~ 81 GeV: Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

Why Heavy Quark Physics? Effective Field Theories

Effective Field Theories

• Weak decays:

- $\Lambda_{QCD}\sim 200$ MeV: Scale of strong interactions
- $m_c \sim 1.5$ GeV: Charm Quark Mass
- $m_b \sim 4.5$ GeV: Bottom Quark Mass
- *m_t* ~ 175 GeV and *M_W* ~ 81 GeV: Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of "new physics"
- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an "effective field theory" where the massive / energetic degrees of freedom are removed ("integrated out")

Why Heavy Quark Physics? Effective Field Theories

Integrating out heavy degrees of freedom

- ϕ : light fields, Φ : heavy fields with mass Λ
- Generating functional as a functional integral Integration over the heavy degrees of freedom

$$Z[j] = \int [d\phi][d\Phi] \exp\left(\int d^4x \left[\mathcal{L}(\phi, \Phi) + j\phi\right]\right)$$

= $\int [d\phi] \exp\left(\int d^4x \left[\mathcal{L}_{eff}(\phi) + j\phi\right]\right)$ with
 $\exp\left(\int d^4x \mathcal{L}_{eff}(\phi)\right) = \int [d\Phi] \exp\left(\int d^4x \mathcal{L}(\phi, \Phi)\right)$

ヘロト ヘ戸ト ヘヨト ヘヨト

Why Heavy Quark Physics? Effective Field Theories

Integrating out heavy degrees of freedom

• ϕ : light fields, Φ : heavy fields with mass Λ

 Generating functional as a functional integral Integration over the heavy degrees of freedom

$$Z[j] = \int [d\phi][d\Phi] \exp\left(\int d^4x \left[\mathcal{L}(\phi, \Phi) + j\phi\right]\right)$$

= $\int [d\phi] \exp\left(\int d^4x \left[\mathcal{L}_{eff}(\phi) + j\phi\right]\right)$ with
 $\exp\left(\int d^4x \mathcal{L}_{eff}(\phi)\right) = \int [d\Phi] \exp\left(\int d^4x \mathcal{L}(\phi, \Phi)\right)$

ヘロト ヘ戸ト ヘヨト ヘヨト

Why Heavy Quark Physics? Effective Field Theories

Integrating out heavy degrees of freedom

- φ: light fields, Φ: heavy fields with mass Λ
- Generating functional as a functional integral Integration over the heavy degrees of freedom

$$Z[j] = \int [d\phi] [d\Phi] \exp\left(\int d^4x \left[\mathcal{L}(\phi, \Phi) + j\phi\right]\right)$$

= $\int [d\phi] \exp\left(\int d^4x \left[\mathcal{L}_{eff}(\phi) + j\phi\right]\right)$ with
 $\exp\left(\int d^4x \mathcal{L}_{eff}(\phi)\right) = \int [d\Phi] \exp\left(\int d^4x \mathcal{L}(\phi, \Phi)\right)$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Why Heavy Quark Physics? Effective Field Theories

- For length scales $x \gg 1/\Lambda$: local effective Lagrangian
- Technically: (Operator Product) Expansion in inverse powers of Λ

$$\mathcal{L}_{\rm eff}(\phi) = \mathcal{L}_{\rm eff}^{(4)}(\phi) + \frac{1}{\Lambda} \mathcal{L}_{\rm eff}^{(5)}(\phi) + \frac{1}{\Lambda^2} \mathcal{L}_{\rm eff}^{(6)}(\phi) + \cdots$$

- \mathcal{L}_{eff} is in general non-renormalizable, but ...
- $\mathcal{L}_{eff}^{(4)}$ is the renormalizable piece
- For a fixed order in 1/Λ: Only a finite number of insertions of L⁽⁴⁾_{eff} is needed!
- $\bullet \rightarrow$ can be renormalized
- Renormalizability is not an issue here

ヘロト ヘ戸ト ヘヨト ヘヨト

Why Heavy Quark Physics? Effective Field Theories

- For length scales $x \gg 1/\Lambda$: local effective Lagrangian
- Technically: (Operator Product) Expansion in inverse powers of Λ

$$\mathcal{L}_{\mathrm{eff}}(\phi) = \mathcal{L}_{\mathrm{eff}}^{(4)}(\phi) + rac{1}{\Lambda} \mathcal{L}_{\mathrm{eff}}^{(5)}(\phi) + rac{1}{\Lambda^2} \mathcal{L}_{\mathrm{eff}}^{(6)}(\phi) + \cdots$$

- \mathcal{L}_{eff} is in general non-renormalizable, but ...
- $\mathcal{L}_{eff}^{(4)}$ is the renormalizable piece
- For a fixed order in 1/Λ: Only a finite number of insertions of L⁽⁴⁾_{eff} is needed!
- ullet \rightarrow can be renormalized
- Renormalizability is not an issue here

ヘロト ヘ戸ト ヘヨト ヘヨト

Why Heavy Quark Physics? Effective Field Theories

- For length scales $x \gg 1/\Lambda$: local effective Lagrangian
- Technically: (Operator Product) Expansion in inverse powers of Λ

$$\mathcal{L}_{\mathrm{eff}}(\phi) = \mathcal{L}_{\mathrm{eff}}^{(4)}(\phi) + rac{1}{\Lambda} \mathcal{L}_{\mathrm{eff}}^{(5)}(\phi) + rac{1}{\Lambda^2} \mathcal{L}_{\mathrm{eff}}^{(6)}(\phi) + \cdots$$

- \mathcal{L}_{eff} is in general non-renormalizable, but ...
- $\mathcal{L}_{eff}^{(4)}$ is the renormalizable piece
- For a fixed order in 1/Λ: Only a finite number of insertions of L⁽⁴⁾_{eff} is needed!
- ullet \rightarrow can be renormalized
- Renormalizability is not an issue here

・ 同 ト ・ ヨ ト ・ ヨ ト

Why Heavy Quark Physics? Effective Field Theories

- For length scales $x \gg 1/\Lambda$: local effective Lagrangian
- Technically: (Operator Product) Expansion in inverse powers of Λ

$$\mathcal{L}_{\mathrm{eff}}(\phi) = \mathcal{L}_{\mathrm{eff}}^{(4)}(\phi) + rac{1}{\Lambda} \mathcal{L}_{\mathrm{eff}}^{(5)}(\phi) + rac{1}{\Lambda^2} \mathcal{L}_{\mathrm{eff}}^{(6)}(\phi) + \cdots$$

- \mathcal{L}_{eff} is in general non-renormalizable, but ...
- $\mathcal{L}_{\rm eff}^{(4)}$ is the renormalizable piece
- For a fixed order in 1/Λ: Only a finite number of insertions of L⁽⁴⁾_{eff} is needed!
- ullet \rightarrow can be renormalized
- Renormalizability is not an issue here

・ 同 ト ・ ヨ ト ・ ヨ ト …
Why Heavy Quark Physics? Effective Field Theories

- For length scales $x \gg 1/\Lambda$: local effective Lagrangian
- Technically: (Operator Product) Expansion in inverse powers of Λ

$$\mathcal{L}_{\mathrm{eff}}(\phi) = \mathcal{L}_{\mathrm{eff}}^{(4)}(\phi) + rac{1}{\Lambda} \mathcal{L}_{\mathrm{eff}}^{(5)}(\phi) + rac{1}{\Lambda^2} \mathcal{L}_{\mathrm{eff}}^{(6)}(\phi) + \cdots$$

- \mathcal{L}_{eff} is in general non-renormalizable, but ...
- $\mathcal{L}_{\rm eff}^{(4)}$ is the renormalizable piece
- For a fixed order in 1/Λ: Only a finite number of insertions of L⁽⁴⁾_{eff} is needed!
- $\bullet \rightarrow$ can be renormalized
- Renormalizability is not an issue here

・ロト ・ 理 ト ・ ヨ ト ・

Why Heavy Quark Physics? Effective Field Theories

- For length scales $x \gg 1/\Lambda$: local effective Lagrangian
- Technically: (Operator Product) Expansion in inverse powers of Λ

$$\mathcal{L}_{\mathrm{eff}}(\phi) = \mathcal{L}_{\mathrm{eff}}^{(4)}(\phi) + rac{1}{\Lambda} \mathcal{L}_{\mathrm{eff}}^{(5)}(\phi) + rac{1}{\Lambda^2} \mathcal{L}_{\mathrm{eff}}^{(6)}(\phi) + \cdots$$

- \mathcal{L}_{eff} is in general non-renormalizable, but ...
- $\mathcal{L}_{\rm eff}^{(4)}$ is the renormalizable piece
- For a fixed order in 1/Λ: Only a finite number of insertions of L⁽⁴⁾_{eff} is needed!
- \rightarrow can be renormalized
- Renormalizability is not an issue here

ヘロン ヘアン ヘビン ヘビン

Why Heavy Quark Physics? Effective Field Theories

- For length scales $x \gg 1/\Lambda$: local effective Lagrangian
- Technically: (Operator Product) Expansion in inverse powers of Λ

$$\mathcal{L}_{\mathrm{eff}}(\phi) = \mathcal{L}_{\mathrm{eff}}^{(4)}(\phi) + rac{1}{\Lambda} \mathcal{L}_{\mathrm{eff}}^{(5)}(\phi) + rac{1}{\Lambda^2} \mathcal{L}_{\mathrm{eff}}^{(6)}(\phi) + \cdots$$

- \mathcal{L}_{eff} is in general non-renormalizable, but ...
- $\mathcal{L}_{\rm eff}^{(4)}$ is the renormalizable piece
- For a fixed order in 1/Λ: Only a finite number of insertions of L⁽⁴⁾_{eff} is needed!
- $\bullet \rightarrow$ can be renormalized
- Renormalizability is not an issue here

ヘロト 人間 ト ヘヨト ヘヨト

Why Heavy Quark Physics? Effective Field Theories

Thomas Mannel, University of Siegen Theoretical Tools for Heavy Quark Physics

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Limit

Isgur, Wise, Voloshin, Shifman, Georgi, Grinstein, ...

1/m_Q Expansion: Substantial Theoretical Progress!
 Static Limit: m_b, m_c → ∞ with fixed (four)velocity

$$v_Q = rac{p_Q}{m_Q}, \qquad Q = b, c$$

$$\left. egin{array}{l} m_{Hadron} = m_{Q} \ p_{Hadron} = p_{Q} \end{array}
ight\} V_{Hadron} = V_{Q}$$

- For m_Q → ∞ the heavy quark does not feel any recoil from the light quarks and gluons (Cannon Ball)
- This is like the H-atom in Quantum Mechanics I!

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Limit

Isgur, Wise, Voloshin, Shifman, Georgi, Grinstein, ...

- $1/m_Q$ Expansion: Substantial Theoretical Progress!
- Static Limit: m_b , $m_c \rightarrow \infty$ with fixed (four)velocity

$$v_Q = \frac{p_Q}{m_Q}, \qquad Q = b, c$$

$$\left. egin{array}{l} m_{Hadron} = m_{Q} \ p_{Hadron} = p_{Q} \end{array}
ight\} V_{Hadron} = V_{Q}$$

- For m_Q → ∞ the heavy quark does not feel any recoil from the light quarks and gluons (Cannon Ball)
- This is like the H-atom in Quantum Mechanics I!

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Limit

Isgur, Wise, Voloshin, Shifman, Georgi, Grinstein, ...

- $1/m_Q$ Expansion: Substantial Theoretical Progress!
- Static Limit: m_b , $m_c \rightarrow \infty$ with fixed (four)velocity

$$v_{\mathsf{Q}} = rac{p_{\mathsf{Q}}}{m_{\mathsf{Q}}}, \qquad \mathsf{Q} = b, c$$

$$\left. \begin{array}{c} m_{Hadron} = m_{Q} \\ p_{Hadron} = p_{Q} \end{array} \right\} V_{Hadron} = V_{Q}$$

- For m_Q → ∞ the heavy quark does not feel any recoil from the light quarks and gluons (Cannon Ball)
- This is like the H-atom in Quantum Mechanics I!

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Limit

Isgur, Wise, Voloshin, Shifman, Georgi, Grinstein, ...

- $1/m_Q$ Expansion: Substantial Theoretical Progress!
- Static Limit: m_b , $m_c \rightarrow \infty$ with fixed (four)velocity

$$v_{\mathsf{Q}}=rac{p_{\mathsf{Q}}}{m_{\mathsf{Q}}},\qquad \mathsf{Q}=b,c$$

$$\left. egin{array}{l} m_{Hadron} = m_{\mathsf{Q}} \ p_{Hadron} = p_{\mathsf{Q}} \end{array}
ight\} {f v_{Hadron} = v_{\mathsf{Q}}}$$

- For m_Q → ∞ the heavy quark does not feel any recoil from the light quarks and gluons (Cannon Ball)
- This is like the H-atom in Quantum Mechanics I!

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Limit

Isgur, Wise, Voloshin, Shifman, Georgi, Grinstein, ...

