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Motivation

Astrophysical interest in the accurate determination of QCD Equation of State.

• Possible cosmological effects of using realistic EoS of QCD
(see, for example: Hindmarsh, Philipsen)

• Stucture of compact stars:

important task:
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Exploration of the ground state of QCD under the variation of its parameters

This study: Determination of the shape of the phase boundary in the
mπ – mK –plane, at zero chemical potential.
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The phase diagram for Nf = 3, and µ = 0

Order parameter for mi = 0 (Nf ≥ 2): M ij = 〈q̄i
Lqj

R〉

SUL(Nf)× SUR(Nf)× UV (1) T≤Tc=⇒
breaks down

SUV (Nf)× UV (1)

Familiar points:

I. physical point: crossover

II. ms, mq →∞: 1st order transition

III. mq,s = 0: 1st order transition

IV. ms →∞, mq = 0: 2nd order transition

V. tricritical point at finite ms ?

VI. endpoint of 1st order region along the
diagonal (on lattice: mπdiag ≤ 65 MeV)
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The SU(3)L × SU(3)R linear sigma model.

q̄i
Lqj

R bound states → mesons transform as (8, 1)⊕ (1, 8) multiplets

σi(0+): scalar nonet (1,8) πi(0−): pseudoscalar nonet (8,1)

M :=
1√
2

8∑
i=0

(σi+iπi)λi λi : i = 1 . . . 8 Gell-Mann matrices, and λ0 :=

√
2
3
1

The most general SU(3)L × SU(3)R symmetric, renormalizable Lagrangian
constructed with M is

Lsymm(M) =
1
2

Tr(∂µM†∂µM + µ2M†M)− f1

(
Tr(M†M)

)2 − f2Tr(M†M)2 −

−g
(
det(M) + det(M†)

)
• µ2 > 0 allows spontaneously broken ground states.

• Two independent quartic couplings (f1, f2).

• The determinant term breaks U(3) symmetry → SU(3) (U(1)A anomaly)
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Symmetry breaking

Explicit symmetry breaking terms:

L = Lsymm+εxσx + εyσy + ε3σ3 ,

(
σx

σy

)
:=

1√
3

(√
2 1

1 −
√

2

) (
σ0

σ8

)
,

where σx and σy are the strange and non-strange combination of the fields.

The external fields are proportional to the quark masses:

εx ∼ mq, εy ∼ ms, ε3 ∼ mu −md

We restrict ourselves to the case ε3 = 0 (mu, ms are degenerate).

If εx 6= 0 and/or µ2 > 0 then the order parameters are: x := 〈σx〉0 , y =: 〈σy〉0

PCAC relations can be obtained for the pion and kaon decay constants:

fim
2
πi

:= 〈0|∂µJµ
5 |πi〉 =⇒

{
fπm2

π = εx i = 1, 2, 3
fKm2

K = 1
2

(
εx + 2

√
2εy

)
i = 4, 5, 6, 7 .
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The Lagrangian of the shifted fields

Shifting the fields by vacuum expectation values: σx→σx − x ; σy→σy − y

• the vanishing of the 1st order terms gives the two equations of states (EoS):
Ex := ∂L

∂σx

∣∣∣
0

= −εx − µ2 + 2gxy + 4f1xy2 + (4f1 + 2f2)x3 = 0,

Ey := ∂L
∂σy

∣∣∣
0

= −εy − µ2 + 2gx2 + 4f1x
2y + (4f1 + 4f2)y3 = 0

• the coefficients of the 2nd order terms are the mass squares of mesons :

MPS(x, y) : m2
π , m2

K ,

(
m2

η88
m2

η08

m2
η08

m2
η00

)
; MS(x, y) : m2

a0
, m2

κ ,

(
m2

σ88
m2

σ08

m2
σ08

m2
σ00

)
Note the mixing in the (0 - 8)/(x – y) sectors.

