QCD developments for the LHC

Babis Anastasiou

CERN

New phenomena at the LHC

The LHC will give us a unique opportunity for new discoveries at TeV energies.

- Large energy and luminosity
 - Small statistical uncertainties.
 - Very good detectors; high rate calibration processes ~> smaller systematic errors
- High rates could allow both discoveries, precision studies, and discoveries through precision.
- The LHC will also test how well we understand QCD effects.

An example of an "easy" experimental discovery

• The SM predicts a significant cross-section for a di-photon signal from a Higgs boson.

 Discovery of a resonance is a matter of purely (very hard) experimental work and collecting data.

The di-photon signal

- It is not necessarily true that this peak is a SM Higgs boson.
- New physics beyond the SM can change significantly the height of the peak.
- So do higher order QCD corrections

Di-photon signal cross-section

CA, Melnikov, Petriello

- The cross-section at NNLO is 2 times the LO result.
- Scale uncertainty reduces from $\pm 15\%$ (NLO) to $\pm 7\%$ (NNLO).

A global approach to precision calculations

$$N = \mathcal{L} \times \left(\int f_i(x_1) f_j(x_2) \sigma(i+j \to H+X) \right) \times \frac{\Gamma(H \to \gamma \gamma)}{\Gamma_{total}}$$

- The measurement of the Higgs boson cross-section could become a tool for precision studies, if we know accurately:
- 1. Production cross-section and branching ratio
- 2. Strong coupling
- 3. Parton distribution functions
- 4. Luminosity (or partonic luminosities: $\mathcal{L}_{ij}(x_1, x_2) = \mathcal{L}f_i(x_1)f_j(x_2)$)

ALL of the above require theory input!

Standard candle processes

Luminosity monitoring

- Monitor luminosity with W production (Dittmar et al.). Two ways to improve on the standard NLO predictions.
 - Consistent merging of NLO+parton shower in MC@NLO (Frixione, Webber)
 - Fully differential NNLO calculation with spin correlations complete (Melnikov, Petriello)
 - [○] Cut 1: $p_T^e > 20$ GeV, $|\eta^e| < 2.5$, $\not\!\!E_T > 20$ GeV (LHC) Cut 2: $p_T^e > 40$ GeV, $|\eta^e| < 2.5$, $\not\!\!E_T > 20$ GeV (LHC)

LHC	$rac{\sigma_{MC@NLO}}{\sigma_{NLO}}$	$rac{\sigma_{NNLO}}{\sigma_{NLO}}$
Cut 1	1.02	0.983
Cut 2	1.03	1.21

- $^{\circ}$ Large dependence of NNLO corrections on cuts.
- ⇒ extra hard emission at NNLO important! Not captured by the shower corrections in MC@NLO (off by 20%)

High multiplicity background processes

- Vital searches are more complicated. For example, SUSY models with R-parity conservation predict the production of a large number of jets and missing energy.
- Squark and gluino production is uncertain to 100% at leading order, and 30% at NLO. Beenakker, Höpker, Spira, Zerwas
- Standard Model multijet production processes are very sensitive to scale variations.

SUSY cross-sections are large

Susy Model	$m_{\tilde{q}} \ (GeV)$	$m_{\tilde{g}} \ (GeV)$	σ (pb)
LM1	558.61	611.32	54.86
LM3	625.65	602.15	45.47
LM5	809.66	858.37	7.75
LM7	3004.3	677.65	6.79
HM4	1815.8	1433.9	0.102

CMS TDR, using PROSPINO

- Cross-sections can vary a lot in its versions.
- But "SUSY signals should be spectacular!"

SUSY signals could be spectacular

- CMS TDR: analysis with full detector simulation
- SM backgrounds with PYTHIA (parton-shower)

Or not?

Mangano

- Shower fails to simulate hard jets!
- We need exact LO matrix-elements for $2 \rightarrow 3, 4, 5$ processes.

Do we need NLO?

Leading order scale variation for $pp \rightarrow \nu \bar{\nu} + N$ jets Select high $p_t > 80 \text{ GeV}$, central $|\eta| < 2.5$ jets. Let us assume that a reasonable scale is:

$$\mu^2 = M_Z^2 + \sum_{jet} p_{t,jet}^2$$

and allow to vary: $\mu_R = \mu_F = \mu/2 - 2\mu$

N	$\sigma(2\mu)[pb]$	$\sigma(\mu/2)[pb]$	variation
1	182	216	17%
2	47.1	75.4	46%
3	6.47	13.52	70%
4	0.90	2.48	93%

ALPGEN

For a 5σ discovery with LO magnitudes: \rightsquigarrow Signal > 2.5 Background

QCD developments for the LHC - p.13/4!

