## First order finite temperature restoration of the chiral symmetry of QCD

Tamás Herpay*<br>Departmant of Physics of Complex Systems,<br>Eötvös University, Budapest

- The chiral symmetry of the QCD, the familiar points of the phase diagram
- Description of the $S U_{L}(3) \times S U_{R}(3)$ symmetric linear sigma model ( $L \sigma M$ )
- Parameterization of the model at $T=0$ for arbitrary $m_{\pi}, m_{K}$ in accordance with the chiral perturbation theory ( $C h P T$ )
- Thermodynamics in the framework of optimized perturbation theory
- Results
- Conclusion, possible extensions
†PhysRevD71:125017
*Collaborators: András Patkós, Zsolt Szép, Péter Szépfalusy


## Motivation

Astrophysical interest in the accurate determination of QCD Equation of State.

- Possible cosmological effects of using realistic EoS of QCD (see, for example: Hindmarsh, Philipsen)
- Stucture of compact stars:
important task:


Exploration of the ground state of QCD under the variation of its parameters
This study: Determination of the shape of the phase boundary in the $m_{\pi}-m_{K}$-plane, at zero chemical potential.

## The phase diagram for $N_{f}=3$, and $\mu=0$

Order parameter for $m_{i}=0\left(N_{f} \geq 2\right): M^{i j}=\left\langle\bar{q}_{L}^{i} q_{R}^{j}\right\rangle$

$$
S U_{L}\left(N_{f}\right) \times S U_{R}\left(N_{f}\right) \times U_{V}(1) \underset{\text { breaks down }}{\stackrel{T \leq T_{c}}{\Longrightarrow}} \quad S U_{V}\left(N_{f}\right) \times U_{V}(1)
$$

## Familiar points:

I. physical point: crossover
II. $m_{s}, m_{q} \rightarrow \infty$ : $1^{\text {st }}$ order transition
III. $m_{q, s}=0: 1^{\text {st }}$ order transition
IV. $m_{s} \rightarrow \infty, m_{q}=0: 2^{\text {nd }}$ order transition
V. tricritical point at finite $m_{s}$ ?
VI. endpoint of $1^{\text {st }}$ order region along the diagonal (on lattice: $m_{\text {ォdiag }} \leq 65 \mathrm{MeV}$ )


## The $S U(3)_{L} \times S U(3)_{R}$ linear sigma model.

$\bar{q}_{L}^{i} q_{R}^{j}$ bound states $\rightarrow$ mesons transform as $(8,1) \oplus(1,8)$ multiplets

$$
\sigma_{i}\left(0^{+}\right): \text {scalar nonet }(1,8) \pi_{i}\left(0^{-}\right) \text {: pseudoscalar nonet }(8,1)
$$

$M:=\frac{1}{\sqrt{2}} \sum_{i=0}^{8}\left(\sigma_{i}+i \pi_{i}\right) \lambda_{i} \quad \lambda_{i}: i=1 \ldots 8$ Gell-Mann matrices, and $\lambda_{0}:=\sqrt{\frac{2}{3}} 1$
The most general $S U(3)_{L} \times S U(3)_{R}$ symmetric, renormalizable Lagrangian constructed with $M$ is

$$
\begin{aligned}
L^{\text {symm }}(M)= & \frac{1}{2} \operatorname{Tr}\left(\partial_{\mu} M^{\dagger} \partial^{\mu} M+\mu^{2} M^{\dagger} M\right)-f_{1}\left(\operatorname{Tr}\left(M^{\dagger} M\right)\right)^{2}-f_{2} \operatorname{Tr}\left(M^{\dagger} M\right)^{2}- \\
& -g\left(\operatorname{det}(M)+\operatorname{det}\left(M^{\dagger}\right)\right)
\end{aligned}
$$

- $\mu^{2}>0$ allows spontaneously broken ground states.
- Two independent quartic couplings $\left(f_{1}, f_{2}\right)$.
- The determinant term breaks $U(3)$ symmetry $\rightarrow S U(3) \quad\left(U(1)_{A}\right.$ anomaly)