- $1/m_Q$ Expansion: Substantial Theoretical Progress!
- Static Limit: m_b , $m_c \rightarrow \infty$ with fixed (four)velocity

$$v_{\mathsf{Q}}=rac{p_{\mathsf{Q}}}{m_{\mathsf{Q}}},\qquad \mathsf{Q}=b,c$$

$$\left. egin{array}{l} m_{Hadron} = m_{\mathsf{Q}} \ p_{Hadron} = p_{\mathsf{Q}} \end{array}
ight\} {f v_{Hadron} = f v_{\mathsf{Q}}}$$

- For m_Q → ∞ the heavy quark does not feel any recoil from the light quarks and gluons (Cannon Ball)
- This is like the H-atom in Quantum Mechanics I!

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Limit

Isgur, Wise, Voloshin, Shifman, Georgi, Grinstein, ...

- $1/m_Q$ Expansion: Substantial Theoretical Progress!
- Static Limit: m_b , $m_c \rightarrow \infty$ with fixed (four)velocity

$$v_{\mathsf{Q}}=rac{p_{\mathsf{Q}}}{m_{\mathsf{Q}}},\qquad \mathsf{Q}=b,c$$

$$\left. egin{array}{l} m_{Hadron} = m_{\mathsf{Q}} \ p_{Hadron} = p_{\mathsf{Q}} \end{array}
ight\} {m v_{Hadron} = m v_{\mathsf{Q}}}$$

- For m_Q → ∞ the heavy quark does not feel any recoil from the light quarks and gluons (Cannon Ball)
- This is like the H-atom in Quantum Mechanics I!

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \to \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = rac{g}{2m_o} ar{Q} (ec{\sigma} \cdot ec{B}) Q \stackrel{m_o o \infty}{\longrightarrow} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \to \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = rac{g}{2m_o} ar{Q} (ec{\sigma} \cdot ec{B}) Q \stackrel{m_o o \infty}{\longrightarrow} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

ヘロト ヘワト ヘビト ヘビト

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = rac{g}{2m_Q} ar{Q} (ec{\sigma} \cdot ec{B}) Q \stackrel{m_Q o \infty}{\longrightarrow} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = rac{g}{2m_o} ar{Q} (ec{\sigma} \cdot ec{B}) Q \stackrel{m_o o \infty}{\longrightarrow} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = rac{g}{2m_Q} ar{Q} (ec{\sigma} \cdot ec{B}) Q \stackrel{m_Q o \infty}{\longrightarrow} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = \frac{g}{2m_Q} \bar{Q}(\vec{\sigma} \cdot \vec{B})Q \xrightarrow{m_Q \to \infty} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = \frac{g}{2m_Q} \bar{Q} (\vec{\sigma} \cdot \vec{B}) Q \quad \stackrel{m_Q \to \infty}{\longrightarrow} \quad 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = \frac{g}{2m_Q} \bar{Q} (\vec{\sigma} \cdot \vec{B}) Q \xrightarrow{m_Q \to \infty} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = rac{g}{2m_Q} ar{Q} (ec{\sigma} \cdot ec{B}) Q \stackrel{m_Q o \infty}{\longrightarrow} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- The interaction of gluons is identical for all quarks
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- Coupling of the heavy quark spin to gluons:

$$H_{int} = rac{g}{2m_Q} ar{Q} (ec{\sigma} \cdot ec{B}) Q \stackrel{m_Q o \infty}{\longrightarrow} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- Spin Flavour Symmetry Multiplets

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Mesonic Ground States

Bottom:

$$egin{aligned} |(m{b}ar{u})_{J=0}
angle &= |m{B}^{-}
angle \ |(m{b}ar{d})_{J=0}
angle &= |m{B}^{0}
angle \ |(m{b}ar{s})_{J=0}
angle &= |m{B}_{s}
angle \end{aligned}$$

Charm:

 $egin{aligned} |(m{c}ar{u})_{J=0}
angle = |m{D}^0
angle \ |(m{c}ar{d})_{J=0}
angle = |m{D}^+
angle \ |(m{c}ar{s})_{J=0}
angle = |m{D}_s
angle \end{aligned}$

$$\begin{split} |(\boldsymbol{b}\bar{\boldsymbol{u}})_{J=1}\rangle &= |\boldsymbol{B}^{*-}\rangle \\ |(\boldsymbol{b}\bar{\boldsymbol{d}})_{J=1}\rangle &= |\overline{\boldsymbol{B}}^{*0}\rangle \\ |(\boldsymbol{b}\bar{\boldsymbol{s}})_{J=1}\rangle &= |\overline{\boldsymbol{B}}^{*}_{s}\rangle \end{split}$$

 $\begin{array}{l} |(\boldsymbol{c}\bar{\boldsymbol{u}})_{J=1}\rangle = |\boldsymbol{D}^{*0}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{d}})_{J=1}\rangle = |\boldsymbol{D}^{*+}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{s}})_{J=1}\rangle = |\boldsymbol{D}^{*}_{\boldsymbol{s}}\rangle \end{array}$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Mesonic Ground States

Bottom:

$$\begin{array}{l} |(\underline{b}\overline{u})_{J=0}\rangle = |\underline{B}^{-}\rangle \\ |(\underline{b}\overline{d})_{J=0}\rangle = |\overline{B}^{0}\rangle \\ |(\underline{b}\overline{s})_{J=0}\rangle = |\overline{B}_{s}\rangle \end{array}$$

Charm:

 $egin{aligned} |(m{c}ar{u})_{J=0}
angle = |m{D}^0
angle \ |(m{c}ar{d})_{J=0}
angle = |m{D}^+
angle \ |(m{c}ar{s})_{J=0}
angle = |m{D}_s
angle \end{aligned}$

 $\begin{aligned} |(\underline{b}\overline{u})_{J=1}\rangle &= |\underline{B}^{*-}\rangle \\ |(\underline{b}\overline{d})_{J=1}\rangle &= |\overline{B}^{*0}\rangle \\ |(\underline{b}\overline{s})_{J=1}\rangle &= |\overline{B}^{*}_{s}\rangle \end{aligned}$

 $\begin{array}{l} |(\boldsymbol{c}\bar{\boldsymbol{u}})_{J=1}\rangle = |\boldsymbol{D}^{*0}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{d}})_{J=1}\rangle = |\boldsymbol{D}^{*+}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{s}})_{J=1}\rangle = |\boldsymbol{D}^{*}_{\boldsymbol{s}}\rangle \end{array}$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Mesonic Ground States

Bottom:

$$\begin{split} |(\underline{b}\overline{u})_{J=0}\rangle &= |\underline{B}^{-}\rangle \\ |(\underline{b}\overline{d})_{J=0}\rangle &= |\overline{B}^{0}\rangle \\ |(\underline{b}\overline{s})_{J=0}\rangle &= |\overline{B}_{s}\rangle \end{split}$$

Charm:

 $egin{aligned} |(m{c}ar{u})_{J=0}
angle = |m{D}^0
angle \ |(m{c}ar{d})_{J=0}
angle = |m{D}^+
angle \ |(m{c}ar{s})_{J=0}
angle = |m{D}_s
angle \end{aligned}$

 $\begin{array}{l} |(\underline{b}\overline{u})_{J=1}\rangle = |\underline{B}^{*-}\rangle \\ |(\underline{b}\overline{d})_{J=1}\rangle = |\overline{B}^{*0}\rangle \\ |(\underline{b}\overline{s})_{J=1}\rangle = |\overline{B}^{*}_{s}\rangle \end{array}$

 $\begin{array}{l} |(\boldsymbol{c}\bar{\boldsymbol{u}})_{J=1}\rangle = |\boldsymbol{D}^{*0}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{d}})_{J=1}\rangle = |\boldsymbol{D}^{*+}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{s}})_{J=1}\rangle = |\boldsymbol{D}^{*}_{\boldsymbol{s}}\rangle \end{array}$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Mesonic Ground States

Bottom:

$$egin{aligned} |(m{b}ar{u})_{J=0}
angle &= |m{B}^{-}
angle \ |(m{b}ar{d})_{J=0}
angle &= |m{B}^{0}
angle \ |(m{b}ar{s})_{J=0}
angle &= |m{B}_{s}
angle \end{aligned}$$

Charm:

 $egin{aligned} |(m{c}ar{u})_{J=0}
angle = |m{D}^0
angle \ |(m{c}ar{d})_{J=0}
angle = |m{D}^+
angle \ |(m{c}ar{s})_{J=0}
angle = |m{D}_s
angle \end{aligned}$

$$\begin{split} |(\stackrel{b}{\overline{u}})_{J=1}\rangle &= |\stackrel{B^{*-}}{B}\rangle \\ |(\stackrel{b}{\overline{d}})_{J=1}\rangle &= |\stackrel{\overline{B}^{*0}}{B}\rangle \\ |(\stackrel{b}{\overline{s}})_{J=1}\rangle &= |\stackrel{\overline{B}^{*}}{B}\rangle \end{split}$$

 $\begin{array}{l} |(\boldsymbol{c}\bar{\boldsymbol{u}})_{J=1}\rangle = |\boldsymbol{D}^{*0}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{d}})_{J=1}\rangle = |\boldsymbol{D}^{*+}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{s}})_{J=1}\rangle = |\boldsymbol{D}^{*}_{\boldsymbol{s}}\rangle \end{array}$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Mesonic Ground States

Bottom:

$$egin{aligned} |(m{b}ar{u})_{J=0}
angle &= |m{B}^{-}
angle \ |(m{b}ar{d})_{J=0}
angle &= |m{B}^{0}
angle \ |(m{b}ar{s})_{J=0}
angle &= |m{B}_{s}
angle \end{aligned}$$

Charm:

 $egin{aligned} |(m{c}ar{u})_{J=0}
angle &= |m{D}^0
angle \ |(m{c}ar{d})_{J=0}
angle &= |m{D}^+
angle \ |(m{c}ar{s})_{J=0}
angle &= |m{D}_s
angle \end{aligned}$

$$\begin{split} |(\stackrel{b}{\overline{u}})_{J=1}\rangle &= |\stackrel{B^{*-}}{B}\rangle \\ |(\stackrel{b}{\overline{d}})_{J=1}\rangle &= |\stackrel{\overline{B}^{*0}}{B}\rangle \\ |(\stackrel{b}{\overline{s}})_{J=1}\rangle &= |\stackrel{\overline{B}^{*}}{B}\rangle \end{split}$$

 $\begin{array}{l} |(\boldsymbol{c}\bar{\boldsymbol{u}})_{J=1}\rangle = |\boldsymbol{D}^{*0}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{d}})_{J=1}\rangle = |\boldsymbol{D}^{*+}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{s}})_{J=1}\rangle = |\boldsymbol{D}^{*}_{\boldsymbol{s}}\rangle \end{array}$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Mesonic Ground States

Bottom:

$$egin{aligned} |(m{b}ar{u})_{J=0}
angle &= |m{B}^{-}
angle \ |(m{b}ar{d})_{J=0}
angle &= |m{B}^{0}
angle \ |(m{b}ar{s})_{J=0}
angle &= |m{B}_{s}
angle \end{aligned}$$

Charm:

$$|(\mathbf{C}\overline{\mathbf{U}})_{J=0}\rangle = |\mathbf{D}^{0}\rangle$$
$$|(\mathbf{C}\overline{\mathbf{d}})_{J=0}\rangle = |\mathbf{D}^{+}\rangle$$
$$|(\mathbf{C}\overline{\mathbf{s}})_{J=0}\rangle = |\mathbf{D}_{\mathbf{s}}\rangle$$

$$\begin{split} |(\underline{b}\bar{u})_{J=1}\rangle &= |\underline{B}^{*-}\rangle \\ |(\underline{b}\bar{d})_{J=1}\rangle &= |\overline{B}^{*0}\rangle \\ |(\underline{b}\bar{s})_{J=1}\rangle &= |\overline{B}^{*}_{s}\rangle \end{split}$$

 $\begin{array}{l} |(\boldsymbol{C}\boldsymbol{\bar{U}})_{J=1}\rangle = |\boldsymbol{D}^{*0}\rangle \\ |(\boldsymbol{C}\boldsymbol{\bar{d}})_{J=1}\rangle = |\boldsymbol{D}^{*+}\rangle \\ |(\boldsymbol{C}\boldsymbol{\bar{s}})_{J=1}\rangle = |\boldsymbol{D}^{*}_{s}\rangle \end{array}$

ヘロア 人間 アメヨア 人口 ア

э

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Mesonic Ground States

Bottom:

$$egin{aligned} |(m{b}ar{u})_{J=0}
angle &= |m{B}^{-}
angle \ |(m{b}ar{d})_{J=0}
angle &= |m{B}^{0}
angle \ |(m{b}ar{s})_{J=0}
angle &= |m{B}_{s}
angle \end{aligned}$$

