$2^{\text {nd }}$ Vienna Central European Seminar on Particle Physics and Quantum Field Theory

Thoughts on Dark Energy Acceleration without Dark Energy

Rocky Kolb
Fermilab \&

The University of Chicago

All work is the result of collaborations with Sabino Matarrese and Antonio Riotto (Padova) [and occasionally Alessio Notari (McGill)]

The standard

 cosmological modelChemical Elements: (other than H \& He) 0.03\%

Neutrinos:
0.47\%

Free H
\& He : 4\%

Dark Matter: 25\%

Cosmological Constant (Dark Energy - Λ) 70\%

Dark matter?

- neutrinos
- sterile neutrinos, gravitinos (warm dark matter)
- LSP (neutralino, axino, ...) (cold dark matter)
- LKP (lightest Kaluzarkief h particle)
- axions, axion clusters
- solitons (Q-balls;' B-balls; Odd-balls, Screw-balls....)
- supermassive wimpzillas
$\left\lvert\,-\frac{\text { Mass range }}{}\right.$
$10^{-6} \mathrm{eV}\left(10^{-40} \mathrm{~g}\right)$ axions
$10^{-8} \mathrm{M}_{0}\left(10^{25} \mathrm{~g}\right)$ axion clusters

Interaction Strength range

Noninteracting: wimpzillas Strongly interacting: B balls

Cosmo-illogical constant?

lllogical magnitude (what's it related to?):

$$
\begin{aligned}
& \rho_{\Lambda} \simeq 10^{-30} \mathrm{~g} \mathrm{~cm}^{-3} \simeq\left(10^{-4} \mathrm{eV}\right)^{4} \simeq\left(10^{-3} \mathrm{~cm}\right)^{-4} \\
& \Lambda=8 \pi G \rho_{\Lambda} \simeq\left(10^{29} \mathrm{~cm}\right)^{-2} \simeq\left(10^{-33} \mathrm{eV}\right)^{2}
\end{aligned}
$$

Illogical timing (why now?):

Friedmann-Lemâitre-Robertson-Walker

(homogeneous/isotropic) model

RW metric

$$
d s^{2}=d t^{2}-a^{2}(t)\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right)
$$

Friedmann equation

$$
\left(\frac{\dot{a}}{a}\right)^{2}+\frac{k}{a^{2}}=\frac{8 \pi G}{3} \rho \quad H \equiv \frac{\dot{a}}{a}
$$

deceleration
equation

$$
\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 p) \quad q \equiv-\frac{\ddot{a}}{a} \frac{1}{H^{2}}
$$

expansion rate
deceleration parameter
conservation of $\quad T_{; v}^{\mu v}=0 \quad p=w \rho \quad \rho \propto a^{-3(1+w)}$
Matter: $\quad p_{M}=0 \quad w=0 \quad \rho_{M} \propto a^{-3}$
Radiation: $\quad p_{R}=\rho_{R} / 3 \quad w=1 / 3 \quad \rho_{R} \propto a^{-4}$
Cosmological constant:
$p_{\Lambda}=-1$
$w=-1$
$\rho_{\Lambda} \propto a^{0}$

$$
\ddot{a}=-\frac{4 \pi G}{3}(\rho+3 p)
$$

deceleration

$$
\begin{gathered}
\ddot{a}<0 \\
\rho+3 p>0
\end{gathered}
$$

$$
\begin{aligned}
& 1 \\
& \approx \\
& \vdots \\
& \vdots \\
& 0 \\
& 0 \\
& \frac{\pi}{0} \\
& \frac{0}{\pi} \\
& 0 \\
& 0
\end{aligned}
$$

acceleration

$$
\begin{aligned}
& \ddot{a}>0 \\
& \rho+3 p<0 \\
& \text { fluid with } \\
& w=p / \rho<-1 / 3 \\
& \text { "dark energy" }
\end{aligned}
$$

time

Do we "know" there is dark energy?

- Assume model cosmology:
- Friedmann model: $H^{2}+k / a^{2}=8 \pi G \rho / 3$
- Energy (and pressure) content: $\rho=\rho_{M}+\rho_{R}+\rho_{\Lambda}+\ldots$
- Input or integrate over cosmological parameters: H_{0}, etc.
- Calculate observables $d_{L}(z), d_{A}(z), \ldots$
- Compare to observations
- Model cosmology fits with ρ_{Λ}, but not without ρ_{Λ}
- All evidence for dark energy is indirect: observed $H(z)$ is not described by $H(z)$ calculated from the Einstein-de Sitter model