## Symmetry breaking

Explicit symmetry breaking terms:

$$
L=L^{s y m m}+\epsilon_{x} \sigma_{x}+\epsilon_{y} \sigma_{y}+\epsilon_{3} \sigma_{3}, \quad\binom{\sigma_{x}}{\sigma_{y}}:=\frac{1}{\sqrt{3}}\left(\begin{array}{cc}
\sqrt{2} & 1 \\
1 & -\sqrt{2}
\end{array}\right)\binom{\sigma_{0}}{\sigma_{8}},
$$

where $\sigma_{x}$ and $\sigma_{y}$ are the strange and non-strange combination of the fields.
The external fields are proportional to the quark masses:

$$
\epsilon_{x} \sim m_{q}, \epsilon_{y} \sim m_{s}, \epsilon_{3} \sim m_{u}-m_{d}
$$

We restrict ourselves to the case $\epsilon_{3}=0$ ( $m_{u}, m_{s}$ are degenerate).
If $\epsilon_{x} \neq 0$ and/or $\mu^{2}>0$ then the order parameters are: $x:=\left\langle\sigma_{x}\right\rangle_{0}, y=:\left\langle\sigma_{y}\right\rangle_{0}$
PCAC relations can be obtained for the pion and kaon decay constants:

$$
f_{i} m_{\pi_{i}}^{2}:=\langle 0| \partial_{\mu} J_{5}^{\mu}\left|\pi_{i}\right\rangle \Longrightarrow \begin{cases}f_{\pi} m_{\pi}^{2}=\epsilon_{x} & i=1,2,3 \\ f_{K} m_{K}^{2}=\frac{1}{2}\left(\epsilon_{x}+2 \sqrt{2} \epsilon_{y}\right) & i=4,5,6,7\end{cases}
$$

## The Lagrangian of the shifted fields

Shifting the fields by vacuum expectation values:

$$
\sigma_{x} \rightarrow \sigma_{x}-x ; \quad \sigma_{y} \rightarrow \sigma_{y}-y
$$

- the vanishing of the $1^{\text {st }}$ order terms gives the two equations of states $(E o S)$ :

$$
\begin{aligned}
& E_{x}:=\left.\frac{\partial L}{\partial \sigma_{x}}\right|_{0}=-\epsilon_{x}-\mu^{2}+2 g x y+4 f_{1} x y^{2}+\left(4 f_{1}+2 f_{2}\right) x^{3}=0, \\
& E_{y}:=\left.\frac{\partial L}{\partial \sigma_{y}}\right|_{0}=-\epsilon_{y}-\mu^{2}+2 g x^{2}+4 f_{1} x^{2} y+\left(4 f_{1}+4 f_{2}\right) y^{3}=0
\end{aligned}
$$

- the coefficients of the $2^{\text {nd }}$ order terms are the mass squares of mesons :

$$
M_{P S}(x, y): m_{\pi}^{2}, m_{K}^{2},\left(\begin{array}{ll}
m_{\eta_{88}}^{2} & m_{\eta_{08}}^{2} \\
m_{\eta_{08}}^{2} & m_{\eta_{00}}^{2}
\end{array}\right) ; M_{S}(x, y): m_{a_{0}}^{2}, m_{\kappa}^{2},\left(\begin{array}{cc}
m_{\sigma_{88}}^{2} & m_{\sigma_{08}}^{2} \\
m_{\sigma_{08}}^{2} & m_{\sigma_{00}}^{2}
\end{array}\right)
$$

Note the mixing in the $(0-8) /(x-y)$ sectors.
After a straightforward calculation, two Ward-identities can be obtained:

$$
\epsilon_{x}=m_{\pi}^{2} x, \quad \epsilon_{y}=\frac{1}{\sqrt{2}}\left(m_{K}^{2}-m_{\pi}^{2}\right) x+m_{K}^{2} y
$$

which guarantee the Goldstone theorem, and PCAC relations are simplified: $f_{\pi}=x, f_{K}=\frac{1}{\sqrt{2}} y+\frac{1}{2} x$