Conclusions I

- At the LHC we could get clear signals over very well measured backgrounds (new reasonances) or negligible backgrounds
 - → Precise calculation of the signal
 - ~> Flexibility to include interactions of new models in our calculations.
- We also anticipate not so spectacular signals with difficult to measure backgrounds
 - → Precise calculation of the signal and background (to consolidate or compete with the precision of the experimental measurement of the background)
- Standard caddle (LHC, LEP, Tevatron, Hera, ...) processes for luminosity monitoring, α_s , parton densities ...
 - → Very precise calculation of cross-sections
- We need to look at the same process in more than one ways (e.g. parton shower vs fixed-order, ...)

Processes at the LHC

- A vast experimental program: pointless to give a list of "interesting" processes.
- We hope to discover many new BSM processes. But even within the SM, there is a lot to do!

What is available?

Many new techniques!

- Perturbative QCD is a very active field in recent years.
- We have made progress in every aspect of it:
 - Leading order, Next to LO, NNLO
 - Resummation, merging fixed order calculations and parton showers.
 - All orders!
- Progress has been made with the generation of very good new ideas. Not just by turning the crank!
- Refreshing influx of ideas and people from other fields (string theory)
- A very competitive research area, with many challenges to be taken up.

Leading order perturbation theory

- It provides a rough estimate for cross-sections.
- Usually, it involves the calculation of tree diagrams:

- Derive Feynman rules from Lagrangian.
- Write down diagrams.
- Perform Dirac and colour algebra.
- Numerically integrate over the phase-space.
- A conceptually solved problem (like most in pQCD)! But in practice we need to be more clever.

Algebraic explosion

• For example, in $gg \rightarrow N$ gluons we need to compute:

• Feynman rules in gauge theory

 $\mathcal{V}_{ggg} = f^{abc} \left[g_{\mu_1 \mu_2} (p_1 - p_2)^{\mu_3} + g_{\mu_2 \mu_3} (p_2 - p_3)^{\mu_1} + g_{\mu_3 \mu_1} (p_3 - p_1)^{\mu_2} \right]$

• Algebra of γ matrices, colour algrebra, etc.

$$Tr(\gamma^{\mu_1}\gamma^{\mu_2}) = 1 \text{ term}$$
$$Tr(\gamma^{\mu_1}\cdots\gamma^{\mu_8}) = 105 \text{ terms}$$
$$Tr(\gamma^{\mu_1}\cdots\gamma^{\mu_{14}}) = 26,931 \text{ terms}$$

Tree-level Monte-Carlo generators

- HELAC/PHEGAS: EWK+QCD 10 12 final state particles
 Kanaki, Papadopoulos
- ALPGEN: e.g. $Zt\bar{t} + (\leq 4)$ jets, $(W, Z) + (\leq 6)$ jets, inclusive ≤ 6 jets, ..., Mangano, Moretti, Piccinini, Pittau, Polosa
- COMPHEP, $2 \rightarrow N(\leq 4)$ Puckhov et al.
- GRACE/GR@PPA, e.g. W + 4 jets
 - PHASE, 6 final state fermions Accomando, Ballestero, Maina
- AMEGIC++, up to 6 external legs Krauss et al.
- MADGRAPH/MADEVENT, up to 1000 diagrams Long, Maltoni, Stelzer

Ishikawa et al./Sato et al.

Recursion at tree-level

• Feynman diagrams contain sub-parts which we compute over and over.