Evolution of $H(z)$ is a key quantity

Robertson-Walker metric

Many observables based on the coordinate distance $r(z)$

$$
d s^{2}=d t^{2}-a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right]
$$

$$
\int_{0}^{r(z)} \frac{d r^{\prime}}{\sqrt{1-k r^{\prime 2}}}=\int_{0}^{t} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}=\int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}
$$

Luminosity distance
Flux $=\left(\right.$ Luminosity $\left./ 4 \pi d_{L}{ }^{2}\right)$

$$
d_{L}(z) \propto r(z)(1+z)
$$

Angular diameter distance
Angular diameter $=\left(\right.$ Physical size $\left./ d_{A}\right)$

$$
d_{A}(z) \propto \frac{r(z)}{(1+z)}
$$

Comoving number counts
$N \propto V^{-1}(z)$

$$
\frac{d V(z)}{d z d \Omega} \propto \frac{r^{2}(z)}{H(z)}
$$

$$
t(z) \propto \int_{0}^{z} \frac{d z^{\prime}}{\left(1+z^{\prime}\right) H\left(z^{\prime}\right)}
$$

Take sides!

- Can't hide from the data $-\Lambda$ CDM too good to ignore
- SNIa
- Subtraction: $1.0-0.3=0.7$
- Age
- Large-scale structure
- ...

$$
3 H^{2} \neq 8 \pi G \rho_{\mathrm{MATTER}}
$$

- Dark energy (modify right-hand side of Einstein equations)
- "Just" Λ, a cosmological constant?
- If not constant, what drives dynamics (scalar field?)
- Gravity (modify left-hand side of Einstein equations)
- Beyond Einstein (non-GR: branes, etc.)?
- (Just) Einstein (GR: Back reaction of inhomogeneities)?

Modifying the left-hand side

- Braneworld modifies Friedmann equation
- Friedmann equation modified today

$$
H^{2}=A \rho\left[1+\left(\rho / \rho_{\text {cutof }}\right)^{n-1}\right]
$$

- Gravitational force law modified at large distance

Five-dimensional at cosmic distances

- Tired gravitons

Gregory, Rubakov \& Sibiryakov;
Dvali, Gabadadze \& Porrati
Gravitons metastable - leak into bulk

- Gravity repulsive at distance $R \approx$ Gpc

Csaki, Erlich, Hollowood \& Terning

- $n=l$ KK graviton mode very light, $m \approx(\mathrm{Gpc})^{-1}$ Papazoglou, Ross $\&$ Santiago
- Einstein \& Hilbert got it wrong

Carroll, Duvvuri, Turner, Trodden

$$
S=(16 \pi G)^{-1} \int d^{4} x \sqrt{-g}\left(R-\mu^{4} / R\right)
$$

- Backreaction of inhomogeneities

Räsänen; Kolb, Matarrese, Notari \& Riotto; Notari; Kolb, Matarrese \& Riotto

Braneless cosmology

Old Friedmann law:
 $$
\begin{aligned} & G_{00}=M_{P l}^{-2} T_{00} \\ & 3 H^{2}=M_{P l}^{-2} \rho \end{aligned}
$$

SNIa evidence for dark energy:

$$
\int \frac{d z}{H(z)}
$$

Brane cosmology

- Israel junction condition (Israel 1966)
- n_{A}
- $h_{A B}=g_{A B}-n_{A} n_{B}$
- $\kappa_{A B}=h_{A}^{C} \nabla_{C} n_{B}$

$$
\left[\kappa_{\mu \nu}\right]=-M_{*}^{-3} T_{\mu \nu}^{\text {BRANE }}
$$

$$
[\ldots]=\text { discontinuity across the brane }
$$

$$
a^{\prime \prime}=\left\langle a^{\prime \prime}\right\rangle+\left[a^{\prime}\right] \delta(y)
$$ discontinuity in $2^{\text {nd }}$ derivative of scale factor

Braneless cosmology

Old Friedmann law:

$$
\begin{aligned}
& G_{00}=M_{P l}^{-2} T_{00} \\
& 3 H^{2}=M_{P l}^{-2} \rho \\
& \hline
\end{aligned}
$$

SNIa evidence for dark energy:

$$
\int \frac{d z}{H(z)}
$$

Braneful cosmology

New Friedmann law: Israel jump conditions

Binetruy, Deffayet, Langlois (2000)

$$
3 H^{2}=\frac{\Lambda}{2}+\frac{M_{*}^{-6}}{12} \rho^{2}+\frac{c}{a^{4}(t, y=0)}
$$

Brane Cosmology

- New Friedmann law Binetruy, Deffayet, Langlois (2000)

$$
3 H^{2}=\frac{\Lambda}{2}+\frac{M_{*}^{-6}}{12} \rho^{2}+\frac{c}{a^{4}(t, y=0)}
$$

- Possible solution Randall \& Sundrum (2000) Introduce a tension σ on the brane $\rho \rightarrow \rho+\sigma$

$$
3 H^{2}=\left(\frac{\Lambda}{2}+\frac{M_{*}^{-6}}{12} \sigma^{2}\right)+\frac{M_{*}^{-6}}{6} \sigma \rho+\frac{M_{*}^{-6}}{12} \rho^{2}+\frac{c}{a^{4}(t, y=0)}
$$

 constant (cancels?)

