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Dark matter?Dark matter?Dark matter?
• neutrinos                                           (hot dark matter)
• sterile neutrinos, gravitinos (warm dark matter)

• axions, axion clusters
• LKP (lightest Kaluza-Klein particle)

• supermassive wimpzillas
• solitons (Q-balls; B-balls; Odd-balls, Screw-balls….)

• LSP (neutralino, axino, …)             (cold dark matter)

axions
axion clusters
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−
:

Mass range

Noninteracting: wimpzillas
Strongly interacting: B balls

Interaction strength range



Illogical magnitude (what’s it related to?):

( ) ( )4 430 -3 4 310 g cm 10  eV 10  cmρ
−− − −

Λ � � �

Cosmo-illogical constant?CosmoCosmo--illogical constant?illogical constant?

( ) ( )2 229 338 10 cm 10 eVGπ ρ
− −

ΛΛ = � �

Illogical timing (why now?):
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Friedmann-Lemâitre-Robertson-Walker
(homogeneous/isotropic) model

FriedmannFriedmann--LemLemâitreâitre--RobertsonRobertson--WalkerWalker
(homogeneous/isotropic) model(homogeneous/isotropic) model
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Do we “know” there is dark energy?Do we “know” there is dark energy?Do we “know” there is dark energy?

• Assume model cosmology: 
– Friedmann model: H2 + k/a2 = 8π Gρ / 3
– Energy (and pressure) content: ρ = ρM + ρR + ρΛ + …

– Input or integrate over cosmological parameters: H0, etc.

• Calculate observables dL(z), dA(z), …

• Compare to observations

• Model cosmology fits with ρΛ, but not without ρΛ

• All evidence for dark energy is indirect: observed H(z) is not
• described by H(z) calculated from the Einstein-de Sitter model



• Age of the universe ( ) ( ) ( )0 1
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Evolution of H(z) is a key quantityEvolution of Evolution of H(zH(z)) is a key quantityis a key quantity

Many observables based on 
the coordinate distance r(z)
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Take sides!Take sides!Take sides!
• Can’t hide from the data – ΛCDM too good to ignore

– SNIa
– Subtraction: 1.0 − 0.3 = 0.7
– Age
– Large-scale structure
– …

• Dark energy (modify right-hand side of Einstein equations) 
– “Just” Λ, a cosmological constant?
– If not constant, what drives dynamics (scalar field?)

• Gravity (modify left-hand side of Einstein equations)
– Beyond Einstein (non-GR: branes, etc.)?
– (Just) Einstein (GR: Back reaction of inhomogeneities)?

H(z) not given by
Einstein–de Sitter       

3H2 ≠ 8πG ρMATTER



Modifying the left-hand sideModifying the leftModifying the left--hand sidehand side
• Braneworld modifies Friedmann equation 

• Friedmann equation modified today

• Gravitational force law modified at large distance

• Tired gravitons

• Gravity repulsive at distance R ≈ Gpc

• n=1 KK graviton mode very light, m ≈ (Gpc)−1

• Einstein & Hilbert got it wrong

• Backreaction of inhomogeneities

Freese & Lewis

( ) 12
cutoff1 nH Aρ ρ ρ − = + 

Five-dimensional at cosmic distances

Deffayet, Dvali
& Gabadadze

Gravitons metastable - leak into bulk
Gregory, Rubakov & Sibiryakov; 

Dvali, Gabadadze & Porrati

Kogan, Mouslopoulos, 
Papazoglou, Ross & Santiago

Csaki, Erlich, Hollowood & Terning

Räsänen; Kolb, Matarrese, Notari & Riotto;
Notari; Kolb, Matarrese & Riotto

Binetruy, Deffayet, Langlois

( ) ( )1 4 416S G d x g R Rπ µ−= − −∫
Carroll, Duvvuri, Turner, Trodden



Braneless cosmologyBranelessBraneless cosmologycosmology
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Brane cosmologyBrane cosmologyBrane cosmology
• Israel junction condition (Israel 1966)

the

brane

• nA unit vector normal to the brane

• hAB = gAB − nAnB the induced metric

• κAB = hA
C

C nB the extrinsic curvature

[κµν ] = − M*
−3 Tµν

BRANE

[…] = discontinuity across the brane

a′′ = 〈 a′′ 〉 + [ a′ ] δ (y)
discontinuity in 2nd derivative
of scale factor 

nA



Braneless cosmologyBranelessBraneless cosmologycosmology
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Braneful cosmologyBranefulBraneful cosmologycosmology

