First order finite temperature restoration of the chiral symmetry of QCD

Tamás Herpay*

Departmant of Physics of Complex Systems, Eötvös University, Budapest

- The chiral symmetry of the QCD, the familiar points of the phase diagram
- Description of the $SU_L(3) \times SU_R(3)$ symmetric linear sigma model ($L\sigma M$)
- Parameterization of the model at T = 0 for arbitrary m_{π} , m_K in accordance with the chiral perturbation theory (ChPT)
- Thermodynamics in the framework of optimized perturbation theory
- Results
- Conclusion, possible extensions

[†]PhysRevD71:125017*Collaborators: András Patkós, Zsolt Szép, Péter Szépfalusy

Motivation

Astrophysical interest in the accurate determination of QCD Equation of State.

- Possible cosmological effects of using realistic EoS of QCD (see, for example: Hindmarsh, Philipsen)
- Stucture of compact stars:

important task:

Exploration of the ground state of QCD under the variation of its parameters

This study: Determination of the shape of the phase boundary in the $m_{\pi} - m_{K}$ –plane, at zero chemical potential.

The phase diagram for $N_f=3$, and $\mu=0$

Order parameter for
$$m_i = 0$$
 ($N_f \ge 2$): $M^{ij} = \langle \bar{q}_L^i q_R^j \rangle$

 $SU_L(N_f) \times SU_R(N_f) \times U_V(1)$

Familiar points:

- I. physical point: crossover
- **II.** $m_s, m_q \rightarrow \infty$: 1st order transition
- **III.** $m_{q,s} = 0$: 1st order transition
- IV. $m_s \rightarrow \infty$, $m_q = 0$: 2nd order transition
- V. tricritical point at finite m_s ?
- VI. endpoint of 1st order region along the diagonal (on lattice: $m_{\pi diag} \leq 65$ MeV)

 $\underset{\text{breaks down}}{\overset{T \leq T_c}{\Longrightarrow}} \quad SU_V(N_f) \times U_V(1)$

The $SU(3)_L \times SU(3)_R$ linear sigma model.

 $\bar{q}_L^i q_R^j$ bound states \rightarrow mesons transform as $(8, 1) \oplus (1, 8)$ multiplets

 $\sigma_i(0^+)$: scalar nonet (1,8) $|| \pi_i(0^-)$: pseudoscalar nonet (8,1)

$$M := \frac{1}{\sqrt{2}} \sum_{i=0}^{8} (\sigma_i + i\pi_i) \lambda_i \qquad \lambda_i : i = 1 \dots 8 \text{ Gell-Mann matrices, and } \lambda_0 := \sqrt{\frac{2}{3}} \mathbf{1}$$

The most general $SU(3)_L \times SU(3)_R$ symmetric, renormalizable Lagrangian constructed with M is

$$L^{symm}(M) = \frac{1}{2} \operatorname{Tr}(\partial_{\mu} M^{\dagger} \partial^{\mu} M + \mu^{2} M^{\dagger} M) - f_{1} \left(\operatorname{Tr}(M^{\dagger} M) \right)^{2} - f_{2} \operatorname{Tr}(M^{\dagger} M)^{2} - g \left(\det(M) + \det(M^{\dagger}) \right)$$

- $\mu^2 > 0$ allows spontaneously broken ground states.
- Two independent quartic couplings (f_1 , f_2).
- The determinant term breaks U(3) symmetry $\rightarrow SU(3)$ ($U(1)_A$ anomaly)

Symmetry breaking

Explicit symmetry breaking terms:

$$L = L^{symm} + \epsilon_x \sigma_x + \epsilon_y \sigma_y + \epsilon_3 \sigma_3, \quad \begin{pmatrix} \sigma_x \\ \sigma_y \end{pmatrix} := \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2} & 1 \\ 1 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} \sigma_0 \\ \sigma_8 \end{pmatrix},$$

where σ_x and σ_y are the strange and non-strange combination of the fields.

The external fields are proportional to the quark masses:

$$\epsilon_x \sim m_q$$
, $\epsilon_y \sim m_s$, $\epsilon_3 \sim m_u - m_d$

We restrict ourselves to the case $\epsilon_3 = 0$ (m_u , m_s are degenerate).