Friedmann equation

Acceleration from inhomogeneities

- Most conservative approach - nothing new
- no new fields (like $10^{-33} \mathrm{eV}$ mass scalars)
- no extra long-range forces
- no modification of general relativity
- no modification of Newtonian gravity at large distances
- no Lorentz violation
- no extra dimensions, bulks, branes, etc.
- no faith-based (anthropic) reasoning
- Magnitude?: calculable from observables related to $\delta \rho / \rho$
-Why now?: acceleration triggered by era of non-linear structure

Acceleration from inhomogeneities

Homogeneous model

Acceleration from inhomogeneities

Homogeneous model

Acceleration from inhomogeneities

Homogeneous model

Inhomogeneous model

$$
\rho_{h}=\left\langle\rho_{i}(\vec{x})\right\rangle \Rightarrow H_{h}=H_{i} \text { ? }
$$

We think not!

Acceleration from inhomogeneities

- View scale factor as zero-momentum mode of gravitational field
- In homogeneous/isotropic model it is the only degree of freedom
- Inhomogeneities: non-zero modes of gravitational field
- Non-zero modes interact with and modify zero-momentum mode

Acceleration from inhomogeneities

- View scale factor as zero-momentum mode of gravitational field
- In homogeneous/isotropic model it is the only degree of freedom
- Inhomogeneities: non-zero modes of gravitational field
- Non-zero modes interact with and modify zero-momentum mode

Cosmology \leftrightarrow scalar field theory analogue

	cosmology	scalar-field theory
zero-mode	a	$\langle\phi\rangle$ (vev of a scalar field)
non-zero modes	inhomogeneities	thermal/finite-density bkgd.
physical effect	modify $a(t)$ e.g., acceleration	modify $\langle\phi(t)\rangle$ e.g., phase transitions

Acceleration from inhomogeneities

- We operate under assumption that observables (d_{A}, d_{L}, z, etc.) are modified if effective scale factor is modified.
- We can only show this for unrealistic models.
- We must assume that there will be no (or little) anisotropy (shear).

Different approaches

- Model an inhomogeneous Universe as a homogeneous Universe model with $\rho=\langle\rho\rangle$
- Zero mode $[a(t)]$ is zero mode of homogeneous model with $\rho=\langle\rho\rangle$
- Inhomogeneities only have a local effect on observables
- Cannot account for observed acceleration
- Expansion rate of an inhomogeneous Universe \neq expansion rate of homogeneous Universe with $\rho=\langle\rho\rangle$
- Inhomogeneities modify zero-mode [effective scale factor is $a_{D} \equiv V_{D}{ }^{1 / 3}$]
- Effective scale factor has a (global) effect on observables
- Potentially can account for acceleration without dark energy or modified GR

Acceleration from inhomogeneities

- We do not use super-Hubble modes for acceleration.
- We do not depend on large gravitational potentials such as black holes and neutron stars.
- We assert that the back reaction should be calculated in a frame comoving with the matter-other frames can give spurious results.
- We demonstrate large corrections in the gradient expansion, but the gradient expansion technique can not be used for the final answer-so we have indications (not proof) of a large effect.
- The basic idea is that small-scale inhomogeneities "renormalize" the large-scale properties.

Inhomogeneities-cosmology

- Our Universe is inhomogeneous
- Can define an average density $\langle\rho\rangle$
- The expansion rate of an inhomogeneous universe of average density $\langle\rho\rangle$ is NOT! the same as the expansion rate of a homogeneous universe of average density $\langle\rho\rangle$!
- Difference is a new term that enters an effective Friedmann equation - the new term need not satisfy energy conditions!
- We deduce dark energy because we are comparing to the wrong model universe (i.e., a homogeneous/isotropic model)

Inhomogeneities-example

Kolb, Matarrese, Notari \& Riotto

- Perturbed Friedmann-Lemâitre-Robertson-Walker model:

$$
\begin{aligned}
& G_{\mu \nu}(\vec{x}, t)=G_{\mu \nu}^{\mathrm{FLRW}}(t)+\delta G_{\mu \nu}(\vec{x}, t) \\
& G_{00}^{\mathrm{FLRW}}(t)+\delta G_{00}(\vec{x}, t)=8 \pi G T_{00}(\vec{x}, t) \\
& \left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3}\left[\langle\rho\rangle-\frac{3}{8 \pi G}\left\langle\delta G_{00}\right\rangle\right]
\end{aligned}
$$

- $(\dot{a} / a)^{2}$ is not $8 \pi G\langle\rho\rangle / 3$
- $(\dot{a} / a$ is not even the expansion rate $)$
- Could $\left\langle\delta G_{00}\right\rangle$ play the role of dark energy?

