Precise predictions from the MSSM

W. Hollik Max-Planck-Institut für Physik, München

> Central European Seminar University of Vienna 1 - 3 December 2006

Outline

specific class of SUSY models:

MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)

- Introduction
- Standard particles
- Higgs bosons
- SUSY particles
- Conclusions

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles:

$$\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} \qquad \text{Spin } \frac{1}{2}$$

$$\begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} \qquad \text{Spin } 0$$

$$g \quad \underbrace{W^{\pm}, H^{\pm}}_{\tilde{\chi}_{1,2}} \underbrace{\gamma, Z, H_{1}^{0}, H_{2}^{0}}_{\tilde{\chi}_{1,2,3,4}} \qquad \text{Spin } 1 \text{ / Spin } 0$$

$$\tilde{g} \quad \tilde{\chi}_{1,2}^{\pm} \qquad \tilde{\chi}_{1,2,3,4}^{0} \qquad \text{Spin } \frac{1}{2}$$

Enlarged Higgs sector: two Higgs doublets, physical states: h^0, H^0, A^0, H^{\pm}

masses and mixing of SUSY particles through soft-breaking

model parameters

- **•** gaugino masses: M_1, M_2, M_3
- sfermion masses: $M_L, M_{\tilde{u}_R}, M_{\tilde{d}_R}$ for each doublet of squarks and sleptons
- trilinear coupling: $A_{\tilde{f}}$ for each \tilde{f} → L-R sfermion mixing
- supersymmetric Higgsino mass parameter: μ
- Higgs sector parameters: M_A , $\tan\beta = v_2/v_1$

• chargino masses: $m_{\tilde{\chi}_{1,2}^{\pm}}$ from M_2, μ

$$\begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & \mu \end{pmatrix}$$

• neutralino masses: $m_{ ilde{\chi}^0_{1,2,3,4}}$ from M_1, M_2, μ

 $\begin{pmatrix} M_1 & 0 & -M_Z s_W \cos\beta & M_Z s_W \sin\beta \\ 0 & M_2 & M_Z c_W \cos\beta & -M_Z c_W \sin\beta \\ -M_Z s_W \cos\beta & M_Z c_W \cos\beta & 0 & -\mu \\ M_Z s_W \sin\beta & -M_Z c_W \sin\beta & -\mu & 0 \end{pmatrix}$

• sfermion masses:
$$m_{\tilde{f}_{1,2}}$$
 from $M_L, M_{\tilde{f}_R}, A_f$

$$\begin{pmatrix} m_f^2 + M_L^2 + M_Z^2 c_{2\beta} (I_f^3 - Q_f s_W^2) & m_f (A_f - \mu \kappa) \\ m_f (A_f - \mu \kappa) & m_f^2 + M_{\tilde{f}_R}^2 + M_Z^2 c_{2\beta} Q_f s_W^2 \end{pmatrix}$$

with

$$\kappa = \{ \cot \beta; \tan \beta \} \text{ for } f = \{u, d\}$$

Models of SUSY breaking

generic MSSM: 105 parameters (masses, mixing angles, phases) reduced to few parameters in specific models

mSUGRA: $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)$

- GMSB: $M_{\text{mess}}, N_{\text{mess}}, \tan\beta, \operatorname{sign}(\mu)$
- AMSB: $m_{\text{aux}}, m_0, \tan\beta, \operatorname{sign}(\mu)$

 \rightarrow mass parameters at the electroweak scale $(M_1, M_2, M_3, \mu, M_{\tilde{f}_{L,R}}, \ldots)$

Benchmark scenarios

"Snowmass points and slopes" (SPS), hep-ph/0202233

examples (mSUGRA):

•SPS1a: $m_0 = 100$ GeV, $m_{1/2} = 250$ GeV, $A_0 = -100$, $\tan \beta = 10$, $\mu > 0$.

•SPS1b:
$$m_0 = 200$$
 GeV, $m_{1/2} = 400$ GeV, $A_0 = 0$,
 $\tan \beta = 30$, $\mu > 0$.

