Large-angle anomalies of the microwave sky

Dominik J. Schwarz Universität Bielefeld

Are the low- ℓ modes cosmic?

Schwarz, Starkman, Huterer & Copi, PRL November 26, 2004 Copi, Huterer, Schwarz & Starkman, astro-ph/0508047 Starkman & Schwarz, Scientific American, August 2005 Vienna Central European Seminar 2005

Anisotropy of cosmic microwave background (CMB)

CMB probes the largest (angular) scales back to $t \sim 370,000$ years

temperature fluctuations

$$\delta T(\mathbf{e}) = \sum_{\ell} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\mathbf{e})$$

with $a_{\ell m}^* = (-1)^m a_{\ell-m}$ (reality condition) $\Rightarrow 2\ell + 1$ degrees of freedom for ℓ th moment

Predictions from inflationary cosmology

statistical isotropy:

 $\langle \delta T(\operatorname{Re}_1) \dots \delta T(\operatorname{Re}_n) \rangle = \langle \delta T(\mathbf{e}_1) \dots \delta T(\mathbf{e}_n) \rangle, \quad \forall \mathsf{R} \in \mathsf{SO}(3), \forall n > 0$

•
$$\langle \delta T(\mathbf{e}) \rangle = 0$$
 and $\langle a_{\ell m} \rangle = 0$

•
$$\langle \delta T(\mathbf{e}_1) \delta T(\mathbf{e}_2) \rangle = f(\mathbf{e}_1 \cdot \mathbf{e}_2) = \frac{1}{4\pi} \sum_{\ell} (2\ell + 1) C_{\ell} P_{\ell}(\cos \theta), \quad \cos \theta \equiv \mathbf{e}_1 \cdot \mathbf{e}_2$$
 with $\langle a_{\ell m} a^*_{\ell' m'} \rangle = C_{\ell} \delta_{\ell \ell'} \delta_{m m'}, \ C_{\ell}$ angular power spectrum

gaussianity: no extra information in higher correlation functions

(best) estimator: $\hat{C}_{\ell} = 1/(2\ell+1) \sum_{m} |a_{\ell m}|^2$ (assumes statistical isotropy) cosmic variance: $Var(\hat{C}_{\ell}) = 2C_{\ell}^2/(2\ell+1)$ (assumes gaussianity)

WMAP: 2-point correlations (cut sky)

1500

----- COBE/DMR - WMAP 1000 С(()) µK² 005 -500 100 COBE/DMR - MAP 53 GHz С(θ) µK² -100 100 COBE/DMR - MAP 90 GHz C(θ) μK² -100 50 100 150 0 Angular Separation (deg)

Hinshaw et al. 2003, Kogut et al. 2003

Bennett et al. 2003

First indications of large-angle anomalies

angular correlation vanishes at > 60 degCOBE-DMR and WMAP

small quadrupole (and octopole) COBE-DMR and WMAP

planar octopole, aligned with quadrupole de Oliveira-Costa et al., 2003

deficit of power in North (ecliptic) hemisphere Eriksen et al., 2003

Multipole vectors

alternative representation of multipoles Maxwell 1891, Copi, Huterer & Starkman 2003

one (real) amplitude A_{ℓ} and ℓ headless (unit) vectors: $2\ell + 1$ degrees of freedom

$$T_{\ell}(\mathbf{e}) = \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\mathbf{e}) = A_{\ell} [\mathbf{v}^{(\ell,1)} \cdots \mathbf{v}^{(\ell,\ell)}]_{i_1 \dots i_{\ell}} [\mathbf{e} \cdots \mathbf{e}]^{i_1 \dots i_{\ell}}$$

[...] ... symmetric, traceless tensor product

e.g. quadrupole:
$$T_2(\mathbf{e}) = A_2[(\mathbf{v}^{(2,1)} \cdot \mathbf{e})(\mathbf{v}^{(2,2)} \cdot \mathbf{e}) - \frac{1}{3}\mathbf{v}^{(2,1)} \cdot \mathbf{v}^{(2,2)}]$$

Full sky cleaned maps

linear combination of 5 WMAP frequency bands with minimal variance

WMAP ILC: Bennett et al. 2003

also cleaned TOH map: Tegmark et al. 2003 and LILC: Eriksen et al. 2004

Quadrupole and octopole

3 great circles defined by multipole vectors are nearly normal to ecliptic

1 great circle nearly normal to supergalactic plane

Schwarz et al. 2004, Copi et al. 2005

Quadrupole plus octopole

ecliptic is close to nodal lineSchwarz et al. 2004, Copi et al. 2005significant power asymmetry for [2,3] and [6,7]Freeman et al. 2005