Inhomogeneities-cosmology

- For a general fluid, four velocity $u^{\mu}=(1, \overrightarrow{0})$
(local observer comoving with energy flow)
- For irrotational dust, work in synchronous and comoving gauge

$$
d s^{2}=-d t^{2}+h_{i j}(\vec{x}, t) d x^{i} d x^{j}
$$

- Velocity gradient tensor

$$
\Theta_{j}^{i}=u_{; j}^{i}=\frac{1}{2} h^{i k} \dot{h}_{k j}=\Theta \delta_{j}^{i}+\sigma_{j}^{i} \quad\left(\sigma_{j}^{i} \text { is traceless }\right)
$$

- Θ is the volume-expansion factor and σ_{j}^{i} is the shear (shear will have to be small)
- For flat FLRW, $h_{i j}(t)=a^{2}(t) \delta_{i j}$

$$
\Theta=3 H \text { and } \sigma_{j}^{i}=0
$$

Inhomogeneities and acceleration

- Local deceleration parameter positive:

$$
q=-\frac{\left(3 \dot{\Theta}+\Theta^{2}\right)}{\Theta^{2}}=6\left(\sigma^{2}+2 \pi G \rho\right) \geq 0
$$

Hirata \& Seljak; Flanagan; Giovannini; Alnes, Amarzguioui \& Gron

- However must course-grain over some finite domain:

$$
\langle F\rangle_{D}=\frac{\int_{D} \sqrt{h} F d^{3} x}{\int_{D} \sqrt{h} d^{3} x}
$$

- Evolution and smoothing do not commute:

$$
\begin{aligned}
& \langle F\rangle_{D}^{\bullet}=\left\langle F^{\bullet}\right\rangle_{D}+\langle F \Theta\rangle_{D}-\langle\Theta\rangle_{D}\langle F\rangle_{D} \\
& \langle\Theta\rangle_{D}^{\bullet}=\left\langle\Theta^{\cdot}\right\rangle_{D}+\left\langle\Theta^{2}\right\rangle_{D}-\langle\Theta\rangle_{D}^{2} \geq\left\langle\Theta^{\bullet}\right\rangle_{D}
\end{aligned}
$$

Buchert \& Ellis;
Kolb, Matarrese \& Riotto

- $\langle\Theta\rangle_{D}^{\bullet} \neq\left\langle\Theta^{\cdot}\right\rangle_{D} \quad$ although $\left\langle\Theta^{\cdot}\right\rangle_{D}$ can't accelerate, $\langle\Theta\rangle_{D}^{\bullet}$ can!

Inhomogeneities and smoothing

- Define an course-grained scale factor:

$$
a_{D} \equiv\left(V_{D} / V_{D 0}\right)^{1 / 3} \quad V_{D}=\int_{D} d^{3} x \sqrt{h}
$$

Kolb, Matarrese \& Riotto astro-ph/0506534;
Buchert \& Ellis

- Course-grained Hubble rate:

$$
H_{D}=\frac{\dot{a}_{D}}{a_{D}}=\frac{1}{3}\langle\Theta\rangle_{D}
$$

- Effective evolution equations:

$$
\begin{array}{lll}
\frac{\ddot{a}_{D}}{a_{D}}=-\frac{4 \pi G}{3}\left(\rho_{\text {eff }}+3 p_{\text {eff }}\right) & \rho_{\text {eff }}=\langle\rho\rangle_{D}-\frac{Q_{D}}{16 \pi G}-\frac{\langle R\rangle_{D}}{16 \pi G} & \text { not } \\
\text { described } \\
\left(\frac{\dot{a}_{D}}{a_{D}}\right)^{2}=\frac{8 \pi G}{3} \rho_{\text {eff }} & p_{\text {eff }}=-\frac{Q_{D}}{16 \pi G}+\frac{\langle R\rangle_{D}}{48 \pi G} & \text { by a simple } \\
p=w \rho
\end{array}
$$

- Kinematical back reaction: $Q_{D}=\frac{2}{3}\left(\left\langle\Theta^{2}\right\rangle_{D}-\langle\Theta\rangle_{D}^{2}\right)-2\left\langle\sigma^{2}\right\rangle_{D}$