After a straightforward calculation, two Ward-identities can be obtained:

εx = mπ
2x , εy = 1√

2
(mK

2 −mπ
2)x + mK

2y

which guarantee the Goldstone theorem,

and PCAC relations are simplified : fπ = x , fK = 1√
2
y + 1

2x
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Determination of parameters for arbitrary (mπ,mK)
The unknown parameters (µ0, f1, f2, g, εx, εy) and the condensates (x, y) can
be determined at tree level by using the mass spectra and the PCAC relations.

input: output: predictions:
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}
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Ex = 0
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}
=⇒
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where M2
η = m2

η00
+ m2

η88

• At tree level, µ0, f1 appear only in the
combination:

M2 = −µ2 + 4f1(x2 + y2)
– except for the admixed scalar masses –

mπ, mK dependence of mσ, mf0 not known
=⇒ assumptions is needed (A1, A2)

• εx, εy, x, y, f1, f2, g, µ0, are known as
the function of mπ, mK, fπ, fK, Mη, But
going away from the physical point, we keep
in mind their pion, kaon mass dependence:

fπ(mπ,mK), fK(mπ,mK), Mη(mπ,mK)

provided by the U(3) ChPT .

7



Predictions after fixing the parameters

Comparison of the predicted mK dependence of the η, η
′

mass by LσM with
the results of U(3) ChPT.
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Remarkable agreement up to mK ≈ 800 MeV even for mπ = 0.
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Thermodynamics at one-loop level

• tree level mass squares: m2
i → −µ2 as T is increasing =⇒ Perturbation

theory fails at finite T =⇒ resummation is needed

• Optimized perturbation theory (OPT): the mass term of the Lagrangian is
reshuffled by a temperature dependent effective mass M(T ):

Lmass = −1
2
M2(T )TrM†M +

1
2

∆m2TrM†M : one-loop counterterm︷ ︸︸ ︷
(µ2

0 + M2(T ))TrM†M .

• −µ2 → M2(T ) replacement in the propagators → preserving the relations
among tree-level masses → Goldstone theorem, renormalization are assured

One-loop masses: M2
ij(T ) = iG(p, T )−1

ij

∣∣
p=0

= m2
ij −∆m2 + Σij(0, T )

Self-energy: Σij(0, T )=
∑
k l

Gkk

f ikkj

Gkk

Gll

+ p=0 lkj
g

g
ikl

M2
i (T ) = m2

i (T , x, y)−∆m2(T ) +
∑

i

ci
jITP (mj(T , x, y), T )
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The principle of minimal sensitivity (PMS) → determination of M(T):

M2
π(T ) !=m2

π(T ) =⇒ M(T )2 = −µ2
0 +

∑
i c

π
i ITP (mi(T , x, y), T )

this can be rewritten into a Gap equation for the pion mass:

mπ
2= −µ2

0 + (4f1 + 2f2)x2 + 4f1y
2 + 2gy +

∑
i c

π
i (x, y)ITP (mi(mπ, x, y), T )

The one point functions of σx and σy gives the equations of states:

σx,y: + +
E m 2

x,y

x,y

a0,κ,σ,f0∑
k=π,K,η,η

′

Gkk

t
x,y

k

= 0,

εx = −µ2
0 + 2gxy + 4f1xy2 + (4f1 + 2f2)x3 +

∑
i t

x
i (x, y)ITP (mi(mπ, x, y), T )

εy = −µ2
0 + 2gx2 + 4f1x

2y + (4f1 + 4f2)y3 +
∑

i t
y
i (x, y)ITP (mi(mπ, x, y), T )

Tadpole: ITP (m,T )=
1

16π2
m2 ln

m2

l2︸ ︷︷ ︸
Il
TP

(m)

+
∫

d3k
(2π)3

(
1
ω2

)
1

eβω − 1︸ ︷︷ ︸
IT
TP

(m,T )

, IT
TP (m, 0) = 0

We omit the zero temperature contribution to avoid the one-loop redefinition of
parameters −→ quasiparticle approximation ITP = IT

TP .
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RESULTS I. Solution at the physical point: crossover
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RESULTS II. 1st order transition and the phase boundary

Decreasing pion mass:
−→ 1st order transition
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Typical 1st order transition for
mπ = 30 MeV, mK = 400 MeV

• x drives the transitions

• as the kaon mass decreases, the
crossover in y is getting more sharp

• critical temperature: Tc ≈ 150 MeV

Phase boundaries for different
parameteriztion
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Conclusions and further extension

• Sensivity of the 1st order – crossover boundary to the scalar spectra

• Physical point is rather distant from the the 1st order region

• mcrit ≈ 42± 23MeV for mπ = mK (in agreement with lattice results)

• Analougus investigation of the 3-flavour chiral quark model is in progress
=⇒ (T, µ) phase diagram of the physical space

13