## Determination of parameters for arbitrary $\left(m_{\pi}, m_{K}\right)$

The unknown parameters ( $\mu_{0}, f_{1}, f_{2}, g, \epsilon_{x}, \epsilon_{y}$ ) and the condensates ( $x, y$ ) can be determined at tree level by using the mass spectra and the PCAC relations.
input: output: predictions:
\(\left.\left.\left.$$
\begin{array}{c}f_{\pi} \\
f_{K}\end{array}
$$\right\} \Longrightarrow $$
\begin{array}{c}x \\
m_{\pi} \\
m_{K} \\
M_{\eta}^{2}\end{array}
$$\right\} \Longrightarrow \begin{array}{c} <br>
f_{2} <br>

M^{2}\end{array}\right\} \Longrightarrow\)| $m_{\eta}$ |
| :---: |
| $m_{\eta^{\prime}}$ |
| $\theta_{\eta}$ |
| $m_{a_{0}}$ |
| $m_{\kappa}$ |

$\left.\left.\begin{array}{l}\mathrm{A} 1 \& M^{2} \\ \mathrm{~A} 2 \& M^{2}\end{array}\right\} \Longrightarrow \begin{array}{c}\mu^{2} \\ f_{1}\end{array}\right\} \Longrightarrow \begin{array}{r}m_{\sigma} \\ m_{f_{0}} \\ \theta_{\sigma}\end{array}$

$$
\left.\begin{array}{l}
E_{x}=0 \\
E_{y}=0
\end{array}\right\} \Longrightarrow \begin{aligned}
& \epsilon_{x} \\
& \epsilon_{y}
\end{aligned}
$$

where $M_{\eta}^{2}=m_{\eta_{00}}^{2}+m_{\eta_{88}}^{2}$

- At tree level, $\mu_{0}, f_{1}$ appear only in the combination:

$$
M^{2}=-\mu^{2}+4 f_{1}\left(x^{2}+y^{2}\right)
$$

- except for the admixed scalar masses $m_{\pi}, m_{K}$ dependence of $m_{\sigma}, m_{f_{0}}$ not known $\Longrightarrow$ assumptions is needed (A1, A2)
- $\epsilon_{x}, \epsilon_{y}, x, y, f_{1}, f_{2}, g, \mu_{0}$, are known as the function of $m_{\pi}, m_{K}, f_{\pi}, f_{K}, M_{\eta}$, But going away from the physical point, we keep in mind their pion, kaon mass dependence:

$$
f_{\pi}\left(m_{\pi}, m_{K}\right), f_{K}\left(m_{\pi}, m_{K}\right), M_{\eta}\left(m_{\pi}, m_{K}\right)
$$

provided by the $U(3) C h P T$.

## Predictions after fixing the parameters

Comparison of the predicted $m_{K}$ dependence of the $\eta, \eta^{\prime}$ mass by $L \sigma M$ with the results of $U(3)$ ChPT.


Remarkable agreement up to $m_{K} \approx 800 \mathrm{MeV}$ even for $m_{\pi}=0$.

## Thermodynamics at one-loop level

- tree level mass squares: $m_{i}^{2} \rightarrow-\mu^{2}$ as T is increasing $\Longrightarrow$ Perturbation theory fails at finite $\mathrm{T} \Longrightarrow$ resummation is needed
- Optimized perturbation theory (OPT): the mass term of the Lagrangian is reshuffled by a temperature dependent effective mass $M(T)$ :

$$
L_{\text {mass }}=-\frac{1}{2} M^{2}(T) \operatorname{Tr} M^{\dagger} M+\frac{1}{2} \overbrace{\left(\mu_{0}^{2}+M^{2}(T)\right) \operatorname{Tr} M^{\dagger} M}^{\Delta m^{2} \operatorname{Tr} M^{\dagger} M \text { : one-loop counterterm }} .
$$