Inhomogeneities and smoothing

- Kinematical back reaction:

$$
Q_{D}=\frac{2}{3}\left(\left\langle\Theta^{2}\right\rangle_{D}-\langle\Theta\rangle_{D}^{2}\right)-2\left\langle\sigma^{2}\right\rangle_{D}
$$

- For acceleration:

$$
\rho_{\mathrm{eff}}+3 p_{\mathrm{eff}}=\langle\rho\rangle_{D}-\frac{Q_{D}}{4 \pi G}<0
$$

- Integrability condition (GR): $\left(a_{D}^{6} Q_{D}\right)^{\bullet}+a_{D}^{4}\left(a_{D}^{2}\langle R\rangle_{D}\right)^{\bullet}=0$
- Acceleration is a pure GR effect:
- curvature vanishes in Newtonian limit
- Q_{D} will be exactly a pure boundary term, and small

Inhomogeneities and integrability

- Integrability condition: $\left(a_{D}^{6} Q_{D}\right)^{\bullet}+a_{D}^{4}\left(a_{D}^{2}\langle R\rangle_{D}\right)^{\bullet}=0$
- General solution:

$$
\langle R\rangle_{D}=-Q_{D}+\frac{6 k_{D}}{a_{D}^{2}}-\frac{4}{a_{D}^{2}} \int_{0}^{a_{D}} d a a Q_{D}(a)
$$

- H_{D} and q_{D} :

$$
\begin{aligned}
& H_{D}^{2}=\frac{8 \pi G}{3}\langle\rho\rangle_{D}-\frac{k_{D}}{a_{D}^{2}}+\frac{2}{3 a_{D}^{2}} \int_{0}^{a_{D}} d a a Q_{D}(a) \\
& \rho_{\text {eff }}+3 p_{\text {eff }}=\langle\rho\rangle_{D}-\frac{Q_{D}}{4 \pi G}
\end{aligned}
$$

- Particular solution: If $Q_{D}=0$ or $Q_{D} \propto a_{D}{ }^{-6}$
- integrability condition: $\langle R\rangle_{D}=6 k_{D} / a_{D}{ }^{2}$
- curvature dominated: can have $q \rightarrow 0$, but no acceleration
- Particular solution: $3 Q_{D}=-\langle R\rangle_{D}=$ const.
- i.e., $\Lambda_{\text {eff }}=Q_{D}$, so Q_{D} acts as a cosmological constant)

Inhomogeneities

- Now specialize:

$$
h_{i j}(\vec{x}, t)=a^{2}(t) e^{-2 \Psi(\bar{x}, t)}\left[\delta_{i j}+\chi_{i j}(\vec{x}, t)\right]
$$

$a \sim t^{2 / 3}$ is the usual FRW scale factor
Ψ is a scalar perturbation: $\Psi=\Psi_{\ell}+\Psi_{s} \ell=$ long, $s=$ short (wrt: D)
$\chi_{i j}$ is a traceless tensor with scalar, vector, \& tensor d.o.f.

- $\operatorname{Absorb} \Psi_{s}$ into $\tilde{h}_{i j}(\vec{x}, t)$:

$$
h_{i j}(\vec{x}, t)=a^{2}(t) e^{-2 \Psi_{t}(t)} \tilde{h}_{i j}(\vec{x}, t)
$$

- In terms of metric functions: $\langle R\rangle_{D}=a^{-2} e^{2 \Psi_{\ell}}\left\langle\tilde{R}+4 \tilde{\nabla}^{2} \Psi_{\ell}-2 \tilde{\nabla}^{i} \Psi_{\ell} \tilde{\nabla}_{i} \Psi_{\ell}\right\rangle$

$$
Q_{D}=\frac{2}{3}\left\langle\tilde{\Theta}^{2}\right\rangle_{D}-2\left\langle\tilde{\sigma}^{2}\right\rangle_{D}
$$

- Only super-Hubble modes: Q_{D} vanishes integrability condition $\rightarrow\langle R\rangle_{D} \propto a_{D}{ }^{-2}$ can have $q \rightarrow 0$, but no acceleration

Gradient expansion

Lifsitz, Khalatnikov, Tomita, Salopek, Stewart, Comer, Deruelle, Langlois, Parry, Nambu, Taruya, Bruni, Sopuerta, Croudace, ...