• It is possible to organize the evaluation of tree amplitudes recursively e.g. Berends, Giele

Britto Cachazo Feng Witten recursion finding trick

• Amplitudes are functions of external momenta

 $A(p_1, p_2, \ldots, p_n)$

• For massless particles $p^{\mu} \rightarrow p_{a\dot{a}} = p_{\mu}\sigma^{\mu}_{a\dot{a}}$; this can be written as the product of two spinors:

$$p = \lambda^a \tilde{\lambda}^{\dot{a}}$$

 Then they considered a more general object, extending two of the momenta to be complex but preserving momentum conservation:

$$p_1 = p_1 + z\lambda_1^a \tilde{\lambda}_4^{\dot{a}} \qquad p_4 = p_4 - z\tilde{\lambda}_4^{\dot{a}}\lambda_1^a$$

Analytic extension of tree amplitudes

 The generalized tree-amplitudes, if (A(z → ∞) = 0), have simple poles; all possible poles that can be found in propagators of Feynman diagrams.

$$A(z) = \sum_{p_{i...j}} \frac{c_{ij}(z)}{\tilde{p}_{i...j}^2 - z}$$

• The physical amplitude is:

$$A(0) = \sum_{p_{i\ldots j}} \frac{c_{ij}(0)}{\tilde{p}_{i\ldots j}^2}$$

Quantitative predictions at NLO

Reduced senitivity in factorization and renormalization scales

$$\frac{\partial \alpha_s}{\partial \log(\mu)} = -\beta_0 \alpha_s^2 + \mathcal{O}(\alpha_s^3)$$

$$\frac{\partial f(x,\mu)}{\partial \log(\mu)} = \alpha_s \int_z^1 \frac{dy}{y} P_{ab}(y) f(x/y,\mu) + \mathcal{O}(\alpha_s^2)$$

- New channels: For example, in Higgs production we included the processes $gg \rightarrow hg$, $qg \rightarrow hq$ and $q\bar{q} \rightarrow hg$.
- More realistic cover of the phase-space. At leading order, the Higgs boson has no transverse momentum. At NLO, $p_t \ge 0$.
- We have seen many examples where NLO corrections cannot be neglected ($gg \rightarrow h$, Drell-Yan production, squark and gluino production, W-pair production, . . .)

NLO computations

$$\Delta \sigma^{NLO} = 2 Re + \left| \begin{array}{c} & & \\ &$$

• Exploit universality of infrared singularities. We always cancel the same divergences.

$$\Delta \sigma_{NLO} = \int dP S_m (2Tree_m Loop_m) Obs_m + \int dP S_{m+1} |Tree_{m+1}|^2 Obs_{m+1}$$

Cancelation of infrared divergences at NLO

Ellis, Ross, Terrano, Giele, Glover; Giele Glover, Kosower; Kunst, Soper; Frixione, Kunszt, Signer; Catani, Seymour; . . .

• The single infrared limit (one soft or two collinear partons) of tree amplitudes is universal "antennae" functions:

 $|Tree_{m+1}|^2 \rightarrow \text{infrared limit} \rightarrow |Tree_m|^2 \times Antenna$

• I can rearrange:

$$\Delta \sigma_{NLO} = \int dPS_{m+1} \left[|Tree_{m+1}|^2 \mathbf{Obs_{m+1}} - |Tree_m|^2 \times Antenna \mathbf{Obs_m} \right] \\ + \int dPS_m (2Tree_m Loop_m) Obs_m + \int dPS_m |Tree_m|^2 \times Obs_m \int PS_{1 \to 2} Antenna$$

Loop integral relations

• Loop integrals are not independent:

$$\int d^d k {\partial \over \partial k_\mu} {k_\mu \over k^2 - M^2} = 0$$
 Chetyrkin, Tkachov

$$M^{2} \int d^{d}k \frac{1}{(k^{2} - M^{2})^{2}} + \left(\frac{d}{2} - 1\right) \int d^{d}k \frac{1}{(k^{2} - M^{2})^{1}} = 0$$

• We need to compute less!

One-loop master integrals

All one-loop integrals are reduced to a few known master integrals:

These are known analytically, or known how to compute, for all cases needed.

• Generic reductions now work for multi-loop calculations too

Laporta, Gehrmann, Remiddi; CA, Lazopoulos, ...

Available next to leading order calculations

- Numerous calculations have been made at NLO.
- Anything you can think of for $2 \rightarrow 2$ processes: $pp \rightarrow WW$, $pp \rightarrow \gamma\gamma$, $pp \rightarrow t\bar{t}$, ...
- Many but not all, $2 \rightarrow 3$ processes: $pp \rightarrow \leq 3$ jets, $pp \rightarrow W, Z+ \leq 2$ jets, $pp \rightarrow qqh$, $pp \rightarrow tth$, ...
- No 2 → 4 process for the LHC. Only example of close enough complexity e⁺e⁻ → 4 fermions, Denner, Dittmaer, et al.
 High multiplicity Standard Model processes (more than two particles in the final state) are baqckrounds to new physics 2 → 2 production processes. E.g. in supersymmetry with R-parity conservation sparticles are always pair produced.
- What is the problem? Gigabyte sized expressions!