Charm:

$$egin{aligned} |(m{c}ar{m{u}})_{J=0}
angle = |m{D}^0
angle \ |(m{c}ar{m{d}})_{J=0}
angle = |m{D}^+
angle \ |(m{c}ar{m{s}})_{J=0}
angle = |m{D}_s
angle \end{aligned}$$

$$\begin{split} |(\underline{b}\bar{u})_{J=1}\rangle &= |\underline{B}^{*-}\rangle \\ |(\underline{b}\bar{d})_{J=1}\rangle &= |\overline{B}^{*0}\rangle \\ |(\underline{b}\bar{s})_{J=1}\rangle &= |\overline{B}^{*}_{s}\rangle \end{split}$$

 $\begin{array}{l} |(\boldsymbol{c}\bar{\boldsymbol{u}})_{J=1}\rangle = |\boldsymbol{D}^{*0}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{d}})_{J=1}\rangle = |\boldsymbol{D}^{*+}\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{s}})_{J=1}\rangle = |\boldsymbol{D}^{*}_{s}\rangle \end{array}$

ヘロア 人間 アメヨア 人口 ア

э

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Mesonic Ground States

Bottom:

$$egin{aligned} |(m{b}ar{u})_{J=0}
angle &= |m{B}^{-}
angle \ |(m{b}ar{d})_{J=0}
angle &= |m{B}^{0}
angle \ |(m{b}ar{s})_{J=0}
angle &= |m{B}_{s}
angle \end{aligned}$$

Charm:

$$\begin{array}{l} |(\boldsymbol{c}\bar{\boldsymbol{u}})_{J=0}\rangle = |\boldsymbol{D}^0\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{d}})_{J=0}\rangle = |\boldsymbol{D}^+\rangle \\ |(\boldsymbol{c}\bar{\boldsymbol{s}})_{J=0}\rangle = |\boldsymbol{D}_{\boldsymbol{s}}\rangle \end{array}$$

$$\begin{split} |(\underline{b}\bar{u})_{J=1}\rangle &= |\underline{B}^{*-}\rangle \\ |(\underline{b}\bar{d})_{J=1}\rangle &= |\overline{B}^{*0}\rangle \\ |(\underline{b}\bar{s})_{J=1}\rangle &= |\overline{B}^{*}_{s}\rangle \end{split}$$

$$\begin{array}{l} |(\boldsymbol{c}\boldsymbol{\bar{u}})_{J=1}\rangle = |\boldsymbol{D}^{*0}\rangle \\ |(\boldsymbol{c}\boldsymbol{\bar{d}})_{J=1}\rangle = |\boldsymbol{D}^{*+}\rangle \\ |(\boldsymbol{c}\boldsymbol{\bar{s}})_{J=1}\rangle = |\boldsymbol{D}^{*}_{s}\rangle \end{array}$$

イロト 不得 とくほ とくほ とう

2

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Baryonic Ground States

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Baryonic Ground States

 $\left[(ud)_0 \mathbf{Q}\right]_{1/2} = |\Lambda_Q\rangle$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Baryonic Ground States

 $\left[(ud)_0 \mathbf{Q}\right]_{1/2} = |\Lambda_Q\rangle$ $\left[(uu)_{1} \mathbf{Q} \right]_{1/2} \rangle, \left| \left[(ud)_{1} \mathbf{Q} \right]_{1/2} \rangle, \left| \left[(dd)_{1} \mathbf{Q} \right]_{1/2} \rangle = |\Sigma_{\mathbf{Q}} \rangle \right] \rangle$ $\left[(uu)_{1}\mathsf{Q}\right]_{3/2}\left\rangle,\left|\left[(ud)_{1}\mathsf{Q}\right]_{3/2}\right\rangle,\left|\left[(dd)_{1}\mathsf{Q}\right]_{3/2}\right\rangle=|\Sigma_{\mathsf{Q}}^{*}\rangle\right\rangle$

ヘロン ヘアン ヘビン ヘビン

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Baryonic Ground States

 $\left[(ud)_0 \mathbf{Q}\right]_{1/2} = |\Lambda_Q\rangle$ $\left[(uu)_{1} \mathbf{Q} \right]_{1/2} \rangle, \left| \left[(ud)_{1} \mathbf{Q} \right]_{1/2} \rangle, \left| \left[(dd)_{1} \mathbf{Q} \right]_{1/2} \rangle = |\Sigma_{\mathbf{Q}} \rangle \right] \rangle$ $\left[(uu)_{1}\mathsf{Q}\right]_{3/2}\rangle,\left|\left[(ud)_{1}\mathsf{Q}\right]_{3/2}\rangle,\left|\left[(dd)_{1}\mathsf{Q}\right]_{3/2}\rangle=|\Sigma_{\mathsf{Q}}^{*}\rangle\right.$ $\left[(us)_{0} \mathbf{Q} \right]_{1/2} \rangle, \left[\left[(ds)_{0} \mathbf{Q} \right]_{1/2} \rangle = |\Xi_{\mathbf{Q}} \rangle \right]$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Baryonic Ground States

$$\begin{split} \left| \left[(ud)_{0} \mathbf{Q} \right]_{1/2} \right\rangle &= |\Lambda_{\mathsf{Q}} \rangle \\ \left| \left[(uu)_{1} \mathbf{Q} \right]_{1/2} \right\rangle, \left| \left[(ud)_{1} \mathbf{Q} \right]_{1/2} \right\rangle, \left| \left[(dd)_{1} \mathbf{Q} \right]_{1/2} \right\rangle &= |\Sigma_{\mathsf{Q}} \rangle \\ \left| \left[(uu)_{1} \mathbf{Q} \right]_{3/2} \right\rangle, \left| \left[(ud)_{1} \mathbf{Q} \right]_{3/2} \right\rangle, \left| \left[(dd)_{1} \mathbf{Q} \right]_{3/2} \right\rangle &= |\Sigma_{\mathsf{Q}}^{*} \rangle \\ \left| \left[(us)_{0} \mathbf{Q} \right]_{1/2} \right\rangle, \left| \left[(ds)_{0} \mathbf{Q} \right]_{1/2} \right\rangle &= |\Xi_{\mathsf{Q}} \rangle \\ \left| \left[(us)_{1} \mathbf{Q} \right]_{1/2} \right\rangle, \left| \left[(ds)_{1} \mathbf{Q} \right]_{1/2} \right\rangle &= |\Xi_{\mathsf{Q}} \rangle \\ \left| \left[(us)_{1} \mathbf{Q} \right]_{3/2} \right\rangle, \left| \left[(ds)_{1} \mathbf{Q} \right]_{3/2} \right\rangle &= |\Xi_{\mathsf{Q}}^{*} \rangle \\ \left| \left[(us)_{1} \mathbf{Q} \right]_{3/2} \right\rangle, \left| \left[(ds)_{1} \mathbf{Q} \right]_{3/2} \right\rangle &= |\Xi_{\mathsf{Q}}^{*} \rangle \\ \left| \left[(ss)_{1} \mathbf{Q} \right]_{1/2} \right\rangle &= |\Omega_{\mathsf{Q}} \rangle \\ \left| \left[(ss)_{1} \mathbf{Q} \right]_{3/2} \right\rangle &= |\Omega_{\mathsf{Q}} \rangle \end{aligned}$$

ヘロン ヘアン ヘビン ヘビン

3

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Baryonic Ground States

$$\begin{split} \left| \left[(ud)_{0} \mathbf{Q} \right]_{1/2} \right\rangle &= \left| \Lambda_{\mathbf{Q}} \right\rangle \\ \left| \left[(uu)_{1} \mathbf{Q} \right]_{1/2} \right\rangle, \left| \left[(ud)_{1} \mathbf{Q} \right]_{1/2} \right\rangle, \left| \left[(dd)_{1} \mathbf{Q} \right]_{1/2} \right\rangle &= \left| \Sigma_{\mathbf{Q}} \right\rangle \\ \left| \left[(uu)_{1} \mathbf{Q} \right]_{3/2} \right\rangle, \left| \left[(ud)_{1} \mathbf{Q} \right]_{3/2} \right\rangle, \left| \left[(dd)_{1} \mathbf{Q} \right]_{3/2} \right\rangle &= \left| \Sigma_{\mathbf{Q}} \right\rangle \\ \left| \left[(us)_{0} \mathbf{Q} \right]_{1/2} \right\rangle, \left| \left[(ds)_{0} \mathbf{Q} \right]_{1/2} \right\rangle &= \left| \Xi_{\mathbf{Q}} \right\rangle \\ \left| \left[(us)_{1} \mathbf{Q} \right]_{1/2} \right\rangle, \left| \left[(ds)_{1} \mathbf{Q} \right]_{1/2} \right\rangle &= \left| \Xi_{\mathbf{Q}} \right\rangle \\ \left| \left[(us)_{1} \mathbf{Q} \right]_{3/2} \right\rangle, \left| \left[(ds)_{1} \mathbf{Q} \right]_{3/2} \right\rangle &= \left| \Xi_{\mathbf{Q}} \right\rangle \\ \left| \left[(us)_{1} \mathbf{Q} \right]_{3/2} \right\rangle, \left| \left[(ds)_{1} \mathbf{Q} \right]_{3/2} \right\rangle &= \left| \Xi_{\mathbf{Q}} \right\rangle \\ \left| \left[(ss)_{1} \mathbf{Q} \right]_{3/2} \right\rangle &= \left| \Omega_{\mathbf{Q}} \right\rangle \\ \left| \left[(ss)_{1} \mathbf{Q} \right]_{3/2} \right\rangle &= \left| \Omega_{\mathbf{Q}} \right\rangle \end{split}$$

ヘロン ヘアン ヘビン ヘビン

3

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Wigner Eckart Theorem for HQS

HQS imply a "Wigner Eckart Theorem"

 $\left\langle H^{(*)}(v) \right| \mathcal{Q}_{v} \Gamma \mathcal{Q}_{v'} \left| H^{(*)}(v') \right\rangle = \mathcal{C}_{\Gamma}(v, v') \xi(v \cdot v')$

with $H^{(*)}(v) = D^{(*)}(v)$ or $B^{(*)}(v)$

- C_r(v, v'): Computable Clebsh Gordan Coefficient
- $\xi(v \cdot v')$: Reduced Matrix Element
- ξ(v · v'): universal non-perturbative Form Faktor: Isgur Wise Funktion
- Normalization of ξ at v = v':

$\xi(v \cdot v' = 1) = 1$

イロト 不得 とくほ とくほ とうほ

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Wigner Eckart Theorem for HQS

• HQS imply a "Wigner Eckart Theorem"

 $\left\langle \mathcal{H}^{(*)}(\mathbf{v}) \right| \left. \mathsf{Q}_{\mathbf{v}} \mathsf{\Gamma} \left. \mathsf{Q}_{\mathbf{v}'} \right| \mathcal{H}^{(*)}(\mathbf{v}') \right\rangle = C_{\mathsf{\Gamma}}(\mathbf{v},\mathbf{v}') \xi(\mathbf{v}\cdot\mathbf{v}')$

with $H^{(*)}(v) = D^{(*)}(v)$ or $B^{(*)}(v)$

- $C_{\Gamma}(v, v')$: Computable Clebsh Gordan Coefficient
- $\xi(\mathbf{v} \cdot \mathbf{v}')$: Reduced Matrix Element
- $\xi(\mathbf{v} \cdot \mathbf{v}')$: universal non-perturbative Form Faktor: Isgur Wise Funktion
- Normalization of ξ at v = v':

$$\xi(\mathbf{v}\cdot\mathbf{v}'=\mathbf{1})=\mathbf{1}$$

・ロト ・ 理 ト ・ ヨ ト ・
Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Wigner Eckart Theorem for HQS

HQS imply a "Wigner Eckart Theorem"

 $\left\langle \mathcal{H}^{(*)}(\mathbf{v}) \right| \left. \mathsf{Q}_{\mathbf{v}} \mathsf{\Gamma} \left. \mathsf{Q}_{\mathbf{v}'} \right| \mathcal{H}^{(*)}(\mathbf{v}') \right\rangle = C_{\mathsf{\Gamma}}(\mathbf{v},\mathbf{v}') \xi(\mathbf{v}\cdot\mathbf{v}')$

with $H^{(*)}(v) = D^{(*)}(v)$ or $B^{(*)}(v)$

- $C_{\Gamma}(v, v')$: Computable Clebsh Gordan Coefficient
- $\xi(v \cdot v')$: Reduced Matrix Element
- ξ(v · v'): universal non-perturbative Form Faktor:
 Isgur Wise Funktion
- Normalization of ξ at v = v':

$$\xi(\mathbf{v}\cdot\mathbf{v}'=\mathbf{1})=\mathbf{1}$$

・ロト ・ 理 ト ・ ヨ ト ・

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Wigner Eckart Theorem for HQS

HQS imply a "Wigner Eckart Theorem"