New Friedmann law:

Israel jump conditions

Binetruy, Deffayet, Langlois (2000)
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Brane CosmologyBrane CosmologyBrane Cosmology
• New Friedmann law Binetruy, Deffayet, Langlois (2000)
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• Possible solution Randall & Sundrum (2000)

Introduce a tension σ on the brane ρ → ρ + σ
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Acceleration from inhomogeneitiesAcceleration from Acceleration from inhomogeneitiesinhomogeneities
• Most conservative approach — nothing new

– no new fields (like 10−33 eV mass scalars)
– no extra long-range forces
– no modification of general relativity
– no modification of Newtonian gravity at large distances
– no Lorentz violation
– no extra dimensions, bulks, branes, etc.
– no faith-based (anthropic) reasoning

• Magnitude?: calculable from observables related to δρ /ρ

• Why now?: acceleration triggered by era of non-linear structure



Acceleration from inhomogeneitiesAcceleration from Acceleration from inhomogeneitiesinhomogeneities
Homogeneous model Inhomogeneous model
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Acceleration from inhomogeneitiesAcceleration from Acceleration from inhomogeneitiesinhomogeneities
Homogeneous model Inhomogeneous model
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Acceleration from inhomogeneitiesAcceleration from Acceleration from inhomogeneitiesinhomogeneities
Homogeneous model Inhomogeneous model
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Acceleration from inhomogeneitiesAcceleration from Acceleration from inhomogeneitiesinhomogeneities
• View scale factor as zero-momentum mode of gravitational field

• In homogeneous/isotropic model it is the only degree of freedom

• Inhomogeneities: non-zero modes of gravitational field

• Non-zero modes interact with and modify zero-momentum mode



Acceleration from inhomogeneitiesAcceleration from Acceleration from inhomogeneitiesinhomogeneities
• View scale factor as zero-momentum mode of gravitational field

• In homogeneous/isotropic model it is the only degree of freedom

• Inhomogeneities: non-zero modes of gravitational field

• Non-zero modes interact with and modify zero-momentum mode

cosmology                   scalar-field theory

zero-mode                       a hφ i  (vev of a scalar field)

non-zero modes     inhomogeneities thermal/finite-density bkgd.

modify a(t)                   modify hφ(t)i
e.g., acceleration        e.g., phase transitions

Cosmology ↔ scalar field theory analogue

physical effect



Acceleration from inhomogeneitiesAcceleration from Acceleration from inhomogeneitiesinhomogeneities
• We operate under assumption that observables (dA, dL, z, etc.) 
• are modified if effective scale factor is modified.

• We can only show this for unrealistic models.

• We must assume that there will be no (or little) anisotropy 
• (shear).



Different approachesDifferent approachesDifferent approaches

• Expansion rate of an
inhomogeneous Universe ≠
expansion rate of homogeneous
Universe with ρ = hρi

• Inhomogeneities modify
zero-mode [effective scale
factor is aD ≡ VD

1/3 ]

• Effective scale factor has a
(global) effect on observables

• Potentially can account for 
acceleration without 
dark energy or modified GR

• Model an inhomogeneous
Universe as a homogeneous
Universe model with ρ = hρi

• Zero mode [a(t)] is zero
mode of homogeneous model
with ρ = hρi

• Inhomogeneities only have a
local effect on observables

• Cannot account for observed
acceleration

Standard approach                               Our approach



Acceleration from inhomogeneitiesAcceleration from Acceleration from inhomogeneitiesinhomogeneities
• We do not use super-Hubble modes for acceleration.

• We do not depend on large gravitational potentials such as black  
holes and neutron stars.  

• We assert that the back reaction should be calculated in a frame  
comoving with the matter—other frames can give spurious 
results.

• We demonstrate large corrections in the gradient expansion, but
the gradient expansion technique can not be used for the final
answer—so we have indications (not proof) of a large effect.

• The basic idea is that small-scale inhomogeneities “renormalize”
the large-scale properties.



Inhomogeneities–cosmologyInhomogeneitiesInhomogeneities––cosmologycosmology
• Our Universe is inhomogeneous

• Can define an average density 〈ρ〉
• The expansion rate of an inhomogeneous universe of average

density 〈ρ〉 is NOT! the same as the expansion rate of a 
homogeneous universe of average density 〈ρ〉!