If $\epsilon_x \neq 0$ and/or $\mu^2 > 0$ then the order parameters are: $x := \langle \sigma_x \rangle_0, \ y =: \langle \sigma_y \rangle_0$

PCAC relations can be obtained for the pion and kaon decay constants:

$$f_i m_{\pi_i}^2 := \langle 0 | \partial_\mu J_5^\mu | \pi_i \rangle \Longrightarrow \begin{cases} f_\pi m_\pi^2 = \boldsymbol{\epsilon_x} & i = 1, 2, 3\\ f_K m_K^2 = \frac{1}{2} \left(\boldsymbol{\epsilon_x} + 2\sqrt{2\boldsymbol{\epsilon_y}} \right) & i = 4, 5, 6, 7 \end{cases}$$

The Lagrangian of the shifted fields

Shifting the fields by vacuum expectation values:

$$\sigma_x \rightarrow \sigma_x - x; \quad \sigma_y \rightarrow \sigma_y - y$$

- the vanishing of the 1st order terms gives the two equations of states (*EoS*): $E_x := \frac{\partial L}{\partial \sigma_x} \Big|_0 = -\epsilon_x - \mu^2 + 2gxy + 4f_1xy^2 + (4f_1 + 2f_2)x^3 = 0,$ $E_y := \frac{\partial L}{\partial \sigma_y} \Big|_0 = -\epsilon_y - \mu^2 + 2gx^2 + 4f_1x^2y + (4f_1 + 4f_2)y^3 = 0$
- the coefficients of the 2^{nd} order terms are the mass squares of mesons :

$$M_{PS}(x, y) : m_{\pi}^{2}, \ m_{K}^{2}, \begin{pmatrix} m_{\eta_{88}}^{2} & m_{\eta_{08}}^{2} \\ m_{\eta_{08}}^{2} & m_{\eta_{00}}^{2} \end{pmatrix}; \ M_{S}(x, y) : \ m_{a_{0}}^{2}, \ m_{\kappa}^{2}, \begin{pmatrix} m_{\sigma_{88}}^{2} & m_{\sigma_{08}}^{2} \\ m_{\sigma_{08}}^{2} & m_{\sigma_{00}}^{2} \end{pmatrix}$$

Note the mixing in the $(0 - 8)/(x - y)$ sectors.

After a straightforward calculation, two *Ward-identities* can be obtained:

$$\epsilon_x = m_{\pi}^2 x \,, \quad \epsilon_y = \frac{1}{\sqrt{2}} (m_K^2 - m_{\pi}^2) x + m_K^2 y$$

which guarantee the Goldstone theorem,

and PCAC relations are simplified :

$$f_\pi=x\,,\,\,f_K=rac{1}{\sqrt{2}}y+rac{1}{2}x$$

Determination of parameters for arbitrary (m_{π}, m_K)

The unknown parameters $(\mu_0, f_1, f_2, g, \epsilon_x, \epsilon_y)$ and the condensates (x, y) can be determined at tree level by using the mass spectra and the PCAC relations.

input: output: predictions:

$$\begin{cases} f_{\pi} \\ f_{K} \end{cases} \Longrightarrow \begin{array}{c} x \\ y \\ m_{\pi} \\ m_{\pi} \\ m_{K} \\ M_{\eta}^{2} \end{array} \xrightarrow{g} \begin{array}{c} g \\ m_{2} \\ M_{\eta}^{2} \end{array} \xrightarrow{g} \begin{array}{c} g \\ m_{2} \\ M_{\eta}^{2} \end{array} \xrightarrow{g} \begin{array}{c} m_{\eta'} \\ m_{\eta'}$$

$$\begin{array}{c} E_x = 0 \\ E_y = 0 \end{array} \right\} \Longrightarrow \begin{array}{c} \epsilon_x \\ \epsilon_y \end{array}$$

where $M_{\eta}^2 = m_{\eta_{00}}^2 + m_{\eta_{88}}^2$

• At tree level, μ_0 , f_1 appear only in the combination:

 $M^2 = -\mu^2 + 4f_1(x^2 + y^2)$

- except for the admixed scalar masses – m_{π} , m_K dependence of m_{σ} , m_{f_0} not known \implies assumptions is needed (A1, A2)

• ϵ_x , ϵ_y , x, y, f_1 , f_2 , g, μ_0 , are known as the function of m_{π} , m_K , f_{π} , f_K , M_{η} , But going away from the physical point, we keep in mind their pion, kaon mass dependence:

 $f_{\pi}(m_{\pi}, m_{K}), f_{K}(m_{\pi}, m_{K}), M_{\eta}(m_{\pi}, m_{K})$

provided by the U(3) ChPT.