 $\left\langle \mathcal{H}^{(*)}(\mathbf{v}) \right| \left. \mathsf{Q}_{\mathbf{v}} \mathsf{\Gamma} \left. \mathsf{Q}_{\mathbf{v}'} \right| \mathcal{H}^{(*)}(\mathbf{v}') \right\rangle = C_{\mathsf{\Gamma}}(\mathbf{v},\mathbf{v}') \xi(\mathbf{v}\cdot\mathbf{v}')$

with $H^{(*)}(v) = D^{(*)}(v)$ or $B^{(*)}(v)$

- $C_{\Gamma}(v, v')$: Computable Clebsh Gordan Coefficient
- $\xi(\mathbf{v} \cdot \mathbf{v}')$: Reduced Matrix Element
- $\xi(\mathbf{v} \cdot \mathbf{v}')$: universal non-perturbative Form Faktor: Isgur Wise Funktion
- Normalization of ξ at v = v':

$$\xi(\mathbf{v}\cdot\mathbf{v}'=\mathbf{1})=\mathbf{1}$$

・ロト ・ 理 ト ・ ヨ ト ・

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Wigner Eckart Theorem for HQS

• HQS imply a "Wigner Eckart Theorem"

 $\left\langle \mathsf{H}^{(*)}(\mathsf{v})\right|\,\mathsf{Q}_{\mathsf{v}}\mathsf{\Gamma}\,\mathsf{Q}_{\mathsf{v}'}\,\left|\,\mathsf{H}^{(*)}(\mathsf{v}')\right\rangle = C_{\mathsf{\Gamma}}(\mathsf{v},\mathsf{v}')\xi(\mathsf{v}\cdot\mathsf{v}')$

with $H^{(*)}(v) = D^{(*)}(v)$ or $B^{(*)}(v)$

- $C_{\Gamma}(v, v')$: Computable Clebsh Gordan Coefficient
- $\xi(\mathbf{v} \cdot \mathbf{v}')$: Reduced Matrix Element
- ξ(v · v'): universal non-perturbative Form Faktor: Isgur Wise Funktion
- Normalization of ξ at v = v':

$$\xi(\mathbf{v}\cdot\mathbf{v}'=\mathbf{1})=\mathbf{1}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Wigner Eckart Theorem for HQS

• HQS imply a "Wigner Eckart Theorem"

 $\left\langle \mathcal{H}^{(*)}(\mathbf{v}) \right| \left. \mathsf{Q}_{\mathbf{v}} \mathsf{\Gamma} \left. \mathsf{Q}_{\mathbf{v}'} \right| \mathcal{H}^{(*)}(\mathbf{v}') \right\rangle = C_{\mathsf{\Gamma}}(\mathbf{v},\mathbf{v}') \xi(\mathbf{v}\cdot\mathbf{v}')$

with $H^{(*)}(v) = D^{(*)}(v)$ or $B^{(*)}(v)$

- $C_{\Gamma}(v, v')$: Computable Clebsh Gordan Coefficient
- $\xi(\mathbf{v} \cdot \mathbf{v}')$: Reduced Matrix Element
- ξ(v · v'): universal non-perturbative Form Faktor:
 Isgur Wise Funktion
- Normalization of ξ at v = v':

$$\xi(\mathbf{v}\cdot\mathbf{v}'=\mathbf{1})=\mathbf{1}$$

イロト 不得 とくほと くほとう

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Effective Theory

- The heavy mass limit can be formulated as an effective field theory
- Expansion in inverse powers of m_Q
- Define the static field h_v for the velocity v

$$h_{v}(x) = e^{im_{Q}v \cdot x} \frac{1}{2}(1 + \psi)b(x)$$
 $p_{Q} = m_{Q}v + k$

HQET Lagrangian

$$\mathcal{L} = ar{h}_{v}(ar{i}v \cdot D)h_{v} + rac{1}{2m_{Q}}ar{h}_{v}(ar{D})^{2}h_{v} + \cdots$$

Dim-4 Term: Feynman rules, loops, renormalization...

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Effective Theory

- The heavy mass limit can be formulated as an effective field theory
- Expansion in inverse powers of m_Q
- Define the static field h_v for the velocity v

$$h_{v}(x) = e^{im_{Q}v \cdot x} \frac{1}{2}(1 + \psi)b(x)$$
 $p_{Q} = m_{Q}v + k$

HQET Lagrangian

$$\mathcal{L} = ar{h}_v(m{i} v \cdot m{D})h_v + rac{1}{2m_Q}ar{h}_v(m{i}m{D})^2h_v + \cdots$$

Dim-4 Term: Feynman rules, loops, renormalization...

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Effective Theory

- The heavy mass limit can be formulated as an effective field theory
- Expansion in inverse powers of m_Q
- Define the static field h_v for the velocity v

$$h_{v}(x) = e^{im_{Q}v \cdot x} \frac{1}{2}(1 + \psi)b(x)$$
 $p_{Q} = m_{Q}v + k$

HQET Lagrangian

$$\mathcal{L} = ar{h}_{v}(ar{i}v \cdot D)h_{v} + rac{1}{2m_{Q}}ar{h}_{v}(ar{D})^{2}h_{v} + \cdots$$

Dim-4 Term: Feynman rules, loops, renormalization...

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Effective Theory

- The heavy mass limit can be formulated as an effective field theory
- Expansion in inverse powers of m_Q
- Define the static field h_v for the velocity v

$$h_{v}(x)=e^{im_{Q}v\cdot x}rac{1}{2}(1+v)b(x)$$
 $p_{Q}=m_{Q}v+k$

HQET Lagrangian

$$\mathcal{L} = ar{h}_v(m{i} v \cdot m{D})h_v + rac{1}{2m_Q}ar{h}_v(m{i}m{D})^2h_v + \cdots$$

Dim-4 Term: Feynman rules, loops, renormalization...

ヘロト 人間ト 人臣ト 人臣トー

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Effective Theory

- The heavy mass limit can be formulated as an effective field theory
- Expansion in inverse powers of m_Q
- Define the static field h_v for the velocity v

$$h_{v}(x) = e^{im_{Q}v \cdot x} \frac{1}{2}(1 + v)b(x)$$
 $p_{Q} = m_{Q}v + k$

HQET Lagrangian

$$\mathcal{L} = ar{h}_{v}(iv \cdot D)h_{v} + rac{1}{2m_{Q}}ar{h}_{v}(iD)^{2}h_{v} + \cdots$$

• Dim-4 Term: Feynman rules, loops, renormalization...

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Effective Theory

- The heavy mass limit can be formulated as an effective field theory
- Expansion in inverse powers of m_Q
- Define the static field h_v for the velocity v

$$h_{v}(x) = e^{im_{Q}v \cdot x} \frac{1}{2}(1 + v)b(x)$$
 $p_{Q} = m_{Q}v + k$

HQET Lagrangian

$$\mathcal{L} = ar{h}_{v}(iv \cdot D)h_{v} + rac{1}{2m_{Q}}ar{h}_{v}(iD)^{2}h_{v} + \cdots$$

• Dim-4 Term: Feynman rules, loops, renormalization...

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy to Heavy: $B \rightarrow D \ell \bar{\nu}_{\ell}$ and $B \rightarrow D^* \ell \bar{\nu}_{\ell}$

Kinematic variable for a heavy quark: Four Velovity v
Differential Rates

$$\begin{split} \frac{d\Gamma}{d\omega} (B \to D^* \ell \bar{\nu}_\ell) &= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (\omega^2 - 1)^{1/2} P(\omega) (\mathcal{F}(\omega))^2 \\ \frac{d\Gamma}{d\omega} (B \to D \ell \bar{\nu}_\ell) &= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (\omega^2 - 1)^{3/2} (\mathcal{G}(\omega))^2 \end{split}$$

- with $\omega = vv'$ and
- $P(\omega)$: Calculable Phase space factor
- \mathcal{F} and \mathcal{G} : Form Factors

イロン 不同 とくほ とくほ とう

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy to Heavy: $B \rightarrow D \ell \bar{\nu}_{\ell}$ and $B \rightarrow D^* \ell \bar{\nu}_{\ell}$

- Kinematic variable for a heavy quark: Four Velovity v
- Differential Rates

$$\begin{split} & \frac{d\Gamma}{d\omega} (B \to D^* \ell \bar{\nu}_\ell) \!\!=\!\! \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (\omega^2 - 1)^{1/2} P(\omega) (\mathcal{F}(\omega))^2 \\ & \frac{d\Gamma}{d\omega} (B \to D \ell \bar{\nu}_\ell) \!\!=\!\! \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (\omega^2 - 1)^{3/2} (\mathcal{G}(\omega))^2 \end{split}$$

- with $\omega = vv'$ and
- $P(\omega)$: Calculable Phase space factor
- \mathcal{F} and \mathcal{G} : Form Factors

ヘロト ヘアト ヘビト ヘビト

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy to Heavy: $B \rightarrow D \ell \bar{\nu}_{\ell}$ and $B \rightarrow D^* \ell \bar{\nu}_{\ell}$

- Kinematic variable for a heavy quark: Four Velovity v
- Differential Rates

$$\begin{split} &\frac{d\Gamma}{d\omega}(B \to D^* \ell \bar{\nu}_\ell) = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (\omega^2 - 1)^{1/2} P(\omega) (\mathcal{F}(\omega))^2 \\ &\frac{d\Gamma}{d\omega}(B \to D \ell \bar{\nu}_\ell) = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (\omega^2 - 1)^{3/2} (\mathcal{G}(\omega))^2 \end{split}$$

- with $\omega = vv'$ and
- $P(\omega)$: Calculable Phase space factor
- \mathcal{F} and \mathcal{G} : Form Factors

ヘロト 人間 ト ヘヨト ヘヨト

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- Normalization of the Form Factors is known at vv' = 1 from Heavy Quark Symmetries:
- Corrections can be calculated / estimated in HQET

$$\mathcal{F}(\omega) = \eta_{\text{QED}} \eta_A \left[1 + \delta_{1/\mu^2} + \cdots \right] + (\omega - 1)\rho^2 + \mathcal{O}((\omega - 1)^2)$$

$$\mathcal{G}(1) = \eta_{\text{QED}} \eta_V \left[1 + \mathcal{O} \left(\frac{m_B - m_D}{m_B + m_D} \right) \right]$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

• Parameter of HQS breaking: $\frac{1}{\mu} = \frac{1}{m_c} - \frac{1}{m_b}$ • $\eta_A = 0.960 \pm 0.007, \eta_V = 1.022 \pm 0.004, \delta_{1/\mu^2} = -(8 \pm 4)\%, \eta_{\text{QED}} = 1.007$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- Normalization of the Form Factors is known at vv' = 1 from Heavy Quark Symmetries:
- Corrections can be calculated / estimated in HQET

$$\mathcal{F}(\omega) = \eta_{\text{QED}} \eta_A \left[1 + \delta_{1/\mu^2} + \cdots \right] + (\omega - 1)\rho^2 + \mathcal{O}((\omega - 1)^2)$$

$$\mathcal{G}(1) = \eta_{\text{QED}} \eta_V \left[1 + \mathcal{O}\left(\frac{m_B - m_D}{m_B + m_D}\right) \right]$$

ヘロア 人間 アメヨア 人口 ア

• Parameter of HQS breaking: $\frac{1}{\mu} = \frac{1}{m_c} - \frac{1}{m_b}$ • $\eta_A = 0.960 \pm 0.007, \, \eta_V = 1.022 \pm 0.004, \, \delta_{1/\mu^2} = -(8 \pm 4)\%, \, \eta_{\text{QED}} = 1.007$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- Normalization of the Form Factors is known at vv' = 1 from Heavy Quark Symmetries:
- Corrections can be calculated / estimated in HQET

$$\mathcal{F}(\omega) = \eta_{\text{QED}} \eta_A \left[1 + \delta_{1/\mu^2} + \cdots \right] + (\omega - 1)\rho^2 + \mathcal{O}((\omega - 1)^2)$$

$$\mathcal{G}(1) = \eta_{\text{QED}} \eta_V \left[1 + \mathcal{O}\left(\frac{m_B - m_D}{m_B + m_D}\right) \right]$$

・ロット (雪) () () () ()

• Parameter of HQS breaking: $\frac{1}{\mu} = \frac{1}{m_c} - \frac{1}{m_b}$ • $\eta_A = 0.960 \pm 0.007, \eta_V = 1.022 \pm 0.004, \delta_{1/\mu^2} = -(8 \pm 4)\%, \eta_{\text{QED}} = 1.007$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Heavy Quark Symmetries

- Normalization of the Form Factors is known at vv' = 1 from Heavy Quark Symmetries:
- Corrections can be calculated / estimated in HQET

$$\mathcal{F}(\omega) = \eta_{\text{QED}} \eta_A \left[1 + \delta_{1/\mu^2} + \cdots \right] + (\omega - 1)\rho^2 + \mathcal{O}((\omega - 1)^2)$$

$$\mathcal{G}(1) = \eta_{\text{QED}} \eta_V \left[1 + \mathcal{O}\left(\frac{m_B - m_D}{m_B + m_D}\right) \right]$$