• Difference is a new term that enters an effective Friedmann
• equation — the new term need not satisfy energy conditions!
• We deduce dark energy because we are comparing to the wrong

model universe (i.e., a homogeneous/isotropic model)



Inhomogeneities–exampleInhomogeneitiesInhomogeneities––exampleexample
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• (a/a)2 is not 8π G 〈ρ〉/3.

• Perturbed Friedmann–Lemâitre–Robertson–Walker model:
Kolb, Matarrese, Notari & Riotto

• (a/a is not even the expansion rate)

• Could 〈δ G00〉 play the role of dark energy?

.



Inhomogeneities–cosmologyInhomogeneitiesInhomogeneities––cosmologycosmology
• For a general fluid, four velocity uµ = (1,0)

(local observer comoving with energy flow)  

• For irrotational dust, work in synchronous and comoving gauge

• Velocity gradient tensor

• Θ is the volume-expansion factor and σ ij is the shear
(shear will have to be small) 

• For flat FLRW, hij(t) = a2(t)δij

Θ = 3H and  σ ij = 0

2 2 ( , ) i j
ijds dt h x t dx dx= − +
G

1
; 2       (  is traceless)i i ik i i i

j j kj j j ju h h δ σ σΘ = = = Θ +�
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• Local deceleration parameter positive:

• However must course-grain over some finite domain: 
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Inhomogeneities and accelerationInhomogeneitiesInhomogeneities and accelerationand acceleration

Buchert & Ellis;
Kolb, Matarrese & Riotto

• although           can’t accelerate, can! 

Hirata & Seljak; Flanagan; Giovannini;
Alnes, Amarzguioui & Gron

D D

• •Θ ≠ Θ
D

•Θ
D

•Θ



( )1/3 3
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• Define an course-grained scale factor:

• Course-grained Hubble rate:
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• Effective evolution equations:
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Inhomogeneities and smoothingInhomogeneitiesInhomogeneities and smoothingand smoothing

• Kinematical back reaction: ( )22 22
3 2D DD D

Q σ= Θ − Θ −

Kolb, Matarrese & Riotto
astro-ph/0506534;
Buchert & Ellis



eff eff3 0
4

D
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Qp
G

ρ ρ
π

+ = − <

Inhomogeneities and smoothingInhomogeneitiesInhomogeneities and smoothingand smoothing
• Kinematical back reaction: ( )22 22

3 2D DD D
Q σ= Θ − Θ −

• For acceleration:

• Integrability condition (GR): ( ) ( )6 4 2 0D D D D D
a Q a a R

• •
+ =

• Acceleration is a pure GR effect:
– curvature vanishes in Newtonian limit
– QD will be exactly a pure boundary term, and small



Inhomogeneities and integrabilityInhomogeneitiesInhomogeneities and and integrabilityintegrability
• Integrability condition: ( ) ( )6 4 2 0D D D D D

a Q a a R
• •

+ =

• Particular solution:  3QD = − hRiD = const.   
– i.e., Λeff = QD  , so QD acts as a cosmological constant)

• Particular solution:  If QD = 0 or QD∝ aD
−6

– integrability condition: hRiD = 6kD /aD
2

– curvature dominated: can have q → 0, but no acceleration
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• General solution:
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• HD and qD :



InhomogeneitiesInhomogeneitiesInhomogeneities
• Now specialize: ( ) ( ) ( ) ( )2 ,2, ,x t

ij ij ijh x t a t e x tδ χ− Ψ  = + 
GG G

• Absorb Ψs into            :

a ∼ t 2/3 is the usual FRW scale factor
Ψ is a scalar perturbation: Ψ = Ψ +Ψs = long, s = short  (wrt: D)
χij is a traceless tensor with scalar, vector, & tensor d.o.f.

( ) ( ) ( ) ( )22, ,t
ij ijh x t a t e h x t− Ψ= AG G�

• In terms of metric functions: 22 2
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• Only super-Hubble modes:   QD vanishes
integrability condition → hRiD∝ aD

−2

can have q → 0, but no acceleration

( ),ijh x tG�



Gradient expansionGradient expansionGradient expansion

• Local curvature expanded in powers of gradients of perturbations

• Lowest-order solution is “seed” long-wavelength approximation

• Successively add higher-order gradient terms

Lifsitz, Khalatnikov, Tomita, Salopek, Stewart, Comer, Deruelle, 
Langlois, Parry, Nambu, Taruya, Bruni, Sopuerta, Croudace, …