Precision analysis required for

- indirect tests of SUSY through
 \rightarrow virtual SUSY effects in precision observables
- precision studies for SUSY particles
 → determination of masses & couplings
 → reconstruction of model parameters
- direct versus indirect tests
 - \rightarrow precision observables for precisely measured SUSY parameters
 - \rightarrow consistency check

Processes with external

- (i) standard particles
- (ii) Higgs bosons, especially light Higgs h^0
- (iii) SUSY particles

Standard particles

Test of theory at quantum level:

Sensitivity to loop corrections

- \checkmark μ lifetime: M_W , Δr , G_F
- **9** Z observables: g_V , g_A , $\sin^2 \theta_{\text{eff}}$, Γ_Z , ...

[Heinemeyer, WH, Weiglein, Phys. Rep. 425 (2006) 265]

new: M_W with 2-loop improvements $\mathcal{O}(\alpha \alpha_s, \alpha_t^2, \alpha_b^2, \alpha_t \alpha_b)$ and complex parameters

[Heinemeyer, WH, Stöckinger, A. Weber, Weiglein, hep-ph/0604147]

 $M_W - M_Z$ correlation

$$\frac{G_F}{\sqrt{2}} = \frac{\pi \alpha}{M_W^2 \left(1 - M_W^2 / M_Z^2\right)} \left(1 + \Delta r\right)$$

- Δr : quantum correction, $\Delta r = \Delta r(m_t, X_{SUSY})$
- $\rightarrow M_W = M_W(\alpha, G_F, M_Z, m_t, X_{\text{SUSY}})$

 $X_{SUSY} =$ set of non-standard model parameters

 $\tan \beta = 10, \quad M_A = \mu = M_2 = M_{\tilde{g}} = 300 \,\text{GeV}$

• effective Z boson couplings with higher-order $\Delta g_{V,A}$

$$g_V^f \to g_V^f + \Delta g_V^f, \qquad g_A^f \to g_A^f + \Delta g_A^f$$

• effective ew mixing angle (for f = e):

$$\sin^2 \theta_{\rm eff} = \frac{1}{4} \left(1 - \operatorname{Re} \frac{g_V^e}{g_A^e} \right)$$

Anomalous g-factor of the muon

- **Dirac theory:** g = 2
- **9** QED, 1-loop order: $g = 2 + \frac{\alpha}{\pi}$
- Standard Model prediction
 QED part: 4-loop (5-loop estimate)
 Electroweak part: 2-loop
- Experiment 2004: Brookhaven E821

$$a_{\mu} = \frac{g-2}{2} = 11659208(6) \cdot 10^{-10}$$

above the SM prediction

Theory versus experiment

Hagiwara, Martin, Nomura, Teubner

 e^+e^- data based SM prediction: 3.4 σ below exp. value theory uncertainty from hadronic vacuum polarization

$$g-2$$
 with supersymmetry

new contributions from virtual SUSY partners of $\mu, \, \nu_{\mu}$ and of $W^{\pm}, \, Z$

extra terms

$$+ \frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_{\rm SUSY}^2} \cdot \frac{v_2}{v_1}$$

can provide missing contribution for $M_{\rm SUSY} = 200 - 600 \, {\rm GeV} \label{eq:MSUSY}$

2-loop calculation [Heinemeyer, Stöckinger, ...]

scan over SUSY parameters compatible with EW and $b \rightarrow s\gamma$ constraints $(\tan \beta = 50)$

LOSP = lightest observable SUSY particle ($\chi_1^{\pm}, \chi_2^0, \cdots$)

fits in SUGRA model:

[Ellis, Heinemeyer, Olive, Weiglein]

Higgs bosons in the MSSM

MSSM Higgs potential contains two Higgs doublets:

$$V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.}) + \frac{{g'}^2 + g^2}{8} (H_1 \bar{H}_1 - H_2 \bar{H}_2)^2 + \frac{g^2}{2} |H_1 \bar{H}_2|^2$$

gauge couplings, in contrast to SM

Five physical states: h^0, H^0, A^0, H^{\pm}

Input parameters: $\tan \beta = \frac{v_2}{v_1}$, M_A

 $\Rightarrow m_{\rm h}, m_{\rm H}$, mixing angle α , $m_{{\rm H}^{\pm}}$: no free parameters