New attempts to solve the problem

- Modified reductions to compactify expressions, avoid fake singularities, ..., Denner, Dittmaer
- Numerical reduction to master integrals, Giele, Glover; Ellis, Giele, Zanderighi
- Numerical evaluation in the complex plane, CA, Daleo
- Subtraction method for loop amplitude, Nagy, Soper
- Improved unitarity method I
 Bern, Berger, Dixon, Forde, Kosower
 - Xiao, Yang, Zhu; Binoth, Gulliet, Heinrich
- Improved unitarity method II
 Britto, Cachazo, Feng, CA,
 Mastrolia,Kunszt

Recent breakthrough

del Aguila, Pittau; Ossola, Papadopoulos, Pittau

Discovered a miraculous functional form for generic loop integrands!

$$Amplitude = \int d^{d}k \left(A_{1} \frac{1}{Den_{1}Den_{2}\dots Den_{n}} + B_{1} \frac{Spurious_{1}(k)}{Den_{1}Den_{2}\dots Den_{n}} + \sim 60 \text{ more terms} \right)$$

- first term (A_1) inegrates to a single master integral
- Spurious term (B_1) integrates to zero
- Determine A_1, B_1 by evaluating the INTEGRAND at a sufficient number of values for the loop momentum.

Ossola, Papadopoulos, Pittau method

- Choose momenta corresponding to the unitarity cuts of the loop amplitude
- Isolates one master integral at the time
- Setup a numerical evaluation approach

Message

- All master integral coefficients are simply sums of products of tree amplitudes. Simple algebraic substitution!
- Makes great connection with the developments at tree-level!
- Watch this space! Great news and timing for the LHC.

Is NNLO needed?

- We have seen that, in Higgs production, the NLO corrections are very large ($\sim 80\%$). NNLO is needed to justify the perturbative calculation.
- NNLO calculations for observables which can be measured very well and be used for high precision studies:
 - cross-sections for resonances (Higgs boson, W,Z, new gauge bosons, . . .)
 - High rate processes, e.g. inclusive jet cross-section, top-quark cross-section, etc

What is available

• NNLO results:

0	Drell-Yan total cross-section	Matsuura, Hamberg, van Neerven (1991)			
		Harlander, Kilgore (2002)			
0	Higgs boson (h,A) total cross-section	Harlander, Kilgore (2002)			
		CA, Melnikov (2002)			
		Ravindran, Smith, van Neerven (2003)			
0	Drell-Yan rapidity distribution	CA, Dixon, Melnikov, Petriello (2003)			
0	Splitting functions	Moch, Vogt, Vermaseren (2004)			
0	Higgs boson fully differential cross-sec	CA, Melnikov, Petriello (2004)			
0	W-boson fully differential cross-section	Melnikov, Petriello			
0	 Two-loop amplitudes (but not yet the cross-sections) for 				
$pp ightarrow 1jet + X$, $pp ightarrow \gamma \gamma$, $pp ightarrow \gamma jet$, $pp ightarrow W$, $Z+1jet$,					
	pp ightarrow h+1 jet CA, Glover, Oleari, Tejeda-Yeomans; Bern, Dixon, De Freitas,				
	Ghinculov; Garland, Glover, Gehrmann, Koukoutsakis, Remiddi				

Towards a subtraction method at NNLO

- New subtraction methods are now under completion. (Weinzierl; Kosower; Gehrmann-de Ridder, Gehrmann, Glover, Heinrich; Kilgore; Frixione, Grazzini; Somogyi, Trocsanyi, del Duca)
- Significant progress in understanding the infrared structure of perturbation theory at the second and higher orders.
- Subtraction algorithms satisfy all criteria to be sussesfull.
- Implementation phase is on. Still a significant amount of work is required

Singularities in a form amenable to algorithms

CA, Melnikov, Petriello

- Singularities have a very complicated form in momentum space (beyond NLO)
- Map phase-space volume to the unit hypercube

Simple geometry \rightarrow (automatization) 0

Easy to spot singular regions ~> the edges!