- $-\mu^{2} \rightarrow M^{2}(T)$ replacement in the propagators $\rightarrow$ preserving the relations among tree-level masses $\rightarrow$ Goldstone theorem, renormalization are assured One-loop masses: $\quad M_{i j}^{2}(T)=\left.i G(\mathbf{p}, T)_{i j}^{-1}\right|_{\mathbf{p}=\overline{\overline{0}}}=m_{i j}^{2}-\Delta m^{2}+\Sigma_{i j}(\mathbf{0}, T)$

Self-energy:

$$
M_{i}^{2}(T)=m_{i}^{2}(T, x, y)-\Delta m^{2}(T)+\sum_{i} c_{j}^{i} I_{T P}\left(m_{j}(T, x, y), T\right)
$$

The principle of minimal sensitivity (PMS) $\rightarrow$ determination of $\mathrm{M}(\mathrm{T})$ :

$$
M_{\pi}^{2}(T) \stackrel{!}{=} m_{\pi}^{2}(T) \Longrightarrow M(T)^{2}=-\mu_{0}^{2}+\sum_{i} c_{i}^{\pi} I_{T P}\left(m_{i}(T, x, y), T\right)
$$

this can be rewritten into a Gap equation for the pion mass:

$$
m_{\pi}^{2}=-\mu_{0}^{2}+\left(4 f_{1}+2 f_{2}\right) x^{2}+4 f_{1} y^{2}+2 g y+\sum_{i} c_{i}^{\pi}(x, y) I_{T P}\left(m_{i}\left(m_{\pi}, x, y\right), T\right)
$$

The one point functions of $\sigma_{x}$ and $\sigma_{y}$ gives the equations of states:


$$
\begin{aligned}
& \epsilon_{x}=-\mu_{0}^{2}+2 g x y+4 f_{1} x y^{2}+\left(4 f_{1}+2 f_{2}\right) x^{3}+\sum_{i} t_{i}^{x}(x, y) I_{T P}\left(m_{i}\left(m_{\pi}, x, y\right), T\right) \\
& \epsilon_{y}=-\mu_{0}^{2}+2 g x^{2}+4 f_{1} x^{2} y+\left(4 f_{1}+4 f_{2}\right) y^{3}+\sum_{i} t_{i}^{y}(x, y) I_{T P}\left(m_{i}\left(m_{\pi}, x, y\right), T\right)
\end{aligned}
$$

Tadpole: $I_{T P}(m, T)=\underbrace{\frac{1}{16 \pi^{2}} m^{2} \ln \frac{m^{2}}{l^{2}}}_{I_{T P}^{l}(m)}+\underbrace{\int \frac{\mathrm{d}^{3} \mathbf{k}}{(2 \pi)^{3}}\left(\frac{1}{\omega^{2}}\right) \frac{1}{e^{\beta \omega}-1}}_{I_{T P}^{T}(m, T)}, I_{T P}^{T}(m, 0)=0$
We omit the zero temperature contribution to avoid the one-loop redefinition of parameters $\longrightarrow$ quasiparticle approximation $I_{T P}=I_{T P}^{T}$.

## RESULTS I. Solution at the physical point: crossover


a) order parameters,
b) mixing angles
c) and d) tree-level masses

## RESULTS II. $1^{\text {st }}$ order transition and the phase boundary

Decreasing pion mass: $\longrightarrow 1^{\text {st }}$ order transition


Typical $1^{\text {st }}$ order transition for $m_{\pi}=30 \mathrm{MeV}, m_{K}=400 \mathrm{MeV}$

- $x$ drives the transitions
- as the kaon mass decreases, the crossover in y is getting more sharp
- critical temperature: $T_{c} \approx 150 \mathrm{MeV}$

Phase boundaries for different parameteriztion


## Conclusions and further extension

- Sensivity of the $1^{\text {st }}$ order- crossover boundary to the scalar spectra
- Physical point is rather distant from the the $1^{\text {st }}$ order region
- $m_{\text {crit }} \approx 42 \pm 23 \mathrm{MeV}$ for $m_{\pi}=m_{K} \quad$ (in agreement with lattice results)
- Analougus investigation of the 3-flavour chiral quark model is in progress $\Longrightarrow(T, \mu)$ phase diagram of the physical space

