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           Abstract 

          The entropy S of the horizon θ = π/2 of the lorentzian Hawking wormhole, written in 
( static) spherical Rindler coordinates, is computed in this paper. Using Padmanabhan’s 
prescription, we found that the surface gravity of the horizon is nothing else but the proper 
acceleration of the Rindler observer. S is a monotonic function of the radial coordinate ξ 
and vanishes when ξ equals the Planck length.  
 
   Keywords : surface gravity, spherical Rindler coordinates, the holographic principle. 
 
 
 
         1. Introduction 
 
    The connection between gravity and  thermodynamics is one of the most surprising 
features of gravity. Once the geometrical meaning of gravity is accepted, surfaces which 
act as one-way membranes for information will arise, leading to some connection with 
entropy, interpreted as the lack of information [1,2]. 

 As T. Padmanabhan has noticed [3], in any spacetime we might have a family of 
observers following a congruence of timelike curves which have no access to part of 
spacetime (a horizon is formed which blocks the informations from those observers). 
 Keeping in mind that QFT does not recognize any non trivial geometry of spacetime in 
a local inertial frame, we could use a uniformly accelerated frame (a local Rindler 
frame) to study the connection between one-way membranes arising in a spacetime and 
the thermodynamical entropy. 
 Another principle to which the horizon entropy is strongly related is the Holographic 
Principle ([4] and refs. therein) which states that the number of degrees of freedom 
describing the physics inside a volume – including gravitation – is bounded by the area 
of the boundary which encloses the volume. As entropy counts the microscopical 
degrees of freedom of a physical system, it can be shown that [4, 5, 6] 
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where A is the boundary area. S equals A/4 only for a spacetime with a horizon (black 
hole horizon, de Sitter cosmological horizon, Rindler horizon, etc.). 
 
 
       2. The Ricci scalar splitting 
 
  The purpose of the present letter is to compute the horizon entropy for the (Lorentzian 
version) of the Hawking wormhole geometry [7], written in (static) spherical Rindler 
coordinates   
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      The spacetime (1) may be obtained from the Hawking wormhole metric written in 
Cartesian coordinates [8] 
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    xα (α  =  0, 1, 2, 3) are the Minkowski coordinates, (t, ξ, θ, ϕ) – the spherical Rindler 
coordinates, b  - the wormhole’s throat radius (which will be taken of the order of the 
Planck length), dΩ2 = dθ2 + sin2θ dϕ2, g – a constant with units of acceleration, ηµν = 
diag(-1, 1, 1,1) and xαxα = x2 – (x0)2. 
 The spacetime (1) has a horizon at ξ  = b, which is also a null geodesic (the hypersurface ξ   
= b is in fact the Hawking wormhole which separates the two causally disconnected, 
asymptotically flat regions, ξ >> b and ξ << b). The hypersurface ξ  = 0 from the Rindler 
geometry (b = 0) is no longer a horizon here due to the conformal factor). 
 From now on we take into consideration only the region ξ > b. The units will be such that 
c  = G =  = kh B = 1. 
  Let us now use Padmanabhan’s prescription [2] to calculate the entropy of the horizon θ  
= π/2, where the time-time component of the metric (1) is vanishing (the hemispheres 

πθππθ ≤<<≤ 2/2/0 and correspond to the two Rindler observers which are causally 
disconnected). 
 One can show [2] that 
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where R is the 4-dimensional Ricci scalar, 3R – the scalar curvature of a spacelike 
hypersurface Σ  with uα (α  = 0, 1, 2, 3) as normal, Kαβ is the extrinsic curvature of  Σ, with  

α
αKK = , aα = the corresponding acceleration and L  - the ADM Lagrangean. −∇ α

β
β uu

 We integrate eq.(4) over a four-volume Ω, bounded by Σ and by a timelike surface B, with 
normal nα [2]. The induced metric on Σ is νµµνµν uugh +=  and the metric on B is 
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νµµνµνγ nng −= . The hypersurfaces Σ and B intersect on a two – dimensional surface 
on which the geometry is  B∩Σ

                     )5(βαβααβαβσ nnuug −+=  
 We observe that the metric (1) can be put in the form [3] 
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 where i,j = 1, 2, 3. In our case,                
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Taking Σ to be the surface of constant time and keeping in mind that the metric (1) is static, 

the trace K is vanishing. By integration of R/16π over Ω, the term with L will give the 

ADM energy. 

 

     3. The horizon entropy 
   Let us consider B as the surface 2/πθ = , the horizon obtained from the condition  N = 0. 

The last term in the r.h.s. of (4) can be transformed in a surface integral over B, giving the 

entropy of the horizon 

                  )8(,
8
1 dtddNnaS

B
ϕξσ

π
α

α∫=  

where σ is the determinant of the metric on the two-surface B∩Σ . Since the acceleration 

vector aα is spacelike, we can put a0 = 0 at a given event in a local Rindler frame [3]. 

Therefore 
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As the surface B approaches the horizon, the expression  tends to the surface 

gravity κ of the horizon 

µ
µ naN

.2/πθ = In our static spacetime (1) with a horizon, the Euclidean 

action will be periodic in imaginary time with the period T = 2π/g. In this case ),0( Tt∈ . 

 The normal vectors to the hypersurfaces Σ and B appear as                     
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The corresponding metrics become                   
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while the geometry on the two – surface B∩Σ  acquires the form                    
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The surface gravity κ will be given by 
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In other words, the meaning of the constant g is just the surface gravity of the horizon θ = 

π/2. Therefore, the expression of the entropy S will be given by 
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 After an integration over the imaginary time, the entropy of the horizon θ = π/2 is given by 

the well – known formula  S = A/4, A being the horizon area. 

 It would be interesting to find the function S(ξ). Keeping in mind that  
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we have from (16) (with θ = π/2) 
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where  was introduced at the denominator. 2
Pl b= 2

2

 It is an easy task to show that S(ξ) is a monotonic function. It vanishes at ξ = b and, for  

ξ >>b, S increases to the value (A represents a circle of radius ξ in this case). 2 / 4bπξ

The horizon θ = π/2 (the equatorial plane) being flat, the energy of the horizon vanishes 

(the same is valid for the horizon of a Rindler observer, in Cartesian coordinates).  

 

      4. Conclusions 
     We applied in this paper Padmanabhan’s method to compute the entropy of the horizon 

/ 2θ π=  for the Hawking wormhole spacetime, written in (static) spherical Rindler 

coordinates. The surface gravity is constant (note that the lapse function N depends on two 

variables, ξ and θ). In addition, the Hawking temperature of the horizon is given by g/2π, 

since κ = g. The entropy is a monotonic function. It increases from zero at ξ = b to 

 at ξ >> b (note that ξ2 / 4bπξ 2 2 is just the Minkowski interval). 
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