Spectrum of Higgs bosons in the MSSM (example)

large M_A : h^0 like SM Higgs boson ~ decoupling regime m_h^0 strongly influenced by quantum effects, *e.g.*

determination of masses and couplings at higher order

- **•** physical states h, H, A, H^{\pm}
- conventional input: M_A , $\tan\beta = v_2/v_1$

dressed h, H propagators, renormalized self-energies $\hat{\Sigma}$

$$\left(\Delta_{\text{Higgs}}\right)^{-1} = \begin{pmatrix} q^2 - m_H^2 + \hat{\Sigma}_H(q^2) & \hat{\Sigma}_{hH}(q^2) \\ \hat{\Sigma}_{Hh}(q^2) & q^2 - m_h^2 + \hat{\Sigma}_h(q^2) \end{pmatrix}$$

- det = 0 $\rightarrow m_{h,H}^{\text{pole}}$
- diagonalization \rightarrow effective couplings (α_{eff})

1-loop: complete

2-loop:

- QCD corrections $\sim \alpha_s \alpha_t, \, \alpha_s \alpha_b$
- Yukawa corrections $\sim \alpha_t^2$

present theoretical uncertainty:

 $\delta m_h \simeq 3-4 \text{ GeV}$ [Degrassi, Heinemeyer, WH, Slavich, Weiglein]

new version

FeynHiggs2.5

 m_{h^0} prediction at different levels of accuracy:

[Heinemeyer, Kraml, Porod, Weiglein]

dependent on all SUSY particles and masses/mixings through Higgs self-energies

Recent developments:

- Counterterms at two-loop order
 ST identities valid in dimensional reduction (DR)
 DR scheme consistent with symmetric counterterms [WH, Stöckinger]
- 2. $\mathcal{O}(\alpha_s \alpha_b)$ beyond m_b^{eff} approximation $m_b^{\text{eff}} = \frac{m_b}{1+\Delta m_b}$ in α_b Yukawa coupling $\Delta m_b =$ non-decoupling SUSY contribution $\sim \alpha_s \mu \tan \beta$ *[Heinemeyer, WH, Rzehak, Weiglein]* small shifts \sim few GeV, but stabilizes prediction
- 3. MSSM with complex parameters tree level: CP conserving Higgs sector loop level: CP violation ← other sectors [Frank, Heinemeyer, WH, Rzehak, Weiglein]

 $m_t/2 < \mu^{\overline{\mathrm{DR}}} < 2 \, m_t$

 $M_A = \begin{cases} 120 \,\mathrm{GeV} \\ 700 \,\mathrm{GeV} \end{cases}$

The Higgs sector of the cMSSM at the loop-level:

Complex parameters enter via loop corrections:

- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings $\Rightarrow X_{t,b,\tau} = A_{t,b,\tau} \mu^* \{\cot\beta, \tan\beta\}$ complex
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-M_3$: gluino mass parameter
- \Rightarrow can induce $\mathcal{CP}\text{-violating}$ effects

Result:

$$(A, H, h) \rightarrow (h_3, h_2, h_1)$$

with

 $m_{h_3} > m_{h_2} > m_{h_1}$

\Rightarrow strong changes in Higgs couplings to SM gauge bosons and fermions

Inclusion of higher-order corrections:

