Baryon generation in non-equilibrium electroweak phase transition

Sexty Dénes

Collaborators: M. van der Meulen, J. Smit, A. Tranberg

Motivation

Chern-Simons and Winding Number in a Tachyonic Electroweak Transition

Baryon asymmetry, from the theory of nucleosynthesis:

$$
n_{B} / n_{\gamma} \simeq 6.5 \cdot 10^{-10}
$$

Sakharov conditions (1967)

- Baryon number is non-conserved
- C and CP are non-conserved
- Non-equilibrium processes

Baryon number generation in SM

Classically divergence free currents get divergences after quantization
Adler-Bell-Jackiw (1969), Fujikawa (1979) $\quad \Psi \rightarrow e^{i\left(a+b \gamma_{5}\right) \theta(x)} \Psi$

- left handed: $\quad S U(2)_{L} \times U(1)_{Y}$
in the Standard Model:
- right handed:
$U(1)_{Y}$
Baryon current: $J_{\mu}^{B}=\frac{1}{3} \bar{u} \gamma_{\mu} u+\frac{1}{3} \bar{d} \gamma_{\mu} d \quad$ from anomaly:

$$
\partial_{\mu} J_{\mu}^{B}=\frac{N_{F}}{32} \pi^{2}\left(-g_{2}^{2} F_{\mu \nu}^{a} \tilde{F}^{a \mu \nu}+g_{1}^{2} f_{\mu \nu} \tilde{f}^{\mu \nu}\right)
$$

where $F^{a \mu \nu}$ is the $S U(2)_{L}$ field strength and $f^{\mu \nu}$ is the $U(1)_{Y}$ field strength Leptons: same contribution $\rightarrow B-L$ is conserved

$$
\partial_{\mu} J_{\mu}^{B}=\frac{N_{F}}{32 \pi^{2}}\left(-g_{2}^{2} \partial_{\mu} K^{\mu}+g_{1}^{2} \partial_{\mu} k_{\mu}\right)
$$

where K_{μ} is the Chern-Simons current. $\Delta B=3 \Delta N_{C S}$

Chern-Simons Number and Winding Number

$$
N_{C S}=-\frac{g_{2}^{2}}{16 \pi^{2}} \int d^{3} x 2 \epsilon^{i j k} \operatorname{Tr}\left(\partial_{i} A_{j} A_{k}+i \frac{2}{3} g_{2} A_{i} A_{j} A_{k}\right) \notin \mathbf{N}
$$

Gauge transformation: $A_{i} \rightarrow U A_{i} U^{-1}+\frac{i}{g_{2}} \partial_{i} U U^{-1}$

$$
\delta N_{C S}=\frac{1}{24 \pi^{2}} \int d^{x} \operatorname{Tr}\left[\left(\partial_{i} U\right) U^{-1}\left(\partial_{j} U\right) U^{-1}\left(\partial_{k} U\right) U^{-1}\right] \epsilon^{i j k}
$$

Vacuum configurations with standard maps:

$$
U^{(1)}(x)=\frac{x_{0}+i x_{i} \sigma_{i}}{r} \quad r=\sqrt{x_{0}^{2}+x_{i} x_{i}} \quad \delta N_{C S}\left(U^{(1)}\right)=1
$$

Classical Vacua of the broken phase:

$$
G_{v a c}^{(n)}=\left\{U=\left(U^{(1)}\right)^{n}, A_{i}=\frac{i}{g} \partial_{i} U U^{-1}, \Phi=U \cdot(0, v), N_{C S}=n\right\}
$$

Sphaleron

Configurations betwwen two different vacua: Sphaleron
Klinkhammer, Manton (1984); Forgács, Horváth (1984)

$$
\begin{array}{ll}
A_{i}=\frac{i}{g} f(g v r) U^{\infty} \partial_{i} U^{\infty} & U^{\infty}=U^{(1)}\left(x_{0}=0, x_{i}\right) \\
\Phi=\frac{i}{\sqrt{2}} h(g v r) U^{\infty} \cdot(0, v) & N_{C S}(\text { Sphaleron })=\frac{1}{2}
\end{array}
$$

