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Baryon asymmetry, from the theory of nucleosynthesis:
ng/n, ~6.5-1071°
Sakharov conditions (1967)

e Baryon number is non-conserved

e C and CP are non-conserved

e Non-equilibrium processes




Baryon number generation in SM

Classically divergence free currents get divergences after quantization

Adler-Bell-Jackiw (1969), Fujikawa (1979) U — eHatb75)0(2)

e left handed: SU2)L, xU(1l)y
In the Standard Model:

e right handed: U(l)y
Baryon current: JB —u%ju, + 1d%d from anomaly:
NF a Tauv £y
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where F**" is the SU(2), field strength and f** is the U(1)y field strength
Leptons: same contribution — B — L IS conserved

0,J° =

y 322( 950, K" + g70,k,,)

where K, is the Chern-Simons current. A B = 3A N g




____Chern-Simons Nu

ber and Winding Numbe
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Gauge transformation: A; — UA,U ! + giz&iUU—l
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Vacuum configurations with standard maps:
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Classical Vacua of the broken phase:

vac

G — {U — (U(l))n,Ai — éaz-UU—l, d=U-(0,v), Nog = n}



Sphaleron

Configurations betwwen two different vacua: Sphaleron
Klinkhammer, Manton (1984); Forgacs, Horvath (1984)

A= 3f(gw)UOC)(P>’z'(]0C) U = U(l)(a:o =0, z;)
g

o= \%mgw)(]w (0,v)  Nos(Sphaleroh = %

Dublett Higgs:

o = ] — Py %= 2o+ . U(z) € SU

If p =£ 0, the Higgs winding number is defined:

Ny = /dg:vnw ny eV T [(0:U) U~ (9;U) U~ (0uU)U ]

T 242

In vacuum configurations Ny, = N¢og integer. Ny — Neg IS gauge invariant




Baryon generation in SM

Cosmology: Inflation — initial asymmetry is washed away
after reheating the Universe cools — electroweak phase transition

If myg > 67 GeV, electroweak phase transition = crossover
— not non-equilibrium enough
Csikor, Fodor, Heitger (1999)

First choice: extension of the SM

second choice: Inflation is not a GUT scale process
ends with the electroweak phase transition
Krauss, Trodden; Garcia-Bellido et al. (1999)

preheating in this case= tachyonic instability — large occupation numbers,
classical approximation is valid

small momentum modes have large effective T’
— Chern-Simons number changes frequently

T, < T. — generated baryon number is not washed away



Hybrid Inflation

Higgs: ® symmetry breaking potential
Inflaton: ¥ mass term only
biquadtratic coupling

: . Linde (1993)
Vi ensures zero cosmological constant after transition

1 1 A
V=V + 5mgl + S (u* + g" %)@ + 7 |

After slow roll inflaton crosses its critical value V. = |u|/g
— tachyonic instability

Inflaton -
In electroweak A VW)
preheating
guantum corrections
— inverted hybrid
inflation /
Inflaton rolls away
from the origin




~_Questions to investigate

e What are the parameters of the model, what are the predictions?
new particle: inflaton two zero spin scalar: m; ~ 130GeV my =~ 400GeV
van Tent, Smit, Tranberg (04)

e How much CP violation is needed for the experimental vaule of the ng/n.,
ratio?
Tranberg, Smit(03)

e Is the N-s generated in local processes?
(sphaleron transition?)

How is the zero temperatue sphaleron picture modified?
(Non-equilibrium situation)

To study this question one doesn’t need the CP-violating term in the action.
(which just shifts the average)




~Methods of numerical investigations

Reheating: High occupation numbers in the low-£ region
Classical approximation can be applied
compared with 2PI: Classical approximation is valid
Arrizabalaga, Smit, Tranberg (04)

Method: Solving classical EOM on a cubic space-time lattice.

Initial Conditions: mimicking guantum ground state
Each mode with momentum k£ should have energy: ¢, = %wk

Gauge fields can have zero energy: excited via the source term in their EOM

High momentum Higgs fields should also have zero energy:
No renormalization necessary, Vot > €noise

— Only fill scalar modes with &2 < m?