→ Feynman-diagrammatic approach

Propagator / mass matrix with higher-order corrections:

$$\begin{pmatrix} q^2 - M_A^2 + \widehat{\Sigma}_{AA}(q^2) & \widehat{\Sigma}_{AH}(q^2) & \widehat{\Sigma}_{Ah}(q^2) \\ \\ \widehat{\Sigma}_{HA}(q^2) & q^2 - m_H^2 + \widehat{\Sigma}_{HH}(q^2) & \widehat{\Sigma}_{Hh}(q^2) \\ \\ \\ \widehat{\Sigma}_{hA}(q^2) & \widehat{\Sigma}_{hH}(q^2) & q^2 - m_h^2 + \widehat{\Sigma}_{hh}(q^2) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H, A) : renormalized Higgs self-energies $\hat{\Sigma}_{Ah}, \hat{\Sigma}_{AH} \neq 0 \Rightarrow CPV, CP$ -even and CP-odd fields can mix

propagator matrix Δ :

$$\Delta^{-1}(q^2) = q^2 \mathbf{1} - \mathbf{m}_{\text{tree}}^2 + \hat{\mathbf{\Sigma}}(q^2)$$

renormalized self energies:

$$\hat{\Sigma} = \Sigma + \text{counter terms}$$

- renormalization of tadpoles:
 T_h + δT_h = 0, T_H + δT_H = 0, T_A + δT_A = 0
- renormalization of $M_{H^{\pm}}$: $\delta M_{H^{\pm}}^2 = \Sigma_{H^{\pm}}(M_{H^{\pm}}^2)$ on-shell conditon for pole mass
- **•** renormalization of $\tan \beta$:

$$\tan \beta = \frac{v_2}{v_1} \rightarrow \sqrt{\frac{Z_{H_2}}{Z_{H_1}}} \cdot \frac{v_2 + \delta v_2}{v_1 + \delta v_1}$$
$$= \frac{v_2}{v_1} \left(1 + \delta Z_{H_2} - \delta Z_{H_1} + \frac{\delta v_2}{v_2} - \frac{\delta v_1}{v_1} \right)$$
$$\overline{DR} = 0$$

propagator matrix Δ :

$$\Delta^{-1}(p^2) = p^2 \mathbf{1} - \mathbf{m}_{\text{tree}}^2 + \hat{\mathbf{\Sigma}}(p^2)$$

- $\hat{\Sigma}(p^2)$ contain imaginary parts
- Higgs boson masses are complex poles: $s_0 = M^2 iM\Gamma$
- zeros of determinant: $det[\Delta^{-1}(s_0)] = 0$

 $p^2 = 0$ approximation:

$$\mathbf{M}^2 \simeq \mathbf{m}_{\text{tree}}^2 - \hat{\mathbf{\Sigma}}(0)$$

diagonalized by orthogonal matrix R

on-shell approximation:

$$\hat{\Sigma}_{ii}(m_i^2), \ \hat{\Sigma}_{ij}(\frac{m_i^2 + m_j^2}{2})$$

[Frank, Hahn, Heinemeyer, WH, Rzehak, Weiglein]

implications for couplings

present status:

effective potential approximation + RGE [Carena, Ellis, Pilaftsis, Wagner]

complete at one-loop order [Frank, Hahn, Heinemeyer, WH, Rzehak, Weiglein]

leading two-loop contributions of $\mathcal{O}(\alpha_s \alpha_t)$ [*Rzehak, PhD thesis*]

for Higgs phenomenology with CP violation see CERN 2006-009, hep-ph/0608079 [S. Kraml et al. (Conv.)] Contributions to the 2-loop self-energy:

2-loop self-energy diagrams:

 $\phi = h, H, A$

$$m_{h_1}$$
 as a function of ϕ_{A_t} :

$$\begin{split} M_{\text{SUSY}} &= 1000 \text{ GeV} \\ |A_t| &= 2000 \text{ GeV} \\ \tan \beta &= 10 \\ M_{H^{\pm}} &= 150 \text{ GeV} \\ \text{OS renormalization} \\ &\Rightarrow \text{modified dependence} \\ & \text{on } \phi_{A_t} \text{ at the 2-loop level} \end{split}$$

 $M_{SUSY} = 500 \text{ GeV}$ $A_t = 1000 \text{ GeV}$ $\tan \beta = 10$ $M_{H^{\pm}} = 500 \text{ GeV}$ OS renormalization $\Rightarrow \text{threshold at } m_{\tilde{g}} = m_{\tilde{t}} + m_t$

- ⇒ large effects around threshold
- ⇒ phase dependence has to be taken into account

SUSY particles

from experiment:

 \rightarrow precision analyses of masses and couplings LHC \oplus ILC

from theory:

- \rightarrow accurate theoretical predictions to match exp. data
- \rightarrow loop contributions to Lagrangian param \leftrightarrow observables
- → reconstruction of fundamental SUSY parameters and breaking mechanism
- $\rightarrow\,$ RGEs for extrapolation to high scales

Chargino/neutralino sector complete at one loop: renormalization and mass spectrum pair production and decay processes [Fritzsche, WH] [Eberl, Majerotto, Öller]

sfermion sector

renormalization and mass spectrum

[WH, Rzehak]

sfermion pair production in e^+e^- collisions complete at one-loop

[Arhrib, WH]squarks, sleptons[Kovarik, Weber, Eberl, Majerotto]squarks

[Freitas, Miller, von Manteuffel, Zerwas] sleptons

sfermion decays into fermions and -inos complete at one-loop [Guasch, WH, Solà] **Basis for precision calculations**

- Complete Feynman rules → FeynArts [Hahn, Schappacher]
- complete set of counter terms automatic generation → FeynArts [Fritzsche]
- real photon bremsstrahlung

Renormalization schemes

- on-shell scheme: renormalization conditions for pole masses [WH, Kraus, Roth, Rupp, Sibold, Stöckinger]
- DR scheme:
 CTs = singular parts in dimensional reduction

SUSY parameters different in $\overline{\mathrm{DR}}$ and on-shell

Automatic generation of CTs

example:

pole masses \leftrightarrow on-shell parameters

$$M_2^2 + \mu^2 + 2M_W^2 = m_{\tilde{\chi}_1^+}^2 + m_{\tilde{\chi}_2^+}^2$$
$$\left(M_2 \mu - 2M_W^2 \sin\beta \cos\beta\right)^2 = m_{\tilde{\chi}_1^+}^2 m_{\tilde{\chi}_2^+}^2.$$

$$M_{1} = \left[-M_{2}\mu M_{Z}^{2} \sin 2\beta + \left[\mu M_{Z}^{2} \sin 2\beta - M_{2} \left(\mu^{2} + M_{Z}^{2} s_{W}^{2} \right) \right] m_{\tilde{\chi}_{1}^{0}} \right. \\ \left. + \left[\mu^{2} + M_{Z}^{2} \right] m_{\tilde{\chi}_{1}^{0}}^{2} + M_{2} m_{\tilde{\chi}_{1}^{0}}^{3} - m_{\tilde{\chi}_{1}^{0}}^{4} \right] \\ \left. \times \left[\mu M_{Z}^{2} c_{W}^{2} \sin 2\beta - M_{2} \mu^{2} + \left[\mu^{2} + M_{Z}^{2} c_{W}^{2} \right] m_{\tilde{\chi}_{1}^{0}} + M_{2} m_{\tilde{\chi}_{1}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{3} \right]^{-1} \right]$$

DR parameters (SPS1a') on-shell parameters

$\tan \beta = 10 ; \mu = M_{A^0} = 431.02 \text{ GeV} ; M_1 = M_3 = 572.33 \text{ GeV} ; M_2 = 0$	= 402.87 GeV = 103.22 GeV = 193.31 GeV
$\begin{array}{rcl} A_{u,c} = & -784.7 \; \text{GeV} \; ; \; A_t = \\ A_{d,s} = & -1025.7 \; \text{GeV} \; ; \; A_b = \\ A_{e,\mu} = & -449.0 \; \text{GeV} \; ; \; A_\tau = \end{array}$	-535.4 GeV -938.5 GeV -445.5 GeV
$\begin{split} m_{\tilde{l}}^{1,2} &= 181.3 \text{ GeV} \; ; \; m_{\tilde{l}}^3 \\ m_{\tilde{e},\tilde{\mu}} &= 115.6 \text{ GeV} \; ; \; m_{\tilde{\tau}} \\ m_{\tilde{q}}^{1,2} &= 526.9 \text{ GeV} \; ; \; m_{\tilde{q}}^3 \\ m_{\tilde{u},\tilde{c}} &= 507.7 \text{ GeV} \; ; \; m_{\tilde{t}} \\ m_{\tilde{d},\tilde{s}} &= 505.5 \text{ GeV} \; ; \; m_{\tilde{t}} \end{split}$	= 179.5 GeV = 109.8 GeV = 471.3 GeV = 384.6 GeV = 501.3 GeV
	_