- Local curvature expanded in powers of gradients of perturbations
- Lowest-order solution is "seed" long-wavelength approximation
- Successively add higher-order gradient terms
- Up to two gradients: $\nabla^{2} \phi=4 \pi G \delta \rho$

$$
\begin{aligned}
& \Psi=\frac{5}{3} \phi+\frac{1}{18} \frac{a}{a_{0}}\left(\frac{2}{H_{0}}\right)^{2} e^{10 \phi / 3}\left[\nabla^{2} \phi-\frac{5}{6}(\nabla \phi)^{2}\right] \\
& \chi_{j}^{i}=-\frac{1}{3} \frac{a}{a_{0}}\left(\frac{2}{H_{0}}\right)^{2} e^{10 \phi / 3}\left[D_{j}^{i} \phi+\frac{5}{3}\left(\phi_{, j}^{i}-\frac{1}{3}(\nabla \phi)^{2} \delta_{j}^{i}\right)\right]
\end{aligned}
$$

Sub-Hubble instabilities

- Result in $2^{\text {nd }}$-order perturbation (in ϕ) theory:

$$
\begin{aligned}
\frac{\langle\theta=\Theta-3 H\rangle}{3 H}= & -\frac{20 \tau^{2}}{9}\left\langle\nabla^{2} \phi\right\rangle-\frac{100 \tau^{2}}{9}\langle\phi\rangle\left\langle\nabla^{2} \phi\right\rangle-\frac{23 \tau^{4}}{54}\left\langle\nabla^{2} \phi\right\rangle\left\langle\nabla^{2} \phi\right\rangle \\
& +\frac{130 \tau^{2}}{27}\left\langle\phi^{i} \phi_{, i}\right\rangle+\frac{20 \tau^{2}}{3}\left\langle\phi \nabla^{2} \phi\right\rangle+\frac{4 \tau^{4}}{27}\left(\left\langle\nabla^{2} \phi \nabla^{2} \phi\right\rangle-\left\langle\phi^{, i j} \phi_{, i j}\right\rangle\right) \\
\rightarrow & \frac{130 \tau^{2}}{27}\left\langle\phi^{i} \phi_{, i}\right\rangle+\frac{4 \tau^{4}}{27}\left(\left\langle\nabla^{2} \phi \nabla^{2} \phi\right\rangle-\left\langle\phi^{i j} \phi_{, i j}\right\rangle\right)
\end{aligned}
$$

- Each derivative accompanied by conformal time $\tau=2 / \mathrm{aH}$
- Each factor of τ accompanied by c.
- Highest derivative is highest power of $\tau \propto c$: "Newtonian"
- Lower derivative terms $\propto c^{n}$: "Post-Newtonian"
- ϕ and its derivatives can be expressed in terms of $\delta \rho / \rho$

$\Delta^{2}(k, a):$ power spectrum of $\delta \rho / \rho$

- Amplitude $A=1.9 \times 10^{-5}$ and transfer function $T^{2}(k)$:
$\Delta^{2}(k, a)=A^{2}\left(\frac{k}{a H}\right)^{4} T^{2}(k) \quad$ Harrison-Zel'dovich spectrum
- Use CDM transfer function:

$$
\begin{aligned}
& T^{2}(k) \rightarrow\left\{\begin{array}{lll}
1 & k \rightarrow 0 & 10^{0} \\
k^{-4} \ln ^{2}(k) & k \rightarrow \infty & 10^{-1}
\end{array}\right. \\
& \Delta^{2}(k) \rightarrow\left\{\begin{array}{l}
k^{4} \\
\ln ^{2}(k)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10-4 }
\end{aligned}
$$

Some examples

- $\begin{aligned} \tau^{2}\langle\nabla \phi \cdot \nabla \phi\rangle & =-\frac{4}{a^{2} H^{2}} \int_{V(R)} \frac{d^{3} x}{V(R)} \int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}} k_{1} \cdot k_{2} \overline{\phi_{\bar{k}_{1}} \phi_{\bar{k}_{2}}} e^{i\left(\bar{k}_{1}+\bar{k}_{2}\right) \cdot x} \\ & \simeq A^{2} \frac{1}{a^{2} H^{2}} \int_{0}^{\infty} d k k T^{2}(k) \sim 10^{-5} \frac{a}{a_{0}}\end{aligned}$
- $\tau^{4}\left\langle\nabla^{2} \phi \nabla^{2} \phi\right\rangle=-\frac{1}{a^{4} H^{4}} \int_{V(R)} \frac{d^{3} x}{V(R)} \int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \frac{d^{3} k_{2}}{(2 \pi)^{3}} k_{1}^{2} k_{2}^{2} \overline{\phi_{\bar{k}_{1}} \phi_{\bar{k}_{2}}} e^{i\left(\bar{k}_{1}+\vec{k}_{2}\right) \cdot \bar{x}}$

$$
\simeq A^{2} \frac{1}{a^{4} H^{4}} \int_{0}^{\infty} d k k^{3} T^{2}(k) \sim 10^{0}\left(\frac{a}{a_{0}}\right)^{2}
$$