ヘロト ヘワト ヘビト ヘビト

• Parameter of HQS breaking: $\frac{1}{\mu} = \frac{1}{m_c} - \frac{1}{m_b}$ • $\eta_A = 0.960 \pm 0.007$, $\eta_V = 1.022 \pm 0.004$, $\delta_{1/\mu^2} = -(8 \pm 4)\%$, $\eta_{\text{QED}} = 1.007$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Form Factors from the Lattice

- Unquenched Calculations become available!
- Heavy Mass Limit is not used
- Lattice Calculations of the deviation from unity

$$\mathcal{F}(1) = 0.91^{+0.03}_{-0.04}$$

 $G(1) = 1.074 \pm 0.018 \pm 0.016$

A. Kronfeld et al.

くロト (過) (目) (日)

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Form Factors from the Lattice

- Unquenched Calculations become available!
- Heavy Mass Limit is not used
- Lattice Calculations of the deviation from unity

$$\mathcal{F}(1) = 0.91^{+0.03}_{-0.04}$$

 $G(1) = 1.074 \pm 0.018 \pm 0.016$

A. Kronfeld et al.

ヘロト ヘアト ヘビト ヘビト

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

Form Factors from the Lattice

- Unquenched Calculations become available!
- Heavy Mass Limit is not used
- Lattice Calculations of the deviation from unity

$$\mathcal{F}(1) = 0.91^{+0.03}_{-0.04}$$

 $\mathcal{G}(1) = 1.074 \pm 0.018 \pm 0.016$

A. Kronfeld et al.

ヘロト ヘ戸ト ヘヨト ヘヨト

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

$B ightarrow D^* \ell ar{ u}_\ell$

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

$B \rightarrow D \ell \bar{ u}_{\ell}$

Thomas Mannel, University of Siegen Theoretical Tools for Heavy Quark Physics

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

$V_{\textit{cb,excl}} = (39.4 \pm 0.87^{+1.56}_{-1.24}) imes 10^{-3}$

Bob Kowalewski @ ICHEP06

Possible Improvements:

More precise Lattice calculations

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Heavy Quark Limit Heavy Quark Symmetries Heavy Quark Effective Theory

$V_{\textit{cb,excl}} = (39.4 \pm 0.87^{+1.56}_{-1.24}) imes 10^{-3}$

Bob Kowalewski @ ICHEP06

• Possible Improvements:

More precise Lattice calculations

ヘロン ヘアン ヘビン ヘビン

æ

Operator Product Expansion Twist Expansion

Inclusive Decays: Using OPE

Operator Product Expansion = Heavy Quark Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4} x \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4} x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4} x \, e^{-im_{b} v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

Operator Product Expansion Twist Expansion

Inclusive Decays: Using OPE

Operator Product Expansion = Heavy Quark Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4} x \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4} x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4} x \, e^{-im_{b} v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

Operator Product Expansion Twist Expansion

Inclusive Decays: Using OPE

Operator Product Expansion = Heavy Quark Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4} x \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \mathrm{Im} \int d^{4} x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \mathrm{Im} \int d^{4} x \, e^{-im_{b} v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

Operator Product Expansion Twist Expansion

Inclusive Decays: Using OPE

Operator Product Expansion = Heavy Quark Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4} x \, \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \mathrm{Im} \int d^{4} x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \mathrm{Im} \int d^{4} x \, e^{-im_{b} v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

Operator Product Expansion Twist Expansion

Inclusive Decays: Using OPE

Operator Product Expansion = Heavy Quark Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4}x \, \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \mathrm{Im} \int d^{4}x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \mathrm{Im} \int d^{4}x \, e^{-im_{b}v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

Operator Product Expansion Twist Expansion

Inclusive Decays: Using OPE

Operator Product Expansion = Heavy Quark Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4}x \, \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4}x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4}x \, e^{-im_{b}v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

Operator Product Expansion Twist Expansion

Inclusive Decays: Using OPE

Operator Product Expansion = Heavy Quark Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4}x \, \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4}x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4}x \, e^{-im_{b}v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

Operator Product Expansion Twist Expansion

• Perform an OPE: *m_b* is much larger than any scale appearing in the matrix element

$$\int d^{4}x e^{im_{b}vx} T\{\widetilde{\mathcal{H}}_{eff}(x)\widetilde{\mathcal{H}}_{eff}^{\dagger}(0)\}$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{2m_{Q}}\right)^{n} C_{n+3}(\mu) \mathcal{O}_{n+3}$$

 \rightarrow The rate for $B \rightarrow X_c \ell \bar{\nu}_\ell$ can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_Q}\Gamma_1 + \frac{1}{m_Q^2}\Gamma_2 + \frac{1}{m_Q^3}\Gamma_3 + \cdots$$

• The Γ_i are power series in $\alpha_s(m_Q)$: \rightarrow Perturbaton theory!

イロン イボン イヨン イヨン

Operator Product Expansion Twist Expansion

• Perform an OPE: *m_b* is much larger than any scale appearing in the matrix element

$$\int d^4 x e^{im_b v x} T\{\widetilde{\mathcal{H}}_{eff}(x)\widetilde{\mathcal{H}}_{eff}^{\dagger}(0)\} \ = \sum_{n=0}^{\infty} \left(rac{1}{2m_Q}
ight)^n C_{n+3}(\mu) \mathcal{O}_{n+3}$$

 \rightarrow The rate for $B \rightarrow X_c \ell \bar{\nu}_\ell$ can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_Q}\Gamma_1 + \frac{1}{m_Q^2}\Gamma_2 + \frac{1}{m_Q^3}\Gamma_3 + \cdots$$

• The Γ_i are power series in $\alpha_s(m_Q)$: \rightarrow Perturbaton theory!

イロト イポト イヨト イヨト

Operator Product Expansion Twist Expansion

• Perform an OPE: *m_b* is much larger than any scale appearing in the matrix element

$$\int d^4 x e^{im_b v x} T\{\widetilde{\mathcal{H}}_{eff}(x)\widetilde{\mathcal{H}}_{eff}^{\dagger}(0)\} \ = \sum_{n=0}^{\infty} \left(rac{1}{2m_Q}
ight)^n C_{n+3}(\mu) \mathcal{O}_{n+3}(\mu)$$

 \rightarrow The rate for $B \rightarrow X_c \ell \bar{\nu}_\ell$ can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_Q}\Gamma_1 + \frac{1}{m_Q^2}\Gamma_2 + \frac{1}{m_Q^3}\Gamma_3 + \cdots$$

• The Γ_i are power series in $\alpha_s(m_Q)$: \rightarrow Perturbaton theory!

イロト イポト イヨト イヨ

Operator Product Expansion Twist Expansion

- Γ₀ is the decay of a free quark ("Parton Model")
- Γ₁ vanishes due to Heavy Quark Symmetries
 Γ₂ is expressed in terms of two parameters

$$2M_{H}\mu_{\pi}^{2} = -\langle H(v)|\bar{Q}_{v}(iD)^{2}Q_{v}|H(v)\rangle$$

$$2M_{H}\mu_{G}^{2} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(iD^{\nu})Q_{v}|H(v)\rangle$$

μ_π: Kinetic energy and μ_G: Chromomagnetic moment
Γ₃ two more parameters

 $2M_{H}\rho_{D}^{3} = -\langle H(v)|\bar{Q}_{v}(iD_{\mu})(ivD)(iD^{\mu})Q_{v}|H(v)\rangle$ $2M_{H}\rho_{LS}^{3} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(ivD)(iD^{\nu})Q_{v}|H(v)\rangle$

 ρ_D : Darwin Term and ρ_{LS} : Chromomagnetic moment

★ 注 → ★ 注 → 二 注

Operator Product Expansion Twist Expansion

- Γ₀ is the decay of a free quark ("Parton Model")
- Γ₁ vanishes due to Heavy Quark Symmetries
- Γ₂ is expressed in terms of two parameters

$$2M_{H}\mu_{\pi}^{2} = -\langle H(v)|\bar{Q}_{v}(iD)^{2}Q_{v}|H(v)\rangle$$

$$2M_{H}\mu_{G}^{2} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(iD^{\nu})Q_{v}|H(v)\rangle$$

μ_π: Kinetic energy and μ_G: Chromomagnetic moment
Γ₃ two more parameters

 $2M_{H}\rho_{D}^{3} = -\langle H(v)|\bar{Q}_{v}(iD_{\mu})(ivD)(iD^{\mu})Q_{v}|H(v)\rangle$ $2M_{H}\rho_{LS}^{3} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(ivD)(iD^{\nu})Q_{v}|H(v)\rangle$

 ρ_D : Darwin Term and ρ_{LS} : Chromomagnetic moment

★ E ► ★ E ► E
Operator Product Expansion Twist Expansion

- Γ₀ is the decay of a free quark ("Parton Model")
- Γ₁ vanishes due to Heavy Quark Symmetries
- Γ_2 is expressed in terms of two parameters

$$2M_{H}\mu_{\pi}^{2} = -\langle H(v) | \bar{Q}_{v}(iD)^{2}Q_{v} | H(v) \rangle$$

$$2M_{H}\mu_{G}^{2} = \langle H(v) | \bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(iD^{\nu})Q_{v} | H(v) \rangle$$

μ_π: Kinetic energy and μ_G: Chromomagnetic moment
Γ₃ two more parameters

 $2M_{H}\rho_{D}^{3} = -\langle H(v)|\bar{Q}_{v}(iD_{\mu})(ivD)(iD^{\mu})Q_{v}|H(v)\rangle$ $2M_{H}\rho_{LS}^{3} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(ivD)(iD^{\nu})Q_{v}|H(v)\rangle$

 ρ_D : Darwin Term and ρ_{LS} : Chromomagnetic moment

Operator Product Expansion Twist Expansion

- Γ₀ is the decay of a free quark ("Parton Model")
- Γ₁ vanishes due to Heavy Quark Symmetries
- Γ₂ is expressed in terms of two parameters

$$2M_{H}\mu_{\pi}^{2} = -\langle H(v) | \bar{Q}_{v}(iD)^{2}Q_{v} | H(v) \rangle$$

$$2M_{H}\mu_{G}^{2} = \langle H(v) | \bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(iD^{\nu})Q_{v} | H(v) \rangle$$

 μ_{π} : Kinetic energy and μ_{G} : Chromomagnetic moment • Γ_{3} two more parameters

$$2M_{H}\rho_{D}^{3} = -\langle H(v)|\bar{Q}_{v}(iD_{\mu})(ivD)(iD^{\mu})Q_{v}|H(v)\rangle$$

$$2M_{H}\rho_{LS}^{3} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(ivD)(iD^{\nu})Q_{v}|H(v)\rangle$$

 ρ_D : Darwin Term and ρ_{LS} : Chromomagnetic moment

Operator Product Expansion Twist Expansion

New: $1/m_b^4$ Contribution Γ_4 (Dassinger, Turczyk, M.)

• Five new parameters:

 $\begin{array}{ll} \langle \vec{E}^2 \rangle : & \mbox{Chromoelectric Field squared} \\ \langle \vec{B}^2 \rangle : & \mbox{Chromomagnetic Field squared} \\ \langle (\vec{p}^2)^2 \rangle : & \mbox{Fourth power of the residual } b \mbox{ quark momentum} \\ \langle (\vec{p}^2)(\vec{\sigma} \cdot \vec{B}) \rangle : & \mbox{Mixed Chromomag. Mom. and res. Momentum} \\ \langle (\vec{p} \cdot \vec{B})(\vec{\sigma} \cdot \vec{p}) \rangle : & \mbox{Mixed Chromomag. field and res. helicity} \end{array}$

Some of these can be estimated in naive factorization

・ロット (雪) () () () ()

Operator Product Expansion Twist Expansion

New: $1/m_b^4$ Contribution Γ_4 (Dassinger, Turczyk, M.)

• Five new parameters:

 $\begin{array}{ll} \langle \vec{E}^2 \rangle : & \text{Chromoelectric Field squared} \\ \langle \vec{B}^2 \rangle : & \text{Chromomagnetic Field squared} \\ \langle (\vec{p}^2)^2 \rangle : & \text{Fourth power of the residual } b \text{ quark momentum} \\ \langle (\vec{p}^2)(\vec{\sigma} \cdot \vec{B}) \rangle : & \text{Mixed Chromomag. Mom. and res. Momentum} \\ \langle (\vec{p} \cdot \vec{B})(\vec{\sigma} \cdot \vec{p}) \rangle : & \text{Mixed Chromomag. field and res. helicity} \end{array}$

Some of these can be estimated in naive factorization

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Operator Product Expansion Twist Expansion

New: $1/m_b^4$ Contribution Γ_4 (Dassinger, Turczyk, M.)