$\tan \beta = 10 ; \mu = 399.26 \text{ GeV} \\ M_{A^0} = 431.02 \text{ GeV} ; M_1 = 100.11 \text{ GeV} \\ M_3 = 612.85 \text{ GeV} ; M_2 = 197.55 \text{ GeV} \end{cases}$	
$\begin{array}{rcl} A_{u,c} = & -784.7 \; \text{GeV} \; ; \; A_t = -535.4 \; \text{GeV} \\ A_{d,s} = & -1025.7 \; \text{GeV} \; ; \; A_b = -938.5 \; \text{GeV} \\ A_{e,\mu} = & -449.0 \; \text{GeV} \; ; \; A_\tau = -445.5 \; \text{GeV} \end{array}$	
$\begin{array}{l} m_{\tilde{l}}^{1} = 184.12 \text{ GeV} \; ; \; m_{\tilde{l}}^{2} = 184.11 \text{ GeV} \; ; \; m_{\tilde{l}}^{3} = 182.18 \text{ GeV} \\ m_{\tilde{e}} = 118.02 \text{ GeV} \; ; \; m_{\tilde{\mu}} = 117.99 \text{ GeV} \; ; \; m_{\tilde{\tau}} = 111.29 \text{ GeV} \\ m_{\tilde{q}}^{1} = 565.97 \text{ GeV} \; ; \; m_{\tilde{q}}^{2} = 565.91 \text{ GeV} \; ; \; m_{\tilde{q}}^{3} = 453.05 \text{ GeV} \\ m_{\tilde{u}} = 546.78 \text{ GeV} \; ; \; m_{\tilde{c}} = 546.84 \text{ GeV} \; ; \; m_{\tilde{t}} = 460.52 \text{ GeV} \\ m_{\tilde{d}} = 544.95 \text{ GeV} \; ; \; m_{\tilde{s}} = 544.97 \text{ GeV} \; ; \; m_{\tilde{t}} = 538.13 \text{ GeV} \end{array}$	

The SPA project is a joint study of theorists and experimentalists working on LHC and Linear Collider phenomenology. The study focuses on the supersymmetric extension of the Standard Model. The main targets are

- High-precision determination of the supersymmetry Lagrange parameters at the electroweak scale
- Extrapolation to a high scale to reconstruct the fundamental parameters and the mechanism for supersymmetry breaking

P. Zerwas, J. Kalinowski, H.U. Martyn, W. Hollik, W. Kilian, W. Majerotto, W. Porod,

hep-ph/0511344, EPJC 46(2006)43

SPS1a' scenario

SPA CONVENTION

- The masses of the SUSY particles and Higgs bosons are defined as pole masses.
- All SUSY Lagrangian parameters, mass parameters and couplings, including $\tan \beta$, are given in the $\overline{\text{DR}}$ scheme and defined at the scale $\tilde{M} = 1$ TeV.
- Gaugino/higgsino and scalar mass matrices, rotation matrices and the corresponding angles are defined in the $\overline{\mathrm{DR}}$ scheme at \tilde{M} , except for the Higgs system in which the mixing matrix is defined in the on-shell scheme, the momentum scale chosen as the light Higgs mass.
- The Standard Model input parameters of the gauge sector are chosen as G_F , α , M_Z and $\alpha_s^{\overline{\mathrm{MS}}}(M_Z)$. All lepton masses are defined on-shell. The t quark mass is defined on-shell; the b, c quark masses are introduced in $\overline{\mathrm{MS}}$ at the scale of the masses themselves while taken at a renormalization scale of 2 GeV for the light u, d, s quarks.
- Decay widths/branching ratios and production cross sections are calculated for the set of parameters specified above.