• Up to two gradients: 2φ = 4π G δρ
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    = − + − ∇       



Sub-Hubble instabilitiesSubSub--Hubble instabilitiesHubble instabilities

• Result in 2nd-order perturbation (in φ) theory:
Kolb, Notari, Matarrese, & Riotto

( )
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2 2 4
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2 2 4
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2 4
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3 9 9 54
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H
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τ τ τφ φ φ φ φ φ φ φ

τ τφ φ φ φ φ φ

= Θ −
= − ∇ − ∇ − ∇ ∇

+ + ∇ += ∇ ∇ −

→ + ∇ ∇ −

– Each derivative accompanied by conformal time τ = 2/aH
– Each factor of τ accompanied by c.
– Highest derivative is highest power of τ ∝ c :  “Newtonian”
– Lower derivative terms ∝ c−n :  “Post-Newtonian”
– φ and its derivatives can be expressed in terms of δρ /ρ



∆2(k,a): power spectrum of δρ /ρ∆∆22((k,ak,a): ): power spectrum ofpower spectrum of δρδρ //ρρ
• Amplitude  A = 1.9 × 10−5 and transfer function  T2(k) :

( ) ( )
4

2 2 2, kk a A T k
aH

 ∆ =  
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• Use CDM transfer function:

Harrison–Zel’dovich spectrum
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Some examplesSome examplesSome examples

– Mean of linear terms vanish: h 2φ i = hφ i= 0

– Individual Newtonian terms large, i.e., h∇2φ∇2φi = O(1)   

– But total Newtonian term vanishes h∇2φ∇2φi = hφ,,ijφ,ij i

– Post-Newtonian: h∇φ · ∇φ i = O(10−5) huge! (large k2/a2H2)

•

Räsänen
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Sub-Hubble instabilitiesSubSub--Hubble instabilitiesHubble instabilities
• First term in gradient expansion (2 spatial derivatives):

2      0D DD
R a Q−∝ =

• In general, gradient expansion gives

• Dominant term is combination: ( 2φ)n−1 ( φ)2 ∼ (k/aH)2nφ n+1

→ no acceleration
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• Newtonian terms, ( 2φ)n ∼ (k/aH)2nφ n, individually are large,
• but only appear as surface terms, hence small in total

Notari; Kolb, Matarrese, & Riotto

• Post-Newtonian terms, ( φ)2n ∼ (k/aH)2nφ 2n, individually are small,
• but do not appear as surface terms



(( 22φφ))nn−−11 (( φφ))22 ∼∼ ((k/aHk/aH))22nnφφ nn+1+1

• H0
−1 = 3000h−1 Mpc

• (k/aH)2nφ n+1∼ (3×103)2n (k/h Mpc−1)2n (2×10−5)n+1

– n = 1:    4×10−3  (k/h Mpc−1)2 (a /a0) × a−3 : curvature
– n = 2:    6×10−1 (k/h Mpc−1)4 (a /a0)2 × a−3 : ?
– n = 3:    9×101   (k/h Mpc−1)6 (a /a0)3 × a−3 : Λ

• Of course have to include transfer function, integrate over k, etc.

• (aH)2n = a0
2nH0

2n (a0 /a)n

• φ → A = 2 × 10−5



Sub-Hubble instabilitiesSubSub--Hubble instabilitiesHubble instabilities

• Disconnected fourth-order moment of φ :

• Notice n = 3 contributes to QD and hRiD terms ∝ a0, i.e.,
expansion as if driven by a cosmological constant !!! 

• Lowest-order term to make big contribution is n = 3 (6 derivatives)

• Gradient expansion: 3 3

1 2
        n n

n D nD
n n

R r a Q q a
∞ ∞

− −

= =

= =∑ ∑

• But why stop at n = 3 ?????

( ) ( )
2 22
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H H

φ φ∇ ∇



InhomogeneitiesInhomogeneitiesInhomogeneities
• Does this have anything to do with our universe?

• Have to go to non-perturbative limit!

• How to relate observables (dL(z), dA(z), H(z), …) to QD & 〈R〉D ?

• Can one have large effect and isotropic expansion/acceleration?
• (i.e., will the shear be small?)

• What about gravitational instability?