Dublett Higgs:

$$
\Phi=\left(\begin{array}{cc}
\varphi_{d}^{*} & \varphi_{u} \\
-\varphi_{u}^{*} & \varphi_{d}
\end{array}\right)=\frac{\rho}{\sqrt{2}} U, \quad \rho^{2}=2\left(\varphi_{u}^{*} \varphi_{u}+\varphi_{d}^{*} \varphi_{d}\right), \quad U(x) \in \operatorname{SU}(2)
$$

If $\rho \neq 0$, the Higgs winding number is defined:

$$
N_{W}=\int d^{3} x n_{w} \quad n_{W}=\frac{1}{24 \pi^{2}} \epsilon^{i j k} \operatorname{Tr}\left[\left(\partial_{i} U\right) U^{-1}\left(\partial_{j} U\right) U^{-1}\left(\partial_{k} U\right) U^{-1}\right]
$$

In vacuum configurations $N_{W}=N_{C S}$ integer. $\quad N_{W}-N_{C S}$ is gauge invariant

Baryon generation in SM

Cosmology: Inflation \rightarrow initial asymmetry is washed away
after reheating the Universe cools \rightarrow electroweak phase transition
If $m_{H}>67 \mathrm{GeV}$, electroweak phase transition $=$ crossover
\rightarrow not non-equilibrium enough
Csikor, Fodor, Heitger (1999)
First choice: extension of the SM
second choice: Inflation is not a GUT scale process
ends with the electroweak phase transition
Krauss, Trodden; Garcia-Bellido et al. (1999)
preheating in this case $=$ tachyonic instability \rightarrow large occupation numbers, classical approximation is valid
small momentum modes have large effective T
\rightarrow Chern-Simons number changes frequently
$T_{r}<T_{c} \rightarrow$ generated baryon number is not washed away

Hybrid Inflation

Higgs: Φ symmetry breaking potential Inflaton: Ψ mass term only
biquadtratic coupling
V_{0} ensures zero cosmological constant after transition

$$
V=V_{0}+\frac{1}{2} m_{\Psi}^{2} \Psi^{2}+\frac{1}{2}\left(\mu^{2}+g^{2} \Psi^{2}\right)|\Phi|^{2}+\frac{\lambda}{24}|\Phi|^{4}
$$

After slow roll inflaton crosses its critical value $\Psi_{c}=|\mu| / g$
\rightarrow tachyonic instability

In electroweak

 preheating quantum corrections \rightarrow inverted hybrid inflation inflaton rolls away from the origin

Questions to investigate

- What are the parameters of the model, what are the predictions? new particle: inflaton two zero spin scalar: $m_{1} \approx 130 \mathrm{GeV} \quad m_{2} \approx 400 \mathrm{GeV}$ van Tent, Smit, Tranberg (04)
- How much CP violation is needed for the experimental vaule of the n_{B} / n_{γ} ratio?

Tranberg, Smit(03)

- Is the $N_{C S}$ generated in local processes?
(sphaleron transition?)
How is the zero temperatue sphaleron picture modified? (Non-equilibrium situation)

To study this question one doesn't need the CP-violating term in the action. (which just shifts the average)

Methods of numerical investigations

Reheating: High occupation numbers in the low- k region
Classical approximation can be applied compared with 2PI: Classical approximation is valid

Arrizabalaga, Smit, Tranberg (04)
Method: Solving classical EOM on a cubic space-time lattice.
Initial Conditions: mimicking quantum ground state
Each mode with momentum k should have energy: $\epsilon_{k}=\frac{1}{2} \omega_{k}$
Gauge fields can have zero energy: excited via the source term in their EOM
High momentum Higgs fields should also have zero energy:
No renormalization necessary, $V_{\text {pot }} \gg \epsilon_{\text {noise }}$
\rightarrow Only fill scalar modes with $k^{2}<m^{2}$
Problem with Gauss constraint and $Q_{\text {total }}=0$
Construct initial scalar fields with Monte Carlo sampling Assign E_{L} to satisfy Gauss constraint.