$\overline{\mathrm{DR}}$ masses \rightarrow pole masses (SPS1a')

			m		δm		$m_{\rm phys}$				m	δm		$m_{\rm phys}$
•	$m_{\tilde{\chi}_1^+}$	=	181.026	+	3.178	=	184.204	•	$m_{ ilde{\chi}_1^0}$	=	100.706 +	(-2.958)	=	97.748
•	$m_{\tilde{\chi}_2^+}$	=	423.420	+	(-2.181)	=	421.239		$m_{ ilde{\chi}_2^0}$	=	181.404 +	3.022	=	184.425
	/02								$m_{ ilde{\chi}_3^0}$	=	408.579 +	(-1.626)	=	406.952
•	$m_{ ilde{g}}$	=	572.330	+	40.524	=	612.854		$m_{ ilde{\chi}_4^0}$	=	422.991 +	(-3.310)	=	419.681
•	$m_{\tilde{\nu}_1}$	=	169.890	+	2.804	=	172.695	•	$m_{\tilde{u}_1^1}$	=	506.424 +	39.255	=	545.680
•	$m_{\tilde{e}_1^1}$	=	123.574	+	1.878	=	125.452	•	$m_{ ilde{u}_1^2}$	=	524.275 +	39.157	=	563.433
	$m_{ ilde{e}_1^2}$	=	186.905	+	3.082	=	189.986	•	$m_{ ilde{d}_1^1}$	=	506.097 +	39.409	=	545.506
									$m_{ ilde{d}_1^2}$	=	530.033 +	38.826	=	568.859
•	$m_{\tilde{\nu}_2}$	=	169.884	+	2.804	=	172.688	•	$m_{\tilde{u}_2^1}$	=	506.410 +	39.254	=	545.664
•	$m_{\tilde{e}_2^1}$	=	123.510	+	1.877	=	125.387	•	$m_{ ilde{u}_2^2}$	=	524.285 +	39.158	=	563.444
	$m_{\tilde{e}_2^2}$	=	186.929	+	3.080	=	190.009	•	$m_{\tilde{d}_2^1}$	=	506.092 +	39.408	=	545.500
									$m_{ ilde{d}_2^2}$	=	530.034 +	38.825	=	568.859
•	$m_{\tilde{\nu}_3}$	=	168.001	+	2.629	=	170.630	•	$m_{\tilde{u}_3^1}$	=	333.171 +	35.334	=	368.504
•	$m_{\tilde{e}_3^1}$	=	106.080	+	1.595	=	107.674	•	$m_{ ilde{u}_3^2}$	=	549.649 +	34.223	=	583.872
	$m_{\tilde{e}_3^2}$	=	192.418	+	2.786	=	195.203		$m_{ ilde{d}_3^1}$	—	470.247 +	34.711	=	504.958
								•	$m_{ ilde{d}_3^2}$	=	506.244 +	38.129	=	544.374

"QED corrections"

Full calculation inevitable

- separation of diagrams with virtual photons not UV-finite
- soft-photon bremsstrahlung necessary for getting an IR-finite result
- hard bremsstrahlung needed for realistic treatments

Reasonable separation $(L_e = \log \frac{s}{m_e^2}, \Delta E = E_{\gamma \text{ soft}}^{\max})$:

$$\sigma(1 - \text{loop}) = \sigma_{\text{QED}} + \sigma_{\text{MSSM}},$$

$$\sigma_{\text{QED}} = \sigma^{\text{hard}} + \frac{\alpha}{\pi} \left[(L_e - 1) \log \frac{4\Delta E^2}{s} + \frac{3}{2} L_e \right] \sigma_0$$

$$\sigma_{\text{MSSM}} = \sigma^{\text{v+s}} - \frac{\alpha}{\pi} \left[(L_e - 1) \log \frac{4\Delta E^2}{s} + \frac{3}{2} L_e \right] \sigma_0$$

- gauge invariant
- $\sigma_{\rm MSSM}$ free of large soft and collinear photon terms