Problem with Gauss constraint and Q;,:q; = 0
Construct initial scalar fields with Monte Carlo sampling
Assign E;, to satisfy Gauss constraint.

Modelling the mass switch done by the inflaton field:

2 2
mHz'ggs — _mHiggs

Quench: Att =0




Simulations in 3D 5

Effective CP-violating term coming ¢ o
from integrating out (heavy) fermions ir I\
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Half-knot In 1 dimension

Integrated to the whole space winding number should be integer
locally there is a big density if |®| is small

for typical Configurations ~ 1/2 In 1 dimension:
— : ( . ) — (1)
O =— (g1 +1i92) =—=Q, QeU(l).
\/i ' . \/i

winding density: (z = 5131): nw = —% %0, = #pQ (qblabe — ¢28$§/51)
e.g. : ¢1(x) = cos(x) — 0.95¢ = sin(x)

formalized “half-knot”:  with
linear approximation

Oo = Coq +doxr, a=1,2.

circle — straight line
contribution to winding number:

peak __ oo .
Nyt = 2 dznw =

— %Sgn(cldg — Cle) — ﬂ:%
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Half-knot In 3 dimensions

Parametrization with real fields:

¢ = % (¢41 + iqbaTa) 9

Configuration with waves:

gba(aj):sin(x-ka—ea), ()4:]_7”.74.

The Higgs is small arounf the origin if ¢, < 1
formalized with linear approximation:

1
¢Q(X) = Cq T dakxk nw — W det M

where M is a 4 x 4 matrix of the d,i1, dy2, das, Ca
vectors Ny = 0.43

1 1
Nw = /d3xnw — isgndetM — :|:§

The sign might change if |®| = 0 in a point (“goes to the other side”)



If-| in tachvonic instabili

Parameters:

1 L1 1 w2\
S = / d [292TrFWF” +5T|(D, @) D | + A (5 Tr [6T®] — 5) ]

g% = 4/9, NG =1/4 - mg/mw=v2 amg=035 N3=603

Number of zeros of the Higgs: ~ k3 __, modes with smaller k& grow faster:—
Number of zeros decreases

early half-knots gauge fields are excited after formation, Nog approaches Ny .
late half-knots appeares where the Higgs-field gets small

CP-violation can act on the late half-knot




Typical trajectories

discretisation errors — winding number is
not integer initially
at mygt = 50 : Nog = Nw

[ |nw|d?z ~ number of configurations

peaks in energy density:
t = 10,18, 26
— |ocal process

Generations: At each roll-back of the
Higgs field new “blobs” might appear
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Quantities integrated in a sphere
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Center is located by the peaks in winding
density

p? starts to grow later, shows little damping
— oscillon?

Energy in the sphere ~ Sphaleron energy
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If the Higgs is small in the center of a half-

knot — Ny, might change sign

between t = 23 and ¢ = 24 the half-knot
changes sign
while

NW:

p? profile:
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| ate transition
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N¢g varies slowly
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Sphaleron transition: 16|
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__Distribution of the winding humber

Independent defects, in a big enough volume: Poisson distribution

probability ofn defects P, = —e™"

+1 winding number with probability: @ (e = 1/2 with no CP-violation)
Ny =k—(n—k) k is the number of positive defects

Probability of arriving at a fixed N,,:

oo

Ny
PNw — Z (Z) &k(l o a’)n_kpn k= 2+ -
n=|Ny|

Summing gives Bessel function of the first kind:

Py, = Iy, (%W(l _ a)) (a(1 — a)) " Ne/? N oxp(—7)

No CP-violation— Py = Iy (1) exp(—n)




__Distribution of the winding nu

ber

With half-knot: each defect has Ny = 1
odd number of defects: i% with equal probability

— 1
PJ(\71/2)("“) =e " |Lan(m) + §I2N+1(ﬁ) —-

If we restrict to even number of defects:

1
§IQN—1(W)

P (r) = In(r)/ cosh(r)

Two distribution gives similar results:
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Conclusions

In SU(2) tachyonic preheating the Chern-Simons number change can be
described with local objects: Half-knots

These local objects have typically i% winding number

Sphaleron-like transition between opposite sign half-knots

The distribution of Ny, supports the idea of half-knots

The defects are produced in “generations”