• Five new parameters:

- $\langle \vec{E}^2 \rangle$: Chromoelectric Field squared
- $\langle \vec{B}^2 \rangle$: Chromomagnetic Field squared
- $\langle (\vec{p}^2)^2 \rangle$: Fourth power of the residual *b* quark momentum
- $\langle (\vec{p}^2)(\vec{\sigma} \cdot \vec{B}) \rangle$: Mixed Chromomag. Mom. and res. Momentu

イロト イポト イヨト イヨト 一日

 $\langle (\vec{\rho} \cdot \vec{B})(\vec{\sigma} \cdot \vec{\rho}) \rangle$: Mixed Chromomag. field and res. helicity

Some of these can be estimated in naive factorization

Operator Product Expansion Twist Expansion

New: $1/m_b^4$ Contribution Γ_4 (Dassinger, Turczyk, M.)

• Five new parameters:

- $\langle \vec{E}^2 \rangle$: Chromoelectric Field squared
- $\langle \vec{B}^2 \rangle$: Chromomagnetic Field squared
- $\langle (\vec{p}^2)^2 \rangle$: Fourth power of the residual *b* quark momentum
- $\langle (\vec{p}^2)(\vec{\sigma}\cdot\vec{B})\rangle$: Mixed Chromomag. Mom. and res. Momentu

イロト イポト イヨト イヨト 一日

 $\langle (\vec{p} \cdot \vec{B})(\vec{\sigma} \cdot \vec{p}) \rangle$: Mixed Chromomag. field and res. helicity

Some of these can be estimated in naive factorization

Operator Product Expansion Twist Expansion

Heavy to Heavy: $B \rightarrow X_c \ell \bar{\nu}_\ell$

Determine the HQE parameters from

- Charged lepton energy spectrum
- Hadronic invariant mass spectrum
- From the theoretical side: Calculation of moments of the spectra

$$\langle M_X^n \rangle = \frac{1}{\Gamma} \int dM_X M_X^n \int_{E_{\text{cut}}} dE_\ell \frac{d^2 \Gamma}{dM_x dE_\ell} \langle E_\ell^n \rangle = \frac{1}{\Gamma} \int dM_X \int_{E_{\text{cut}}} dE_\ell \frac{E_\ell^n}{dM_x dE_\ell}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Operator Product Expansion Twist Expansion

Heavy to Heavy: $B \rightarrow X_c \ell \bar{\nu}_\ell$

- Determine the HQE parameters from
 - Charged lepton energy spectrum
 - Hadronic invariant mass spectrum

• From the theoretical side: Calculation of moments of the spectra

$$\langle M_X^n \rangle = \frac{1}{\Gamma} \int dM_X M_X^n \int_{E_{\text{cut}}} dE_\ell \frac{d^2 \Gamma}{dM_x dE_\ell} \langle E_\ell^n \rangle = \frac{1}{\Gamma} \int dM_X \int_{E_{\text{cut}}} dE_\ell \frac{E_\ell^n}{dM_x dE_\ell}$$

くロト (過) (目) (日)

Operator Product Expansion Twist Expansion

Heavy to Heavy: $B \rightarrow X_c \ell \bar{\nu}_\ell$

- Determine the HQE parameters from
 - Charged lepton energy spectrum
 - Hadronic invariant mass spectrum
- From the theoretical side: Calculation of moments of the spectra

$$\langle M_X^n \rangle = \frac{1}{\Gamma} \int dM_X \, M_X^n \int_{E_{\text{cut}}} dE_\ell \, \frac{d^2 \Gamma}{dM_x \, dE_\ell} \langle E_\ell^n \rangle = \frac{1}{\Gamma} \int dM_X \, \int_{E_{\text{cut}}} dE_\ell \, \frac{E_\ell^n}{dM_x \, dE_\ell}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Operator Product Expansion Twist Expansion

Hadronic Invariant Mass Moments (Buchmüller, Flächer)

Thomas Mannel, University of Siegen

Theoretical Tools for Heavy Quark Physics

Operator Product Expansion

Lepton Energy Moments I (Buchmüller, Flächer)

Thomas Mannel, University of Siegen

Theoretical Tools for Heavy Quark Physics

Operator Product Expansion Twist Expansion

Lepton Energy Moments II (Buchmüller, Flächer)

Operator Product Expansion Twist Expansion

$$V_{\textit{cb,incl}} = (41.96 \pm 0.23_{\textit{exp}} \pm 0.35_{\textit{HQE}} \pm 0.59_{\Gamma_{sl}}) imes 10^{-3}$$

O. Buchmüller, HQL2006

Thomas Mannel, University of Siegen Theoretical Tools for Heavy Quark Physics

Operator Product Expansion Twist Expansion

Twist Expansion

Calculation of spectra within the OPE

★ E → < E →</p>

Operator Product Expansion Twist Expansion

• In the massless case this becomes for $B \to X_u \ell \bar{\nu}_\ell$

$$\frac{d\Gamma}{dy} \stackrel{y \to 1}{=} \frac{G_F^2 |V_{ub}^2| m_b^5}{96\pi^3} \\ \left[\Theta(1-y) + \frac{\mu_\pi^2 - \mu_G^2}{6m_b^2} \delta(1-y) + \frac{\mu_\pi^2}{6m_b^2} \delta'(1-y) + \cdots \right]$$

• Likewise for $B \to X_s \gamma$ ($x = \frac{2E_\gamma}{m_b}$)

$$\frac{d\Gamma}{dx} = \frac{G_F^2 \alpha m_b^5}{32\pi^4} |V_{ts}V_{tb^*}|^2 |C_7|^2 \\ \left(\delta(1-x) - \frac{\mu_\pi^2 - \mu_G^2}{2m_b^2} \delta'(1-x) + \frac{\mu_\pi^2}{6m_b^2} \delta''(1-x) + \cdots\right)$$

イロト 不得 トイヨト イヨト 二日 二

Operator Product Expansion Twist Expansion

• In the massless case this becomes for $B \to X_u \ell \bar{\nu}_\ell$

$$\begin{array}{ll} \frac{d\Gamma}{dy} & \stackrel{y \to 1}{=} & \frac{G_F^2 |V_{ub}^2 | m_b^5}{96\pi^3} \\ & \left[\Theta(1-y) + \frac{\mu_\pi^2 - \mu_G^2}{6m_b^2} \delta(1-y) + \frac{\mu_\pi^2}{6m_b^2} \delta'(1-y) + \cdots \right] \end{array}$$

• Likewise for
$$B o X_s \gamma$$
 ($x = rac{2E_\gamma}{m_b}$)

$$\begin{aligned} \frac{d\Gamma}{dx} &= \frac{G_F^2 \alpha m_b^5}{32\pi^4} |V_{ts}V_{tb^*}|^2 |C_7|^2 \\ \left(\delta(1-x) - \frac{\mu_\pi^2 - \mu_G^2}{2m_b^2} \delta'(1-x) + \frac{\mu_\pi^2}{6m_b^2} \delta''(1-x) + \cdots\right) \end{aligned}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Operator Product Expansion Twist Expansion

Shape- or Light-Cone Distribution Functions

 Resummation into a shape function or light cone distribution function (Bigi, Shifman, Uraltsev, Neubert, M., ...)

$$2M_{B}f(\omega) = \langle B(v)|\bar{b}_{v}\delta(\omega + i(n \cdot D))|B(v)\rangle$$

such that

$$\frac{d\Gamma}{dy} = \frac{G_F^2 |V_{ub}^2| m_b^5}{96\pi^3} \int d\omega \,\Theta(m_b(1-y)-\omega) f(\omega)$$

and

$$\frac{d\Gamma}{dx} = \frac{G_F^2 \alpha m_b^5}{32\pi^4} |V_{ts}V_{tb}^*|^2 |C_7|^2 f(m_b[1-x])$$

ヘロン ヘアン ヘビン ヘビン

ъ

Operator Product Expansion Twist Expansion

Shape- or Light-Cone Distribution Functions

 Resummation into a shape function or light cone distribution function (Bigi, Shifman, Uraltsev, Neubert, M., ...)

$$2M_{B}f(\omega) = \langle B(v)|\bar{b}_{v}\delta(\omega+i(n\cdot D))|B(v)\rangle$$

such that

$$\frac{d\Gamma}{dy} = \frac{G_F^2 |V_{ub}^2| m_b^5}{96\pi^3} \int d\omega \,\Theta(m_b(1-y)-\omega) f(\omega)$$

and

$$\frac{d\Gamma}{dx} = \frac{G_F^2 \alpha m_b^5}{32\pi^4} |V_{ts}V_{tb}^*|^2 |C_7|^2 f(m_b[1-x])$$

くロト (過) (目) (日)

Operator Product Expansion Twist Expansion

• General Structure:

$$\frac{d\Gamma}{dx} = \Gamma_0 \left[\sum_i a_i \left(\frac{1}{m_b} \right)^i \delta^{(i)}(1-x) + \mathcal{O}((1/m_b)^{i+1} \delta^{(i)}(1-x)) \right]$$

• Coefficients *a_i* are the moments of the spectrum:

• Moment Expansion of *f* in terms of HQE parameters:

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{18m_b^3}\delta'''(\omega) + \cdots$$

• Twist Expansion in complete analogy to deep inelastic scattering

イロト イポト イヨト イヨト

Operator Product Expansion Twist Expansion

• General Structure:

$$\frac{d\Gamma}{dx} = \Gamma_0 \left[\sum_i a_i \left(\frac{1}{m_b} \right)^i \delta^{(i)}(1-x) + \mathcal{O}((1/m_b)^{i+1} \delta^{(i)}(1-x)) \right]$$

- Coefficients a_i are the moments of the spectrum:
- Moment Expansion of f in terms of HQE parameters:

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{18m_b^3}\delta'''(\omega) + \cdots$$

• Twist Expansion in complete analogy to deep inelastic scattering

イロト イポト イヨト イヨト

Operator Product Expansion Twist Expansion

• General Structure:

$$\frac{d\Gamma}{dx} = \Gamma_0 \left[\sum_i a_i \left(\frac{1}{m_b} \right)^i \delta^{(i)}(1-x) + \mathcal{O}((1/m_b)^{i+1} \delta^{(i)}(1-x)) \right]$$

- Coefficients *a_i* are the moments of the spectrum:
- Moment Expansion of *f* in terms of HQE parameters:

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{18m_b^3}\delta'''(\omega) + \cdots$$

 Twist Expansion in complete analogy to deep inelastic scattering

イロト イポト イヨト イヨト

Operator Product Expansion Twist Expansion

• General Structure:

$$\frac{d\Gamma}{dx} = \Gamma_0 \left[\sum_i a_i \left(\frac{1}{m_b} \right)^i \delta^{(i)}(1-x) + \mathcal{O}((1/m_b)^{i+1} \delta^{(i)}(1-x)) \right]$$

- Coefficients *a_i* are the moments of the spectrum:
- Moment Expansion of *f* in terms of HQE parameters:

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{18m_b^3}\delta'''(\omega) + \cdots$$

• Twist Expansion in complete analogy to deep inelastic scattering

イロト 不得 とくほ とくほとう

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Recent Developments: Soft Collinear Effective Theory

- Problem: How to calculate corrections to the shape functions?
- More than two scales involved!
- Inclusive Rates in the Endpoint become (Korchemski, Sterman)

 $d\Gamma = H * J * S$

with * = Convolution

・ロト ・ ア・ ・ ヨト ・ ヨト

- *H*: Hard Coefficient Function, Scales $\mathcal{O}(m_b)$
- J: Jet Function, Scales $\mathcal{O}(\sqrt{m_b \Lambda_{\text{QCD}}})$
- S: Shape function, Scales $\mathcal{O}(\Lambda_{QCD})$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Recent Developments: Soft Collinear Effective Theory

- Problem: How to calculate corrections to the shape functions?
- More than two scales involved!
- Inclusive Rates in the Endpoint become (Korchemski, Sterman)

 $d\Gamma = H * J * S$

with * = Convolution

イロト 不得 とくほ とくほ とう

- *H*: Hard Coefficient Function, Scales $\mathcal{O}(m_b)$
- J: Jet Function, Scales $\mathcal{O}(\sqrt{m_b \Lambda_{\text{QCD}}})$
- S: Shape function, Scales $\mathcal{O}(\Lambda_{QCD})$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Recent Developments: Soft Collinear Effective Theory

- Problem: How to calculate corrections to the shape functions?
- More than two scales involved!
- Inclusive Rates in the Endpoint become (Korchemski, Sterman)

 $d\Gamma = H * J * S$

with * = Convolution

ヘロト 人間 ト ヘヨト ヘヨト

- *H*: Hard Coefficient Function, Scales $\mathcal{O}(m_b)$
- J: Jet Function, Scales $\mathcal{O}(\sqrt{m_b \Lambda_{\text{QCD}}})$
- S: Shape function, Scales $\mathcal{O}(\Lambda_{QCD})$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Recent Developments: Soft Collinear Effective Theory

- Problem: How to calculate corrections to the shape functions?
- More than two scales involved!
- Inclusive Rates in the Endpoint become (Korchemski, Sterman)