• Toy model proof of principle: Tolman-Bondi dust model
Nambu & Tanimoto (gr-qc/0507057)
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Acceleration in our local Hubble 
patch if the mean rarefaction factor 
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Nambu & Tanimoto (gr-qc/0507057)
[also Moffet]



Observational consequencesObservational consequencesObservational consequences

Tomita, 2001

• Spherical model
• Overall Einstein–de Sitter
• Inner underdense 200 Mpc
region

• Compensating high-density 
shell

• Calculate dL(z)
• Compare to SNIa data
• Fit with Λ = 0!



CommentsCommentsComments
• “Do you believe?” is not the relevant question
• Acceleration of the Universe is important; this must be explored 
• How it could go badly wrong:

– Backreaction should not be calculated 
– in frame comoving with matter flow
– Series re-sums to something harmless
– No reason to stop at first large term
– Synchronous gauge is tricky
/ Residual gauge artifacts
/ Synchronous gauge develops coordinate
/ singularities at late time (shell crossings)
☺ Problem could be done in Poisson gauge



ConclusionsConclusionsConclusions
• Must properly smooth inhomogeneous Universe
• In principle, acceleration possible even if “locally” ρ +3p > 0
• Super-Hubble modes, of and by themselves, cannot accelerate
• Sub-Hubble modes have large terms in gradient expansion

– Newtonian terms can be large but combine as surface terms
– Post-Newtonian terms are not surface terms, but small
– Mixed Newtonian × Post-Newtonian terms can be large
– Effect from “mildly” non-linear scales

• The first large term yields effective cosmological constant
• No reason to stop at first large term
• Can have w < −1? 
• Advantages to scenario:

– No new physics
– “Why now” due to onset of non-linear era



Thoughts on Dark Energy:
Acceleration without Dark Energy

Rocky Kolb
Fermilab &
University of Chicago

All work is the result of collaborations with
Sabino Matarrese and Antonio Riotto (Padova)
[and occasionally Alessio Notari (McGill)] 



Shell CrossingShell CrossingShell Crossing
• Gradient terms:

– Shell-crossing instabilities imply divergent gradient terms.
– Our effect comes from infinite number of finite gradient terms

• Newtonian terms:
– Shell crossing instabilities lead to infinite Newtonian terms
– Our effect has small Newtonian terms

• Caustics:
– Caustics carry small amount of mass
– They can be smoothed



Poisson gaugePoisson gaugePoisson gauge
• The weak-field form of metric:

ds2 = a2(t) [− (1 − 2ψP) dt2 + (1 − 2ψP) δij dxidxj ]
ψP = ΦN /c2 is the Newtonian gravitational potential, 
related to δρ by the Poisson equation: 2ΦN = 4πG a2 δρ

• Kinematical back reaction will contain a term 〈N 2Θ2〉D
N  is the lapse function relating Poisson-gauge 
coordinate time tP = ∫dτ a(τ) as a function of the 
proper time t of comoving observers; N contains ( ΦN) 2

• QD will contains terms like 〈 ( 2Φv)2  ( ΦN)2 〉
– Velocity potential Φv related to gravitational potential
– Non-linear (non-Gaussian) nature → average has 
– disconnected terms as before



How Do We Sort It Out?How Do We Sort It Out?How Do We Sort It Out?
• Something is established-ΛCDM too good to ignore

SNIa
Subtraction
Age
Large-scale structure
…..

• Left-hand side or right-hand side?

Right-hand side:
• w = −1
“just” Λ?

• w ≠ −1
what is dynamics?

• Scalars
long-range forces?

Left-hand side:
• Growth of structure
• New gravity?
solar-system effects
short-range effects
branes (accelerator effects)

• Inhomogreneities?



Riess et al.

0w w w z′= +



Caution in InterpretationCaution in InterpretationCaution in Interpretation

Always read the fine print: 
• Astrophysical systematic errors  

• What are the model assumptions?
– w = constant?     w', wa
– assume ΩΛ?

• What are the priors?
– ΩM, ΩB, H0, …



H(z)
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perturbations
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counting

weak
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How Do We Sort It Out?How Do We Sort It Out?How Do We Sort It Out?



• Don’t focus on any one
particular error contour

• Focus on fact that error   
contours for different    
methods are not parallel

Complementarity:
Reason #1

ComplementarityComplementarity::
Reason #1Reason #1



• If right-hand side, measure w associated with H(z).

• If left-hand side, measure w associated with H(z),        
AND w associated with growth of structure. 

• w deduced from methods sensitive only to H(z) 
NEED NOT agree with w deduced from methods   
sensitive to growth.

Complementarity:Reason #2ComplementarityComplementarity:: Reason #2Reason #2
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