- Mean of linear terms vanish: $\left\langle\nabla^{2} \phi\right\rangle=\langle\phi\rangle=0$
- Individual Newtonian terms large, i.e., $\left\langle\nabla^{2} \phi \nabla^{2} \phi\right\rangle=\mathcal{O}(1)$
- But total Newtonian term vanishes $\left\langle\nabla^{2} \phi \nabla^{2} \phi\right\rangle=\left\langle\phi^{, i j} \phi_{, i j}\right\rangle$
- Post-Newtonian: $\langle\nabla \phi \cdot \nabla \phi\rangle=\mathcal{O}\left(10^{-5}\right)$ huge! (large $\left.k^{2} / a^{2} H^{2}\right)$

Sub-Hubble instabilities

- First term in gradient expansion (2 spatial derivatives):

$$
\langle R\rangle_{D} \propto a_{D}^{-2} \quad Q_{D}=0 \rightarrow \text { no acceleration }
$$

- In general, gradient expansion gives Notari; Kolb, Matarrese, \& Riotto

$$
\begin{array}{rr}
\langle R\rangle_{D} & =\sum_{n=1}^{\infty} r_{n} a^{n-3} \\
& \left(r_{n}=\sum_{m=n}^{2 n}(2 n \text { derivatives }) \phi^{m}\right) \\
Q_{D} & =\sum_{n=2}^{\infty} q_{n} a^{n-3} \\
& \left(q_{n}=\sum_{m=n}^{2 n}(2 n \text { derivatives }) \phi^{m}\right)
\end{array}
$$

- Newtonian terms, $\left(\nabla^{2} \phi\right)^{n} \sim(k / a H)^{2 n} \phi^{n}$, individually are large, but only appear as surface terms, hence small in total
- Post-Newtonian terms, $(\nabla \phi)^{2 n} \sim(k / a H)^{2 n} \phi^{2 n}$, individually are small, but do not appear as surface terms
- Dominant term is combination: $\left(\nabla^{2} \phi\right)^{n-1}(\nabla \phi)^{2} \sim(k / a H)^{2 n} \phi^{n+1}$

$\left(\nabla^{2} \phi\right)^{n-1}(\nabla \phi)^{2} \sim(k / a H)^{2 n} \phi^{n+1}$

- $\phi \rightarrow A=2 \times 10^{-5}$
- $(a H)^{2 n}=a_{0}^{2 n} H_{0}^{2 n}\left(a_{0} / a\right)^{n}$
- $H_{0}^{-1}=3000 h^{-1} \mathrm{Mpc}$
- $(k / a H)^{2 n} \phi^{n+1} \sim\left(3 \times 10^{3}\right)^{2 n}\left(k / h \mathrm{Mpc}^{-1}\right)^{2 n}\left(2 \times 10^{-5}\right)^{n+1}$
$-n=1: \quad 4 \times 10^{-3}\left(k / h \mathrm{Mpc}^{-1}\right)^{2}\left(a / a_{0}\right) \quad \times a^{-3}:$ curvature
$-n=2: \quad 6 \times 10^{-1}\left(k / h \mathrm{Mpc}^{-1}\right)^{4}\left(a / a_{0}\right)^{2} \quad \times a^{-3}: ?$
$-n=3: \quad 9 \times 10^{1}\left(k / h \mathrm{Mpc}^{-1}\right)^{6}\left(a / a_{0}\right)^{3} \quad \times a^{-3}: \Lambda$
- Of course have to include transfer function, integrate over k, etc.

Sub-Hubble instabilities

- Gradient expansion:

$$
\langle R\rangle_{D}=\sum_{n=1}^{\infty} r_{n} a^{n-3} \quad Q_{D}=\sum_{n=2}^{\infty} q_{n} a^{n-3}
$$

- Lowest-order term to make big contribution is $n=3$ (6 derivatives)
- Disconnected fourth-order moment of $\phi:\left\langle\frac{\left(\nabla^{2} \phi\right)^{2}}{H_{0}^{4}}\right\rangle\left\langle\frac{(\nabla \phi)^{2}}{H_{0}^{2}}\right\rangle$
- Notice $n=3$ contributes to Q_{D} and $\langle R\rangle_{D}$ terms $\propto a^{0}$, i.e., expansion as if driven by a cosmological constant !!!
- But why stop at $n=3$?????

Inhomogeneities

- Does this have anything to do with our universe?
- Have to go to non-perturbative limit!
- How to relate observables $\left(d_{L}(z), d_{A}(z), H(z), \ldots\right)$ to $Q_{D} \&\langle R\rangle_{D}$?
- Can one have large effect and isotropic expansion/acceleration? (i.e., will the shear be small?)
-What about gravitational instability?
- Toy model proof of principle: Tolman-Bondi dust model Nambu \& Tanimoto (gr-qc/0507057)

Observational consequences

- Spherical model
- Overall Einstein-de Sitter
- Inner underdense 200 Mpc region
- Compensating high-density shell
- Calculate $d_{L}(z)$
- Compare to SNla data
- Fit with $\Lambda=0$!