Modelling the mass switch done by the inflaton field:
Quench: At $t=0 \quad m_{\text {Higgs }}^{2} \rightarrow-m_{\text {Higgs }}^{2}$

Simulations in 3D

Effective CP-violating term coming from integrating out (heavy) fermions

$$
\frac{3 \delta_{C P}}{16 \pi^{2} M^{2}} \Phi^{+} \Phi \operatorname{Tr}\left(F^{\mu \nu} \tilde{F}_{\mu \nu}\right)
$$

Ensemble average over a number of runs: measure the resulting

$$
<\Delta N_{C S}>=\frac{1}{3} \Delta N_{B}
$$

in function of $\delta_{C P}$
Using $M=m_{W}$, required $\delta_{C P}$ for observed baryon asymmetry

$$
\delta_{C P} \approx 0.7 \times 10^{-5}
$$

Tranberg, Smit (03)

Half-knot in 1 dimension

Integrated to the whole space winding number should be integer locally there is a big density if $|\Phi|$ is small for typical configurations $\approx 1 / 2$ in 1 dimension:

$$
\Phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)=\frac{\rho}{\sqrt{2}} \Omega, \quad \Omega \in U(1)
$$

winding density: $\left(x \equiv x^{1}\right)$: $n_{W}=-\frac{i}{2 \pi} \Omega^{*} \partial_{x} \Omega=\frac{1}{2 \pi \rho^{2}}\left(\phi_{1} \partial_{x} \phi_{2}-\phi_{2} \partial_{x} \phi_{1}\right)$
e.g. : $\phi_{1}(x)=\cos (x)-0.95 \phi_{2}=\sin (x)$
formalized "half-knot": with linear approximation

$$
\phi_{\alpha}=c_{\alpha}+d_{\alpha} x, \quad \alpha=1,2 .
$$

circle \rightarrow straight line contribution to winding number:
$N_{W}^{\text {peak }} \equiv \int_{-\infty}^{\infty} d x n_{W}=$
$=\frac{1}{2} \operatorname{sgn}\left(c_{1} d_{2}-c_{2} d_{1}\right)= \pm \frac{1}{2}$

Half-knot in 3 dimensions

Parametrization with real fields:

$$
\Phi=\frac{1}{\sqrt{2}}\left(\phi_{4} 1+i \phi_{a} \tau^{a}\right),
$$

Configuration with waves:

$$
\phi_{\alpha}(x)=\sin \left(\mathbf{x} \cdot \mathbf{k}_{\alpha}-\epsilon_{\alpha}\right), \quad \alpha=1, \ldots, 4 .
$$

The Higgs is small arounf the origin if $\epsilon_{\alpha} \ll 1$ formalized with linear approximation:

$$
\phi_{\alpha}(\mathbf{x})=c_{\alpha}+d_{\alpha k} x^{k} \quad n_{\mathrm{W}}=\frac{1}{2 \pi^{2} \rho^{4}} \operatorname{det} M
$$

where M is a 4×4 matrix of the $d_{\alpha 1}, d_{\alpha 2}, d_{\alpha 3}, c_{\alpha}$ vectors

$$
N_{W}=0.43
$$

$$
N_{W}=\int d^{3} x n_{W}=\frac{1}{2} \operatorname{sgn} \operatorname{det} M= \pm \frac{1}{2}
$$

The sign might change if $|\Phi|=0$ in a point ("goes to the other side")