Overlapping singularities

• Singularity when two (or more) variables reach the same corner

• Repeat until singularities are fully factorized in all phase-space variables.

Fully differential Higgs production

Unexploited properties of gauge theories

- We have made enormous progress in perturbative computations.
- We know, however, that our methods are primitive!
- The results seem to be disproportionally simpler than our efforts to compute them.
- For example, we know that multi-loop amplitudes factorize simply in their infrared limit. *Catani; Sterman, Tejeda-Yeomans*

$$\mathcal{M}_{\text{all orders}} = \left(\prod_{all \ legs} J^{leg}(\alpha_s, \epsilon)\right) \operatorname{Soft}(\alpha_s, \epsilon) Hard(\alpha_s)$$

• Still, we do not know how to compute *Hard* on its own.

2-loop 4-point amplitudes in $\mathcal{N}=4$ super Yang-Mills

 These amplitudes can be expressed in terms of one only integral in the planar limit. This was known already in 97.
 Bern, Rosowsky, Yan

- The same integral enters the expression for QCD amplitudes, together with another $\sim 10,000$.
- Many people tried and failed to compute it.
- In a breakthrough, Smirnov solved the problem in 1999.

Finding simplicity: $\mathcal{N} = 4$ supersymmetric Yang-Mills

• The full 2-loop 4-point MHV amplitudes obey the same factorization as the infrared limit *CA*, *Bern*, *Dixon*, *Kosower* (2003)

$$M_4^{(2)}(\epsilon) = \frac{1}{2} \left(M_4^{(1)}(\epsilon) \right)^2 + f^{(2)}(\epsilon) M_4^{(1)}(2\epsilon) - \frac{5}{4} \zeta_4.$$

Unlikely to be an accident

• All two-loop amplitudes obey the same relation *collinear factorization*

$$M_n^{(2)}(\epsilon) = \frac{1}{2} \left(M_n^{(1)}(\epsilon) \right)^2 + f^{(2)}(\epsilon) M_n^{(1)}(2\epsilon) - \frac{5}{4} \zeta_4.$$

• Are multi-loop amplitudes polynomials of the one-loop amplitude?

Complex representations of arbitrary loop integrals

Smirnov; Tausk; CA, Daleo; Czakon

 All loop integrals can be written as complex contour (Mellin-Barnes) integrals

- The infrared divergences are localized on poles that can be extracted automatically with the Cauchy theorem (Smirnov; Tausk)
- Numerical integration on the complex contour (CA, Daleo; Czakon)

An "impossible" loop integral to compute:

One can outdate this title very easily . . .

3-loop amplitudes in the planar limit

In a tour de force calculation, Bern, Dixon and Smirnov proved analytically:

$$M_4^{(3)}(\epsilon) = -\frac{1}{3} \left(M_4^{(1)}(\epsilon) \right)^3 + M_4^{(1)}(\epsilon) M_4^{(2)}(\epsilon) + f^{(3)}(\epsilon) M_4^{(1)}(3\epsilon) + C.$$

and proposed the ansatz:

$$M_n(\epsilon) = \exp\left(\sum_{l=0}^{\infty} a^l \left[f^{(l)}(\epsilon)M_n^{(1)}(l\epsilon) + h^{(l)}\right]\right)$$

Cachazo, Spradlin, Volovic proved with numerical Mellin-Barnes integrations that the parity even part of two-loop 5-point MHV amplitudes satisfy the conjecture.

Bern, Czakon, Kosower, proved with Mellin-Barnes numerical integrations that the full two-loop **5-point** MHV amplitudes satisfy the conjecture.

Is the perturbative expansion solvable?

AdS/CFT correspondence

- strongly coupled N = 4 SYM is dual to weakly coupled gravity.
- Anomalous dimensions f(l) can be conjectured from string theory and integrability (Eden, Staudacher; Kotikov, Lipatov, Velizhanin).
- NEW: Bern, Czakon, Dixon, Kosower and Smirnov computed numerically the infrared poles of the 4-loop 4-point amplitudes, probing directly these conjectures.

Conclusions

- At the LHC, the path to new physics goes through QCD production processes.
- We know a lot about QCD and the SM; to the level that it was considered very boring and unatractive.
- It is phenomenologically absolutely essential. But it is also very fun. A very energetic field, which will interface experiment and ideas for new physics at the TeV energy regime.
- Room for new ideas!