Comments

- "Do you believe?" is not the relevant question
- Acceleration of the Universe is important; this must be explored
- How it could go badly wrong:
- Backreaction should not be calculated in frame comoving with matter flow
- Series re-sums to something harmless
- No reason to stop at first large term
- Synchronous gauge is tricky
© Residual gauge artifacts
© Synchronous gauge develops coordinate singularities at late time (shell crossings)
© Problem could be done in Poisson gauge

Conclusions

- Must properly smooth inhomogeneous Universe
- In principle, acceleration possible even if "locally" $\rho+3 p>0$
- Super-Hubble modes, of and by themselves, cannot accelerate
- Sub-Hubble modes have large terms in gradient expansion
- Newtonian terms can be large but combine as surface terms
- Post-Newtonian terms are not surface terms, but small
- Mixed Newtonian \times Post-Newtonian terms can be large
- Effect from "mildly" non-linear scales
- The first large term yields effective cosmological constant
- No reason to stop at first large term
- Can have $w<-1$?
- Advantages to scenario:
- No new physics
- "Why now" due to onset of non-linear era

$2^{\text {nd }}$ Vienna Central European Seminar on Particle Physics and Quantum Field Theory

Thoughts on Dark Energy: Acceleration without Dark Energy

Rocky Kolb Fermilab \& University of Chicago

All work is the result of collaborations with Sabino Matarrese and Antonio Riotto (Padova) [and occasionally Alessio Notari (McGill)]

Shell Crossing

- Gradient terms:
- Shell-crossing instabilities imply divergent gradient terms.
- Our effect comes from infinite number of finite gradient terms
- Newtonian terms:
- Shell crossing instabilities lead to infinite Newtonian terms
- Our effect has small Newtonian terms
- Caustics:
- Caustics carry small amount of mass
- They can be smoothed

Poisson gauge

- The weak-field form of metric:
$d s^{2}=a^{2}(t)\left[-\left(1-2 \psi_{P}\right) d t^{2}+\left(1-2 \psi_{P}\right) \delta_{i j} d x^{i} d x^{i}\right]$
$\psi_{P}=\Phi_{N} / c^{2}$ is the Newtonian gravitational potential, related to $\delta \rho$ by the Poisson equation: $\nabla^{2} \Phi_{N}=4 \pi G a^{2} \delta \rho$
- Kinematical back reaction will contain a term $\left\langle N^{2} \Theta^{2}\right\rangle_{D}$
N is the lapse function relating Poisson-gauge coordinate time $t_{P}=\int d \tau a(\tau)$ as a function of the proper time t of comoving observers; N contains $\left(\nabla \Phi_{N}\right)^{2}$
- Q_{D} will contains terms like $\left\langle\left(\nabla^{2} \Phi_{v}\right)^{2}\left(\nabla \Phi_{N}\right)^{2}\right\rangle$
- Velocity potential Φ_{v} related to gravitational potential
- Non-linear (non-Gaussian) nature \rightarrow average has disconnected terms as before

How Do We Sort It Out?

- Something is established- Λ CDM too good to ignore SNla
Subtraction
Age
Large-scale structure
- Left-hand side or right-hand side?

Left-hand side:

- Growth of structure
- New gravity?
solar-system effects short-range effects branes (accelerator effects)
- Inhomogreneities?

Right-hand side:

- $w=-1$
"just" Λ ?
- $w \neq-1$
what is dynamics?
- Scalars long-range forces?

Caution in Interpretation

Always read the fine print:

- Astrophysical systematic errors
-What are the model assumptions?
$-w=$ constant? $\quad w^{\prime}, w_{a}$
- assume Ω_{Λ} ?
-What are the priors?
$-\Omega_{M}, \Omega_{B}, H_{0}, \ldots$

How Do We Sort It Out?

Complementarity: Reason \#1

- Don't focus on any one particular error contour
- Focus on fact that error contours for different methods are not parallel

Supernova Cosmology Project

Complementarity: Reason \#2

- If right-hand side, measure w associated with $H(z)$.
- If left-hand side, measure w associated with $H(z)$, AND w associated with growth of structure.

$$
\ddot{\delta}+2 H \dot{\delta}-4 \pi G \rho_{0} \delta=\left\{\begin{array}{l}
0 ? \\
\text { source term? }
\end{array}\right.
$$

- w deduced from methods sensitive only to $H(z)$ NEED NOT agree with w deduced from methods sensitive to growth.