 $d\Gamma = H * J * S$

with * = Convolution

ヘロン ヘアン ヘビン ヘビン

- *H*: Hard Coefficient Function, Scales $\mathcal{O}(m_b)$
- J: Jet Function, Scales $\mathcal{O}(\sqrt{m_b \Lambda_{\text{QCD}}})$
- S: Shape function, Scales $\mathcal{O}(\Lambda_{QCD})$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Recent Developments: Soft Collinear Effective Theory

- Problem: How to calculate corrections to the shape functions?
- More than two scales involved!
- Inclusive Rates in the Endpoint become (Korchemski, Sterman)

 $d\Gamma = H * J * S$

with * = Convolution

ヘロン ヘアン ヘビン ヘビン

- *H*: Hard Coefficient Function, Scales $\mathcal{O}(m_b)$
- J: Jet Function, Scales $\mathcal{O}(\sqrt{m_b \Lambda_{\text{QCD}}})$
- S: Shape function, Scales $\mathcal{O}(\Lambda_{QCD})$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Recent Developments: Soft Collinear Effective Theory

- Problem: How to calculate corrections to the shape functions?
- More than two scales involved!
- Inclusive Rates in the Endpoint become (Korchemski, Sterman)

 $d\Gamma = H * J * S$

with * = Convolution

ヘロト ヘアト ヘビト ヘビト

- *H*: Hard Coefficient Function, Scales $\mathcal{O}(m_b)$
- J: Jet Function, Scales $\mathcal{O}(\sqrt{m_b \Lambda_{\text{QCD}}})$
- S: Shape function, Scales $\mathcal{O}(\Lambda_{QCD})$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Recent Developments: Soft Collinear Effective Theory

- Problem: How to calculate corrections to the shape functions?
- More than two scales involved!
- Inclusive Rates in the Endpoint become (Korchemski, Sterman)

 $d\Gamma = H * J * S$

with * = Convolution

ヘロト ヘアト ヘビト ヘビト

- *H*: Hard Coefficient Function, Scales $\mathcal{O}(m_b)$
- J: Jet Function, Scales $\mathcal{O}(\sqrt{m_b \Lambda_{\text{QCD}}})$
- S: Shape function, Scales $\mathcal{O}(\Lambda_{QCD})$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

イロト 不得 とくほと くほう

Basics of Soft Collinear Effective Theory

• Heavy-to-light decays:

Kinematic Situations with energetic light quarks hadronizing into jets or energetic light mesons p_{fin} : Momentum of a light final state meson

$$p_{ ext{fin}}^2 \sim \mathcal{O}(\Lambda_{ ext{QCD}} m_b) \quad v \cdot p_{ ext{fin}} \sim \mathcal{O}(m_b)$$

• Use light-cone vectors $n^2 = \bar{n}^2 = 0$, $n \cdot \bar{n} = 2$:

$$p_{\mathrm{fin}} = rac{1}{2}(n \cdot p_{\mathrm{fin}})ar{n}$$
 and $v = rac{1}{2}(n + ar{n})$

$$p_{\text{light}} = \frac{1}{2}[(n \cdot p_{\text{light}})\bar{n} + (\bar{n} \cdot p_{\text{light}})n] + p_{\text{light}}^{\perp}$$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

・ロット (雪) () () () ()

Basics of Soft Collinear Effective Theory

• Heavy-to-light decays:

Kinematic Situations with energetic light quarks hadronizing into jets or energetic light mesons p_{fin} : Momentum of a light final state meson

 $p_{\text{fin}}^2 \sim \mathcal{O}(\Lambda_{\text{QCD}} m_b) \quad v \cdot p_{\text{fin}} \sim \mathcal{O}(m_b)$ • Use light-cone vectors $n^2 = \bar{n}^2 = 0, n \cdot \bar{n} = 2$: $p_{\text{fin}} = \frac{1}{2} (n \cdot p_{\text{fin}}) \bar{n} \quad \text{and} \quad v = \frac{1}{2} (n + \bar{n})$

$$p_{\text{light}} = \frac{1}{2}[(n \cdot p_{\text{light}})\bar{n} + (\bar{n} \cdot p_{\text{light}})n] + p_{\text{light}}^{\perp}$$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

・ 同 ト ・ ヨ ト ・ ヨ ト

Basics of Soft Collinear Effective Theory

• Heavy-to-light decays:

Kinematic Situations with energetic light quarks hadronizing into jets or energetic light mesons p_{fin} : Momentum of a light final state meson

$$p_{ ext{fin}}^2 \sim \mathcal{O}(\Lambda_{ ext{QCD}} m_b) \quad v \cdot p_{ ext{fin}} \sim \mathcal{O}(m_b)$$

• Use light-cone vectors $n^2 = \bar{n}^2 = 0$, $n \cdot \bar{n} = 2$:

$$p_{ ext{fin}} = rac{1}{2}(n \cdot p_{ ext{fin}})ar{n}$$
 and $v = rac{1}{2}(n + ar{n})$

$$p_{\text{light}} = \frac{1}{2}[(n \cdot p_{\text{light}})\bar{n} + (\bar{n} \cdot p_{\text{light}})n] + p_{\text{light}}^{\perp}$$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

(本間) (本語) (本語)

Basics of Soft Collinear Effective Theory

• Heavy-to-light decays:

Kinematic Situations with energetic light quarks hadronizing into jets or energetic light mesons p_{fin} : Momentum of a light final state meson

$$p_{ ext{fin}}^2 \sim \mathcal{O}(\Lambda_{ ext{QCD}} m_b) \quad v \cdot p_{ ext{fin}} \sim \mathcal{O}(m_b)$$

• Use light-cone vectors $n^2 = \bar{n}^2 = 0$, $n \cdot \bar{n} = 2$:

$$p_{ ext{fin}} = rac{1}{2}(n \cdot p_{ ext{fin}})ar{n} \quad ext{and} \quad v = rac{1}{2}(n+ar{n})$$

$$oldsymbol{
ho}_{ ext{light}} = rac{1}{2} [(n \cdot oldsymbol{
ho}_{ ext{light}}) ar{n} + (ar{n} \cdot oldsymbol{
ho}_{ ext{light}}) n] + oldsymbol{
ho}_{ ext{light}}^{ot})$$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

・ロット (雪) () () () ()

SCET Power Counting

- Define the parameter $\lambda = \sqrt{\Lambda_{\rm QCD}/m_b}$
- The light quark invariant mass (or virtuality) is assumed to be

$$p_{ ext{light}}^2 = (n \cdot p_{ ext{light}})(ar{n} \cdot p_{ ext{light}}) + (p_{ ext{light}}^{\perp})^2 \sim \lambda^2 m_b^2$$

• The components of the quark momentum have to scale as

$$(n \cdot p_{ ext{light}}) \sim m_b \quad (ar{n} \cdot p_{ ext{light}}) \sim \lambda^2 m_b \qquad p_{ ext{light}}^\perp \sim \lambda m_b$$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

くロト (過) (目) (日)

SCET Power Counting

- Define the parameter $\lambda = \sqrt{\Lambda_{\rm QCD}/m_b}$
- The light quark invariant mass (or virtuality) is assumed to be

$$p_{ ext{light}}^2 = (n \cdot p_{ ext{light}})(ar{n} \cdot p_{ ext{light}}) + (p_{ ext{light}}^{\perp})^2 \sim \lambda^2 m_b^2$$

• The components of the quark momentum have to scale as

$$(n \cdot p_{ ext{light}}) \sim m_b \quad (ar{n} \cdot p_{ ext{light}}) \sim \lambda^2 m_b \qquad p_{ ext{light}}^\perp \sim \lambda m_b$$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

ヘロト 人間 ト ヘヨト ヘヨト

SCET Power Counting

- Define the parameter $\lambda = \sqrt{\Lambda_{\rm QCD}/m_b}$
- The light quark invariant mass (or virtuality) is assumed to be

$$oldsymbol{
ho}_{ ext{light}}^2 = (oldsymbol{n} \cdot oldsymbol{
ho}_{ ext{light}}) (ar{oldsymbol{n}} \cdot oldsymbol{
ho}_{ ext{light}}) + (oldsymbol{
ho}_{ ext{light}}^{ot})^2 \sim \lambda^2 m_b^2$$

• The components of the quark momentum have to scale as

$$(n \cdot p_{ ext{light}}) \sim m_b \quad (ar{n} \cdot p_{ ext{light}}) \sim \lambda^2 m_b \qquad p_{ ext{light}}^\perp \sim \lambda m_b$$
Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

くロト (過) (目) (日)

SCET Power Counting

- Define the parameter $\lambda = \sqrt{\Lambda_{\rm QCD}/m_b}$
- The light quark invariant mass (or virtuality) is assumed to be

$$oldsymbol{
ho}_{ ext{light}}^2 = (oldsymbol{n} \cdot oldsymbol{
ho}_{ ext{light}})(ar{oldsymbol{n}} \cdot oldsymbol{
ho}_{ ext{light}}) + (oldsymbol{
ho}_{ ext{light}}^{\perp})^2 \sim \lambda^2 m_b^2$$

• The components of the quark momentum have to scale as

$$(n \cdot p_{ ext{light}}) \sim m_b \quad (ar{n} \cdot p_{ ext{light}}) \sim \lambda^2 m_b \qquad p_{ ext{light}}^\perp \sim \lambda m_b$$

Soft Collinear Effective Theory

ヘロト ヘ戸ト ヘヨト ヘヨト

A brief look at SCET (Bauer, Stewart, Pirjol, Beneke, Feldmann ...)

- QCD quark field Q is split into a collinear component
- The Lagrangian $\mathcal{L}_{OCD} = \bar{q}(i\mathcal{D})q$ is rewritten in terms

$$\mathcal{L} = \frac{1}{2}\bar{\xi}\not\!/_+(in_-D)\xi - \bar{\xi}i\not\!/_\perp\frac{1}{in_+D + i\epsilon}\frac{\not\!/_+}{2}i\not\!/_\perp\xi$$

• Expansion according to the above power couning:

$$in_+D = in_+\partial + gn_+A_c + gn_+A_{us} = in_+D_c + gn_+A_{us}$$

Leading L becomes non-local: Wilson lines

Soft Collinear Effective Theory

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

A brief look at SCET (Bauer, Stewart, Pirjol, Beneke, Feldmann ...)

- QCD quark field Q is split into a collinear component ξ and a soft one with $\xi = \frac{1}{4} \hbar m_{+} \eta_{+} q$
- The Lagrangian $\mathcal{L}_{OCD} = \bar{q}(i\mathcal{D})q$ is rewritten in terms

$$\mathcal{L} = \frac{1}{2}\bar{\xi}\not\!/_{+}(in_{-}D)\xi - \bar{\xi}i\not\!/_{\perp}\frac{1}{in_{+}D + i\epsilon}\frac{\not\!/_{+}i\not\!/_{\perp}}{2}i\not\!/_{\perp}\xi$$

• Expansion according to the above power couning:

Leading L becomes non-local: Wilson lines

Soft Collinear Effective Theory

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

A brief look at SCET (Bauer, Stewart, Pirjol, Beneke, Feldmann ...)

- QCD quark field Q is split into a collinear component ξ and a soft one with $\xi = \frac{1}{4} h_{-} h_{+} q$
- The Lagrangian $\mathcal{L}_{\text{OCD}} = \bar{q}(i\mathcal{D})q$ is rewritten in terms of the collinear field

$$\mathcal{L}=rac{1}{2}ar{\xi}{\not\!\!/}_+(in_-D)\xi-ar{\xi}i{\not\!\!/}_\perprac{1}{in_+D+i\epsilon}rac{{\not\!/}_+}{2}i{\not\!\!/}_\perp\xi$$

• Expansion according to the above power couning:

• Leading \mathcal{L} becomes non-local: Wilson lines

Soft Collinear Effective Theory

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A brief look at SCET (Bauer, Stewart, Pirjol, Beneke, Feldmann ...)

- QCD quark field Q is split into a collinear component ξ and a soft one with $\xi = \frac{1}{4} h_{-} h_{+} q$
- The Lagrangian $\mathcal{L}_{OCD} = \bar{q}(i\mathcal{D})q$ is rewritten in terms of the collinear field

$$\mathcal{L}=rac{1}{2}ar{\xi}{/}\!\!/_+(in_-D)\xi-ar{\xi}i{/}\!\!D_\perprac{1}{in_+D+i\epsilon}rac{/}{2}i{/}\!\!D_\perp\xi$$

Expansion according to the above power couning:

$$\textit{in}_{+}\textit{D} = \textit{in}_{+}\partial + \textit{gn}_{+}\textit{A}_{c} + \textit{gn}_{+}\textit{A}_{us} = \textit{in}_{+}\textit{D}_{c} + \textit{gn}_{+}\textit{A}_{us}$$

• Leading \mathcal{L} becomes non-local: Wilson lines

Soft Collinear Effective Theory

個人・モン・モン

A brief look at SCET (Bauer, Stewart, Pirjol, Beneke, Feldmann ...)

