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Motivation

e Possible cosmological effects of using realistic EoS of QCD

(see, for example: Hindmarsh, Philipsen)

e Stucture of compact stars:

quark-hybrid traditional neutron star
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Astrophysical interest in the accurate determination of QCD Equation of State.
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Important task: A= Tokm
Exploration of the ground state of QCD under the variation of its parameters

mx—mpg —plane, at zero chemical potential.
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This study: Determination of the shape of the phase boundary in the




The phase diagram for Ny;=3,and p =0

Order parameter for m; = 0 (Ny > 2): MY = <c72q£>

SUL(Nf) X SUR(Nf) X Uv(l)

Familiar points:

|. physical point: crossover

1. ms, m, — oo: 15 order transition
IIl. my s = 0: 1 order transition
IV. ms — oo, m, = 0: 2" order transition
V. tricritical point at finite mg ?

VI. endpoint of 15 order region along the
diagonal (on lattice: m 4;,, < 65 MeV)
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The SU(3)r x SU(3)g linear sigma model.

i ¢}, bound states —

mesons transform as (8, 1) @ (1, 8) multiplets

0;(07): scalar nonet (1,8) || m;(07): pseudoscalar nonet (8,1)
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M= — E O;+17) N\ N o1 =1...8 Gell-Mann matrices, and \g := \ﬁl
V2 7;:0( ) ’ 3

The most general SU(3);, x SU(3)r symmetric, renormalizable Lagrangian

constructed with M is

LEYm™ (M) = %Tr(@MMT O M + > MTM) — fo (Tr(MTM))2 — foTr(MTM)? —

—g (det(M) + det(MT))

e 1? > 0 allows spontaneously broken ground states.

e Two independent quartic couplings (f1, f2).

e The determinant term breaks U (3) symmetry — SU (3)

(U(1)4 anomaly)
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Symmetry breaking

Explicit symmetry breaking terms:

1 /vV2 1 o
__ 17s8ymm Ox\ 0
L=1L +€,0, + €,0, + €303, (Oy) = —\/§ ( ] _\/§> (08> :

where o, and o, are the strange and non-strange combination of the fields.

The external fields are proportional to the quark masses:

We restrict ourselves to the case ¢; = 0 (m,, ms are degenerate).

If e, # 0 and/or * > 0 then the order parameters are: | x := (0,)0, y =: (0y)0

PCAC relations can be obtained for the pion and kaon decay constants:

frmz = e i=1,2,3
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The Lagrangian of the shifted fields

Shifting the fields by vacuum expectation values: | 0,—0; —2; oy,—0, — Yy

e the vanishing of the 15 order terms gives the two equations of states (Eo5S):

E, = $& ;= TG (2 4 2gxy + 4 frey? 4 (4f1 + 2f2)x = 0,

E, = gTLy 0 —ey — u? + 292 +A4f12%y + (4f1 + 4f2)y> =0

o the coefficients of the 2"¢ order terms are the mass squares of mesons :

m7708 m7700 mUOS mUOO

Note the mixing in the (0 - 8)/(x — y) sectors.
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.92 2 m m . . 2 2 Mags  Mopg
MPS(xvy) s My Mgy ( 72788 72708>7 MS(:C7y) : ma07 my, ( 2 2

After a straightforward calculation, two Ward-identities can be obtained:
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— m7‘('2)x + ’szZ/

which guarantee the Goldstone theorem,

and PCAC relations are simplified : | f. =z, fx = %y + 2z




Determination of parameters for arbitrary  (m,, mg)

The unknown parameters (uo, f1, f2, g, €2, €,) and the condensates (z, y) can
be determined at tree level by using the mass spectra and the PCAC relations.

input: output: predictions:
o At tree level, no, fi appear only in the
fr 1 . \ m,  combination:
2 2 2 2
fx ) (0 m, M= = M+_4f1(33 +y°)
o g L — except for the admixed scalar masses —
. " mg, mg dependence of m,, mg, not known
mi o = [ Maey, = assumptions is needed (Al, A2)
vl oo,

® ¢, €, %, Y, f1, f2, g, po, are known as
Al&M2} 102 the function of m,., mg, fr, fx, M,, But
} — my, going away from the physical point, we keep

9. In mind their pion, kaon mass dependence:

€x fﬂ(mﬂ'7mK)7 fK(mﬁamK)ﬁ Mn(mmmK)

provided by the U(3) ChPT.



Predictions after fixing the parameters

Comparison of the predicted m dependence of the 7, 77' mass by Lo M with
the results of U(3) ChPT.
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Remarkable agreement up to mg =~ 800 MeV even for m, = 0.



Thermodynamics at one-loop level

o tree level mass squares: m? — —u? as T is increasing = Perturbation
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theory fails at finite T — resummation is needed

e Optimized perturbation theory (OPT): the mass term of the Lagrangian is
reshuffled by a temperature dependent effective mass M (T):

Am2TrMTM: one-loop counterterm

N\

1 1 - ~
Limass = —§M2(T)TrMT M+ (2 + M*(T)TrMTM

e — 112 — M?(T) replacement in the propagators — preserving the relations
among tree-level masses — Goldstone theorem, renormalization are assured

One-loop masses: | M7(T) = iG(p, T);jljpzﬁ m;; — Am® + %;;(0,T)

) s
Self-energy: 545(0, T):Z f s %
]f l ikkj gikl Gu

MAT) = m3(T,xz,y) — Am*(T) + Y cilrp(mi(T,2,y),T)




The principle of minimal sensitivity (PMS) — determination of M(T):

MA(T)=mo(T) = | M(T)* = —p§ + 32, cf Irp(mi(T, 2,y),T)

this can be rewritten into a Gap equation for the pion mass:

M= —pg + (4f1 + 2f2)x* + 4197 + 29y + >, T (x, y) Irp(mi(max, z,y), T)

The one point functions of o, and o, gives the equations of states:

Y o CLo K,0, fo -
Opy — @ +—F + —Q —
’ E Am?
Xy

k= TrKnn

= —pug + 2gzy + 4f1oy? + (4f1 + 2f2) 2’ + 3, ¥ (z, y) Irp(mi(max, z,y), T)
€y = —pug + 2927 + 4fix*y + (4f1 +4f2)y° + >t (x, y) Irp(mi(may, x,y), T)

Tadpole: Ip(m,T)=

1
167 o1 ln——l—/ ( ) w_l,lgj:p(m,()):()

(m) P(m T)

We omit the zero temperature contribution to avoid the one-loop redefinition of
parameters — quasiparticle approximation Irp = I} 5.
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RESULTS I.
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RESULTS II.

Decreasing pion mass:
—— 15t order transition
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Typical 15¢ order transition for
m, = 30 MeV, mg = 400 MeV

e 1 drives the transitions

¢ as the kaon mass decreases, the
crossover in y is getting more sharp

e critical temperature: T, ~ 150 MeV
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15t order transition and the phase boundary
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Conclusions and further extension
Sensivity of the 15! order— crossover boundary to the scalar spectra
Physical point is rather distant from the the 15¢ order region

Merit ~ 42 £ 23MeV for m, = mg  (in agreement with lattice results)

Analougus investigation of the 3-flavour chiral quark model is in progress
—> (1", 1) phase diagram of the physical space
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