SUSY particle decay rates

2-particle decays of $\tilde{\chi}^{\pm}_{1,2}$ and $\tilde{\chi}^{0}_{2,3,4}$

tree level (black) and 1-loop (red) [Fritzsche, WH]

 $\tilde{\chi}_1^-$ decay modes (SPS1a')

$\tilde{\chi}_2^-$ decay modes

${\tilde \chi}_2^0$ decay modes

[Drees, WH, Qingjun Xu]

Reconstructing Lagrangian parameters

based on 82 simulated measurements at LHC and ILC

Parameter	SPS1a'value	Fit error [exp]			
M_1	103.3	0.1			
M_2	193.4	0.1			
M_3	568.9	7.8			
μ	400.4	1.1			
$M_{\tilde{e}_L}$	181.3	0.2			
$M_{\tilde{e}_R}$	115.6	0.4			
$M_{\tilde{ au}_L}$	179.5	1.2			
$M_{\tilde{u}_L}$	523.2	5.2			
$M_{\tilde{u}_R}$	503.9	17.3			
$M_{{ ilde t}_L}$	467.7	4.9			
$m_{ m A}$	374.9	0.8			
$A_{ m t}$	-525.6	24.6			
aneta	10.0	0.3			

Accuracy of measurements

	Mass	"LHC"	"LC"	"LHC+LC"
h^0	115.4	0.25	0.05	0.05
H^0	431.1		1.5	1.5
$ ilde{\chi}_1^0$	97.75	4.8	0.05	0.05
$ ilde{\chi}^0_2$	184.4	4.7	1.2	0.08
$ ilde{\chi}_4^0$	419.6	5.1	3 - 5	2.5
$\tilde{\chi}_1^{\pm}$	184.2		0.55	0.55
\tilde{e}_R	125.2	4.8	0.05	0.05
\tilde{e}_L	190.1	5.0	0.18	0.18
$ ilde{ au}_1$	107.4	5 - 8	0.24	0.24
\tilde{q}_R	547.7	7 - 12	—	5 - 11
\widetilde{q}_L	565.7	8.7	—	4.9
$ ilde{t}_1$	368.9		1.9	1.9
$ ilde{b}_1$	506.3	7.5	—	5.7
\tilde{g}	607.6	8.0		6.5

High Scale Extrapolations

Fig. 1. Running of the gaugino and scalar mass parameters in SPS1a' [SPheno 2.2.2]. Only experimental errors are taken into account; theoretical errors are assumed to be reduced to the same size in the future.

Conclusions

- precision calculations for SUSY (MSSM) are well advanced
- electroweak precision observables → 2-loop level global fits of similar quality as in standard model indirect sensitivity to SUSY parameters
- m_{h^0} is another precision observable
 - dependent on all SUSY sectors
 - accurate theoretical evaluation ($\delta m_{h^0} \simeq 4 \text{ GeV}$), to be further improved
- progress for loop contributions to SUSY processes
 future precision allows tests of breaking scenarios

Detailed analysis for SPS1a benchmark scenario: potential

of LHC (300 fb $^{-1}$) alone and LHC + LC

	LHC	LHC+LC			
$\Delta m_{\tilde{\chi}^0_1}$	4.8	0.05 (input)			
$\Delta m_{\tilde{l}_R}$	4.8	0.05 (input)			
$\Delta m_{ ilde{\chi}^0_2}$	4.7	0.08			
$\Delta m_{\tilde{q}_L}$	8.7	4.9			
$\Delta m_{\tilde{q}_R}$	11.8	10.9			
$\Delta m_{ ilde{ extbf{g}}}$	8.0	6.4			
$\Delta m_{\tilde{b}_1}$	7.5	5.7			
$\Delta m_{\tilde{b}_2}$	7.9	6.2			
$\Delta m_{\tilde{l}r}$	5.0	0.2 (input)			
$\Delta m_{ ilde{\chi}_4^0}$	5.1	2.23			

LHC+LC accuracy limited by LHC jet energy scale resolution

SPS 1a benchmark scenario:

favorable scenario for both LHC and LC

\Rightarrow LC input improves accuracy signifi cantly