Statistic

oriented areas
$$\mathbf{w}^{(\ell;i,j)} \equiv \mathbf{v}^{(\ell,i)} \times \mathbf{v}^{(\ell,j)}$$

quadrupole-octopole alignement

$$S = \frac{1}{3} \sum_{i < j} |\mathbf{w}^{(2;1,2)} \cdot \mathbf{w}^{(3;i,j)}|$$

correlation with known planes and directions

especially galaxy, ecliptic, dipole

$$S = \frac{1}{4} \sum_{\ell, i < j} |\mathbf{w}^{(\ell; i, j)} \cdot \mathbf{d}|$$

100,000 isotropic and gaussian Monte Carlo maps with WMAP pixel noise

Quadrupole and octopole are not cosmic

Test	TOH kqs	LILC kqs	ILC kqs	ТОН	LILC	ILC
qo alignement	0.117	0.602	0.289	0.582	2.622	0.713
ecliptic plane	1.425	1.480	2.006	1.228	1.735	2.724
galactic pole	0.734	0.940	0.508	0.909	1.265	0.497
SG plane	14.4	13.4	8.9	11.6	10.2	6.5
dipole	0.045	0.214	0.110	0.093	0.431	0.207
equinox	0.031	0.167	0.055	0.064	0.315	0.080

Probabilities in % for six tests using the cleaned TOH (Tegmark et al.), LILC (Eriksen et al.) and ILC (Spergel et al.) maps, with and without substracting the kinematic quadrupole.

Evidence for a Solar System correlation

fixed quadrupole plus octopole pattern ecliptic correlation > 99.9%C.L.

Copi et al. 2005

Foreground effect?

known galactic foregrounds do not lead to observed correlations

galactic foreground dominated by Y_{20} and $Re(Y_{31})$

add in scaled WMAP foreground map Copi et al. 2005

Cut sky

error in multipole vector reconstruction from incomplete sky

cut TOH cleaned map

Copi et al. 2005

Back to COBE

COBE-DMR observations are consistent with our findings

45 MCMC COBE maps from Wandelt et al. 2004

Copi et al. 2005

No convincing explanation

statistical issue: Katz & Weeks 2004, Weeks 2004, Land & Magueijo 2004, Copi et al. 2005

systematic error: full vs. cut sky Slosar & Seljak 2004, Bielewicz et al. 2005, Copi et al. 2005, map-making algorithm Freeman et al. 2005, calibration on modulation of dipole, beam asymmetries

solar system foreground: Frisch 2005

galactic foreground: Slosar & Seljak 2004, Copi et al. 2005

extragalactic structure: SZ Abramo & Sodre Jr 2003, Hansen et al. 2005, weak lensing Vale 2005, Cooray 2005

cosmology: Jaffe et al. 2005, Gordon et al. 2005

Extra foreground conflicts with low power

observed values: WMAP cut sky, WILC, TOH, LILC

Rakić, Räsänen & Schwarz, in preparation

WMAP angular power spectrum analysis: ecliptic plane (black) and poles (grey)

Hinshaw et al. 2003

The first stars?

Hinshaw et al. 2003, Kogut et al. 2003

WMAP analysis: TE-correlation at $\ell < 7 \ (\tau \ge 0.1)$

WMAP interpretation: very early star formation (200 Myr)

before WMAP (quasar spectra): star formation starts before 1 Gyr

NEW:

TT-correlations with orientation and motion of solar system in $\ell = 2, 3$

 \Rightarrow TE-correlations for small ℓ suspect

Schwarz et al. 2004

The optical depth and $z_{\rm r}$

WMAP TT & TE data with $\Omega = 1$

 $\ell \geq 2$, flat prior on τ $\ell \geq 6$, flat prior on τ $\ell \geq 2$, flat prior on z_r $\ell \geq 6$, flat prior on z_r

Leach & Trotta 2004, unpublished

Don't trust cosmological conclusions from low ℓ modes!

dropping low ℓ in TT and TE would

give stronger upper limit on τ ,

provide a red spectrum (n < 1),

stronger limit on running,

allow for more tensor modes

Summary

```
results for cleaned WMAP full sky maps:
quadrupole and octopole
```

are aligned at > 99%CL are correlated with Ecliptic at > 99.9%CL are correlated with Dipole at > 99.7%CL

first hints for odd behaviour of higher ℓ multipoles

known foregrounds cannot explain effect cut skies reduce statistical significance