Predictions after fixing the parameters

Comparison of the predicted m_K dependence of the η , η' mass by $L\sigma M$ with the results of U(3) ChPT.

Remarkable agreement up to $m_K \approx 800$ MeV even for $m_\pi = 0$.

Thermodynamics at one-loop level

• tree level mass squares: $m_i^2 \rightarrow -\mu^2$ as T is increasing \implies Perturbation theory fails at finite T \implies resummation is needed

• Optimized perturbation theory (OPT): the mass term of the Lagrangian is reshuffled by a temperature dependent effective mass M(T):

$$L_{mass} = -\frac{1}{2}M^2(T)\operatorname{Tr} M^{\dagger}M + \frac{1}{2} \underbrace{\overbrace{(\mu_0^2 + M^2(T))\operatorname{Tr} M^{\dagger}M}^{\Delta m^2\operatorname{Tr} M^{\dagger}M : \text{one-loop counterterm}}_{(\mu_0^2 + M^2(T))\operatorname{Tr} M^{\dagger}M}$$

• $-\mu^2 \rightarrow M^2(T)$ replacement in the propagators \rightarrow preserving the relations among tree-level masses \rightarrow Goldstone theorem, renormalization are assured

One-loop masses:
$$M_{ij}^2(T) = iG(\mathbf{p}, T)_{ij}^{-1}|_{\mathbf{p}=0} = m_{ij}^2 - \Delta m^2 + \Sigma_{ij}(\mathbf{0}, T)$$

Self-energy:

$$\Sigma_{ij}(\mathbf{0},T) = \sum_{k l} \frac{\mathbf{G}_{kk}}{\mathbf{f}_{ikkj}} + \frac{\mathbf{G}_{kk}}{\mathbf{g}_{ikl}} - \mathbf{g}_{ikl} - \mathbf$$

$$M_i^2(\mathbf{T}) = m_i^2(\mathbf{T}, \mathbf{x}, \mathbf{y}) - \Delta m^2(\mathbf{T}) + \sum_i c_j^i I_{TP}(m_j(\mathbf{T}, \mathbf{x}, \mathbf{y}), \mathbf{T})$$

The principle of minimal sensitivity (PMS) \rightarrow determination of M(T):

$$M_{\pi}^{2}(\mathbf{T}) \stackrel{!}{=} m_{\pi}^{2}(\mathbf{T}) \Longrightarrow \boxed{M(\mathbf{T})^{2} = -\mu_{0}^{2} + \sum_{i} c_{i}^{\pi} I_{TP}(m_{i}(\mathbf{T}, \boldsymbol{x}, \boldsymbol{y}), \mathbf{T})}$$

this can be rewritten into a Gap equation for the pion mass:

$$m_{\pi}^{2} = -\mu_{0}^{2} + (4f_{1} + 2f_{2})x^{2} + 4f_{1}y^{2} + 2gy + \sum_{i} c_{i}^{\pi}(x, y)I_{TP}(m_{i}(m_{\pi}, x, y), T))$$

The one point functions of σ_x and σ_y gives the equations of states:

We omit the zero temperature contribution to avoid the one-loop redefinition of parameters \longrightarrow quasiparticle approximation $I_{TP} = I_{TP}^{T}$.

RESULTS I. Solution at the physical point: crossover

a) order parameters,

b) mixing angles

c) and d) tree-level masses

RESULTS II. 1st order transition and the phase boundary

Typical 1st order transition for $m_{\pi} = 30 \text{ MeV}, m_{K} = 400 \text{ MeV}$

- $\bullet x$ drives the transitions
- as the kaon mass decreases, the crossover in y is getting more sharp
- critical temperature: $T_c \approx 150 \text{ MeV}$

Phase boundaries for different parameteriztion

Conclusions and further extension

- Sensivity of the 1st order crossover boundary to the scalar spectra
- Physical point is rather distant from the the 1^{st} order region
- $m_{crit} \approx 42 \pm 23$ MeV for $m_{\pi} = m_K$ (in agreement with lattice results)
- Analougus investigation of the 3-flavour chiral quark model is in progress $\implies (T, \mu)$ phase diagram of the physical space