Half-knots in tachyonic instability

Parameters:

$$
\begin{aligned}
& S=-\int d^{4} x\left[\frac{1}{2 g^{2}} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \operatorname{Tr}\left[\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi\right]+\lambda\left(\frac{1}{2} \operatorname{Tr}\left[\Phi^{\dagger} \Phi\right]-\frac{v^{2}}{2}\right)^{2}\right] \\
& g^{2}=4 / 9, \quad \lambda / g^{2}=1 / 4 \rightarrow m_{H} / m_{W}=\sqrt{2} \quad a m_{H}=0.35 \quad N^{3}=60^{3}
\end{aligned}
$$

Number of zeros of the Higgs: $\sim k_{\text {max }}^{3}$, modes with smaller k grow faster: \rightarrow Number of zeros decreases
early half-knots gauge fields are excited after formation, $N_{C S}$ approaches N_{W}. late half-knots appeares where the Higgs-field gets small

CP-violation can act on the late half-knot

Typical trajectories

discretisation errors \rightarrow winding number is not integer initially
at $m_{H} t \approx 50: N_{C S} \approx N_{W}$
$\int\left|n_{W}\right| d^{3} x \sim$ number of configurations
peaks in energy density:
$t=10,18,26$
\rightarrow local process
Generations: At each roll-back of the Higgs field new "blobs" might appear

Early half-knot

Quantities integrated in a sphere

$$
N_{W}^{\text {ball }}=\int_{\text {ball }} d^{3} x n_{W}
$$

Center is located by the peaks in winding density
ρ^{2} starts to grow later, shows little damping
\rightarrow oscillon?
Energy in the sphere \sim Sphaleron energy

Late transition

If the Higgs is small in the center of a halfknot $\rightarrow N_{W}$ might change sign
between $t=23$ and $t=24$ the half-knot changes sign
while $\quad N_{W}: \quad-1 \rightarrow 0$

ρ^{2} profile:

Late transition

quantities integrated in a sphere
at $t=23$ sign changes
$N_{C S}$ varies slowly

Sphaleron transition:

$N_{C S}$ grows $O(1)$
N_{W} jumps $O(1)$
Higgs field has a zero in the center energy around the defect $O\left(E_{\text {sph }}\right)$

Distribution of the winding number

Independent defects, in a big enough volume: Poisson distribution

$$
\text { probability of } n \text { defects } \quad P_{n}=\frac{\bar{n}^{n}}{n!} e^{-\bar{n}}
$$

+1 winding number with probability: $a \quad$ ($a=1 / 2$ with no CP-violation)

$$
N_{w}=k-(n-k) \quad k \text { is the number of positive defects }
$$

Probability of arriving at a fixed N_{w} :

$$
P_{N_{w}}=\sum_{n=\left|N_{w}\right|}^{\infty}\binom{n}{k} a^{k}(1-a)^{n-k} P_{n} \quad k=\frac{N_{w}+n}{2}
$$

Summing gives Bessel function of the first kind:

$$
P_{N_{w}}=I_{N_{w}}(2 \bar{n} \sqrt{a(1-a)})(a(1-a))^{-N_{w} / 2} a^{N_{w}} \exp (-\bar{n})
$$

No CP-violation $\rightarrow P_{N}=I_{N}(\bar{n}) \exp (-\bar{n})$

Distribution of the winding number

With half-knot: each defect has $N_{W}=\frac{1}{2}$
odd number of defects: $\pm \frac{1}{2}$ with equal probability

$$
P_{N}^{(1 / 2)}(r)=e^{-\bar{n}}\left[I_{2 N}(\bar{n})+\frac{1}{2} I_{2 N+1}(\bar{n})+\frac{1}{2} I_{2 N-1}(\bar{n})\right]
$$

If we restrict to even number of defects:

$$
P_{N}^{\prime(1 / 2)}(r)=I_{2 N}(r) / \cosh (r)
$$

Two distribution gives similar results:

Conclusions

- In $S U(2)$ tachyonic preheating the Chern-Simons number change can be described with local objects: Half-knots
- These local objects have typically $\pm \frac{1}{2}$ winding number
- Sphaleron-like transition between opposite sign half-knots
- The distribution of N_{W} supports the idea of half-knots
- The defects are produced in "generations"