- QCD quark field Q is split into a collinear component ξ and a soft one with $\xi = \frac{1}{4} h_{-} h_{+} q$
- The Lagrangian $\mathcal{L}_{OCD} = \bar{q}(i\mathcal{D})q$ is rewritten in terms of the collinear field

$$\mathcal{L}=rac{1}{2}ar{\xi}{\not\!\!/}_+(in_-D)\xi-ar{\xi}i{\not\!\!/}_\perprac{1}{in_+D+i\epsilon}rac{{\not\!/}_+}{2}i{\not\!\!/}_\perp\xi$$

Expansion according to the above power couning:

$$\textit{in}_+\textit{D} = \textit{in}_+\partial + \textit{gn}_+\textit{A}_c + \textit{gn}_+\textit{A}_{us} = \textit{in}_+\textit{D}_c + \textit{gn}_+\textit{A}_{us}$$

Leading L becomes non-local: Wilson lines

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

ヘロト ヘアト ヘビト ヘビト

1

- Allows us to calculate radiative corrections systematically
- Extremely important for the determination of V_{ub}
- Shape functions are modelled or taken from $B \rightarrow X_s \gamma$

$V_{ub,incl} = (4.48 \pm 0.20_{exp} \pm 0.27_{m_b,theo}) imes 10^{-3}$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

ヘロン 人間 とくほ とくほ とう

1

- Allows us to calculate radiative corrections systematically
- Extremely important for the determination of V_{ub}
- Shape functions are modelled or taken from $B
 ightarrow X_s \gamma$

$V_{ub,incl} = (4.48 \pm 0.20_{exp} \pm 0.27_{m_b,theo}) imes 10^{-3}$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

ヘロン 人間 とくほ とくほ とう

э.

- Allows us to calculate radiative corrections systematically
- Extremely important for the determination of V_{ub}
- Shape functions are modelled or taken from $B \rightarrow X_s \gamma$

$V_{ub,incl} = (4.48 \pm 0.20_{exp} \pm 0.27_{m_b,theo}) imes 10^{-3}$

ヘロン 人間 とくほ とくほ とう

1

- Allows us to calculate radiative corrections systematically
- Extremely important for the determination of V_{ub}
- Shape functions are modelled or taken from $B \rightarrow X_s \gamma$

$V_{\textit{ub,incl}} = (4.48 \pm 0.20_{\textit{exp}} \pm 0.27_{\textit{m}_{b},\textit{theo}}) imes 10^{-3}$

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Results for V_{ub}

Thomas Mannel, University of Siegen

Theoretical Tools for Heavy Quark Physics

Towards Understanding Non-leptonic Decays

• Non-leptonic decays require the calculation of hadronic matrix elements of four-quark operators, e.g. for a decay like $B \rightarrow \pi\pi$

$$\mathcal{M} = \langle \pmb{B} | (ar{\pmb{b}} \gamma_{\mu} (\pmb{1} - \gamma_5) \pmb{q}) (ar{\pmb{q}}' \gamma_{\mu} (\pmb{1} - \gamma_5) \pmb{q}'') | \pi \pi
angle$$

 In the large *m_b* limit a factorization theorem has been proven (QCD-Factorization, similar to SCET)

(Beneke, Buchalla, Neubert, Sachrajda)

Thomas Mannel, University of Siegen Theoretical Tools for Heavy Quark Physics

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Leading term is (contains) naive factorization
- Non-perturbative qunatities are the soft form factor and the light cone distributions of the light hadrons and of the *B* meson
- The strong phases of the matrix elements are either perturbative (O(α_s(m_b))) or power suppressed (O(Λ_{QCD}/m_b))
- → The strong phases are predicted to be small(ish)
- $\bullet \rightarrow$ Important for the calculation of CP Asymmetries
- Does it work?

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

・ロット (雪) () () () ()

General Properties of QCD-Factorization

• Leading term is (contains) naive factorization

- Non-perturbative qunatities are the soft form factor and the light cone distributions of the light hadrons and of the *B* meson
- The strong phases of the matrix elements are either perturbative (O(α_s(m_b))) or power suppressed (O(Λ_{QCD}/m_b))
- \rightarrow The strong phases are predicted to be small(ish)
- $\bullet \rightarrow$ Important for the calculation of CP Asymmetries
- Does it work?

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

ヘロン ヘアン ヘビン ヘビン

- Leading term is (contains) naive factorization
- Non-perturbative qunatities are the soft form factor and the light cone distributions of the light hadrons and of the *B* meson
- The strong phases of the matrix elements are either perturbative (O(α_s(m_b))) or power suppressed (O(Λ_{QCD}/m_b))
- $\bullet \rightarrow$ The strong phases are predicted to be small(ish)
- $\bullet \rightarrow$ Important for the calculation of CP Asymmetries
- Does it work?

ヘロン ヘアン ヘビン ヘビン

- Leading term is (contains) naive factorization
- Non-perturbative qunatities are the soft form factor and the light cone distributions of the light hadrons and of the *B* meson
- The strong phases of the matrix elements are either perturbative (O(α_s(m_b))) or power suppressed (O(Λ_{QCD}/m_b))
- $\bullet \rightarrow$ The strong phases are predicted to be small(ish)
- $\bullet \rightarrow$ Important for the calculation of CP Asymmetries
- Does it work?

・ロト ・ 理 ト ・ ヨ ト ・

- Leading term is (contains) naive factorization
- Non-perturbative qunatities are the soft form factor and the light cone distributions of the light hadrons and of the *B* meson
- The strong phases of the matrix elements are either perturbative (O(α_s(m_b))) or power suppressed (O(Λ_{QCD}/m_b))
- $\bullet \rightarrow$ The strong phases are predicted to be small(ish)
- $\bullet \rightarrow$ Important for the calculation of CP Asymmetries
- Does it work?

・ロト ・ 理 ト ・ ヨ ト ・

- Leading term is (contains) naive factorization
- Non-perturbative qunatities are the soft form factor and the light cone distributions of the light hadrons and of the *B* meson
- The strong phases of the matrix elements are either perturbative (O(α_s(m_b))) or power suppressed (O(Λ_{QCD}/m_b))
- ullet \to The strong phases are predicted to be small(ish)
- $\bullet \rightarrow$ Important for the calculation of CP Asymmetries
- Does it work?

ヘロト ヘアト ヘビト ヘビト

- Leading term is (contains) naive factorization
- Non-perturbative qunatities are the soft form factor and the light cone distributions of the light hadrons and of the *B* meson
- The strong phases of the matrix elements are either perturbative (O(α_s(m_b))) or power suppressed (O(Λ_{QCD}/m_b))
- $\bullet \rightarrow$ The strong phases are predicted to be small(ish)
- $\bullet \rightarrow$ Important for the calculation of CP Asymmetries
- Does it work?

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ Ξ > ★ Ξ >

ъ

(Beneke, Buchalla, Neubert, Sachrajda, 2001)

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Update on the BR's by Neubert (CKM 2005, San Diego)

Thomas Mannel, University of Siegen

Theoretical Tools for Heavy Quark Physics

프 에 에 프 어 - -

∃ <2 <</p>

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Update on the CP Asymmetries by Neubert (CKM 2005)

Thomas Mannel, University of Siegen Theoret

Theoretical Tools for Heavy Quark Physics

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

- Effective field theory methods made precise calculations in heavy quark physics possible
- Starting about 1989 HQET and HQE put heavy quark physics on a model independent basis
- → Model dependence often appears only at subleading orders
- SCET is an ansatz to undestand also exclusive non-leptonic decays systematically
- I did not talk about Lattice QCD calculations: Enormous progress due to better algorithms and to stronger computers
- Heavy Flavour Physics has become (in some corners) a precision field.

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

- Effective field theory methods made precise calculations in heavy quark physics possible
- Starting about 1989 HQET and HQE put heavy quark physics on a model independent basis
- → Model dependence often appears only at subleading orders
- SCET is an ansatz to undestand also exclusive non-leptonic decays systematically
- I did not talk about Lattice QCD calculations: Enormous progress due to better algorithms and to stronger computers
- Heavy Flavour Physics has become (in some corners) a precision field.

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

- Effective field theory methods made precise calculations in heavy quark physics possible
- Starting about 1989 HQET and HQE put heavy quark physics on a model independent basis
- → Model dependence often appears only at subleading orders
- SCET is an ansatz to undestand also exclusive non-leptonic decays systematically
- I did not talk about Lattice QCD calculations: Enormous progress due to better algorithms and to stronger computers
- Heavy Flavour Physics has become (in some corners) a precision field.

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

- Effective field theory methods made precise calculations in heavy quark physics possible
- Starting about 1989 HQET and HQE put heavy quark physics on a model independent basis
- → Model dependence often appears only at subleading orders
- SCET is an ansatz to undestand also exclusive non-leptonic decays systematically
- I did not talk about Lattice QCD calculations: Enormous progress due to better algorithms and to stronger computers
- Heavy Flavour Physics has become (in some corners) a precision field.

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

- Effective field theory methods made precise calculations in heavy quark physics possible
- Starting about 1989 HQET and HQE put heavy quark physics on a model independent basis
- → Model dependence often appears only at subleading orders
- SCET is an ansatz to undestand also exclusive non-leptonic decays systematically
- I did not talk about Lattice QCD calculations: Enormous progress due to better algorithms and to stronger computers
- Heavy Flavour Physics has become (in some corners) a precision field.

- Effective field theory methods made precise calculations in heavy quark physics possible
- Starting about 1989 HQET and HQE put heavy quark physics on a model independent basis
- → Model dependence often appears only at subleading orders
- SCET is an ansatz to undestand also exclusive non-leptonic decays systematically
- I did not talk about Lattice QCD calculations: Enormous progress due to better algorithms and to stronger computers
- Heavy Flavour Physics has become (in some corners) a precision field.

- Effective field theory methods made precise calculations in heavy quark physics possible
- Starting about 1989 HQET and HQE put heavy quark physics on a model independent basis
- → Model dependence often appears only at subleading orders
- SCET is an ansatz to undestand also exclusive non-leptonic decays systematically
- I did not talk about Lattice QCD calculations: Enormous progress due to better algorithms and to stronger computers
- Heavy Flavour Physics has become (in some corners) a precision field.

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Summary II: The problems

- The key question is:
 - Is a small "deviation" due to physics beyond the standard model or due to our lack of understanding of QCD dynamics?
- Subleading terms are under reasonable control only for inclusive semileptonic decays
- Exclusive non-leptonic decays still have uncertainties of typically $\mathcal{O}(10\%)$
- Up to now no (large) effects have been observed that contradict the CKM description of flavour mixing and CP violation
- Still the progress has been dramatic over the last 15 years ...

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Summary II: The problems

• The key question is:

- Subleading terms are under reasonable control only for inclusive semileptonic decays
- Exclusive non-leptonic decays still have uncertainties of typically O(10%)
- Up to now no (large) effects have been observed that contradict the CKM description of flavour mixing and CP violation
- Still the progress has been dramatic over the last 15 years ...

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Summary II: The problems

• The key question is:

- Subleading terms are under reasonable control only for inclusive semileptonic decays
- Exclusive non-leptonic decays still have uncertainties of typically O(10%)
- Up to now no (large) effects have been observed that contradict the CKM description of flavour mixing and CP violation
- Still the progress has been dramatic over the last 15 years ...

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Summary II: The problems

• The key question is:

- Subleading terms are under reasonable control only for inclusive semileptonic decays
- Exclusive non-leptonic decays still have uncertainties of typically O(10%)
- Up to now no (large) effects have been observed that contradict the CKM description of flavour mixing and CP violation
- Still the progress has been dramatic over the last 15 years ...

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Summary II: The problems

• The key question is:

- Subleading terms are under reasonable control only for inclusive semileptonic decays
- Exclusive non-leptonic decays still have uncertainties of typically O(10%)
- Up to now no (large) effects have been observed that contradict the CKM description of flavour mixing and CP violation
- Still the progress has been dramatic over the last 15 years ...

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

Summary II: The problems

• The key question is:

- Subleading terms are under reasonable control only for inclusive semileptonic decays
- Exclusive non-leptonic decays still have uncertainties of typically O(10%)
- Up to now no (large) effects have been observed that contradict the CKM description of flavour mixing and CP violation
- Still the progress has been dramatic over the last 15 years ...

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

1988: Pre-historic Unitarity Triangle

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

⇒ < ⇒ >

э

2006: Todays Unitarity Triangle

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

ヘロト ヘワト ヘビト ヘビト

э

2006: Todays Unitarity Triangle

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

There are interesting tensions ...

Thomas Mannel, University of Siegen

Theoretical Tools for Heavy Quark Physics

Soft Collinear Effective Theory Towards Understanding Nonleptonic Decays

There are interesting tensions ...

... we shall see .

Thomas Mannel, University of Siegen

Theoretical Tools for Heavy Quark Physics