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Why NNLO calculations are needed?

great progress in NLO calculations:
− new tecnologies to compute one loop integrals
− well tested frameworks to treat infrared singularities

few cross sections are known at LHC at NNLO

high precision calculations needed for:
− processes used to measure fundamental parameters
− important backgrounds in the searches of new physics

three basic processes at LHC:
− dijet production
− top pair production
− vector boson pair production

‘standard candles’: background extrapolation
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Jet production

dominat hard scattering process at LHC

important input to constrain gluon PDFs and αs

rich in potential signals of new physics:

− composite quarks

− SUSY

− extra gauge bosons, Z ′ and W ′

− Randall-Sundrum models (extra dimensions)
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tt̄ production

third generation is the least known
sector of the SM -except for the Higgs!-

tt̄ is key to measure top quark
properties

LHC will produce almost 1 tt̄ per second
at low luminosity!!

tt̄ is an important background for many
searches of New Physics

σ(tt̄)NLO ' 830 pb ± 15% (scale+PDFs)

[Bonciani et al.;Cacciari]

[CMS Physics TDR]
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Vector boson pair production

unique opportunity to probe the non-Abelian
gauge symmetry of the Standard Model

test the presence of anomalous couplings →

New Physics

important backgrounds for Higgs and SUSY
searches

mild NLO corrections with jet veto

important contributions from high pT region
[Dixon, Kunszt, Signer]
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QCD corrections: the infrared problem

amplitudes are singular due to soft and collinear radiation
Virtual corrections

explicit singularites (loop integration)

Real corrections
“potential” singularites (phase space)

Singularites are guaranteed to cancel between real and virtual contributions

... but only after phase space integration...

and phase space integration is either not possible -e.g. jets- or not
appropriate -e.g. differential cross sections-

how to extract the singularities from the real contributions?
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Different approaches

phase space slicing [Giele, Glover; Giele, Glover, Kosower]

− split the phase space volume into singular and non-singular regions
− in singular regions, matrix elements are approximated by their

soft/collinear limits
− these pieces are integrated analytically
− and they cancel the explicit singularities of virtual components
− in the non-singular regions it is safe to integrate numerically

sector decomposition [Anastasiou, Melnikov, Petriello]

− use sector decomposition of phase space integrals to isolate singularities
− explicit poles in ε are extracted before integration
− the finite coefficients are integrated numerically
− cancellations of poles take place after numerical integration
− delivers results at NNLO!!

methods based on subtraction
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Subtraction methods

Ellis-Kunszt-Soper method

dipole subtraction [Catani, Seymour]

iterative construction of counterterms [Grazzini, Frixione; Somogyi,

Trocsanyi, del Duca]

antenna subtraction [Kosower]

All based on the factorization properties of amplitudes and
matrix elements in soft and collinear limits

|M(· · · , a, b, c, · · ·)|2
a‖b‖c
−→ Pabc→X |M(· · · ,X, · · ·)|2 + ang.

|M(· · · , a, b, c, d, · · ·)|2
c,d→0
−→ Sabcd |M(· · · , a, d, · · ·)|2
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Antenna subtraction [Gehrmann-De Ridder, Gehrmann, Glover]
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antenna factor contain ALL the singular limits associated to ijk

need a mapping {i, j, k} → {I,K} that interpolates between
these limits
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Antenna subtraction: the counterterms
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first line on the rhs is finite in all n+1 parton configurations:
it can be integrated numerically
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Antenna subtraction: phase space factorization
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observable do not depend on individual momenta i, j and k

antenna factors can be integrated analytically

explicit poles cancel between one loop and integrated antenna
contributions

integration over phase space can be done numerically
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dΦn = finite

observable do not depend on individual momenta i, j and k

antenna factors can be integrated analytically

explicit poles cancel between one loop and integrated antenna
contributions

integration over phase space can be done numerically
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The antenna subtraction toolkit

antenna functions:
− obtained from physical matrix elements
− contain all the singular configurations
− use color ordered matrix elements to simplify the limits

phase space mapping:
− n + 1 → n at NLO, n + 2 → n at NNLO
− must interpolate between all the relevant singular

configurations
− must allow the factorization of the phase space measure

integrated antenna functions:
− obtained by integrating the antennae over the factorized phase

space
− explicit poles in ε cancel the loop integration ones
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Antenna subtraction with colored initial states [A.D., T. Gehrmann, D. Maître,

in preparation]
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NLO phase space mappings and antennae

phase space mappings:
− initial-final: {p, kj , kk} → {p̃ = x p,KK}

x =
sij + sik + sjk

sij + sik

,

KK = kj + kk − (1 − x)p ,

− initial-initial: a bit more involved, all momenta must be boosted

simple generalizations to NNLO

full set of NLO antennae: 0 → 3, 1 → 2, 2 → 1

simple phase space integrations at NLO
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NNLO Antennae with one parton in the initial state [A.D., in preparation]

tree antennae 1 → 3

1 loop antennae 1 → 2

i.e. quark initiated antennae

A0

4
(q, ggq) γq → ggq

B0

4
(q, qq′q̄′) γq → qq′q̄′

D0

4
(q, ggg) χg̃ → ggg

D0

4
(q, ggg) χg̃ → ggg

E0

4
(q, q′q̄′g) χg̃ → q′q̄′g

E0

4
(q, qq′g) χq → qg̃g

F 0

4
(q, ggq) hq → ggq

G0

4
(q, qq′q̄′) hq → qq′q̄′

A1

3
(q, gq) γq → gq

D1

3
(q, gg) χg̃ → gg

D1

3
(q, ggg) χg̃ → ggg

E1

3
(q, q′q̄′) χg̃ → q′q̄′

F 1

3
(q, gq) hq → gq
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Integration over antenna phase space

antennae derived from matrix elements only involve propagator
like denominators

use of integration by parts identities and Laporta algorithm to
reduce all phase space integrals to a small set of masters:
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Integration over antenna phase space

antennae derived from matrix elements only involve propagator
like denominators

use of integration by parts identities and Laporta algorithm to
reduce all phase space integrals to a small set of masters:

master integrals computed with differential equations method

agreement with existing results [Zijlstra, van Neerven]

checks with direct numerical integration using sector
decomposition to deal with singularites

checks with explicit integration using Feynman parameters
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Summary

NNLO fully differential calculations are very important in the LHC
era!

antenna subtraction provides a general method to deal with
singular configurations of real radiation contributions

in hadron collisions three singular configurations arise:

− final-final: already known from e+e−

− initial-final: this presentation
− initial-initial: still missing

phase space mappings interpolating all the singular limits for the
three configurations are known

full set of antennae for subtraction of initial-final singular configura-
tions is now known
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