Predicting neutrinoless double beta decay in the A₄ **family symmetry model**

Albert Villanova del Moral

Based on paper:

M. Hirsch, A. Villanova del Moral, J. W. F. Valle and E. Ma,

Phys. Rev. D 72, 091301 (2005)

2ndVIENNA CENTRAL EUROPEAN SEMINAR ON PARTICLE PHYSICS AND QUANTUM FIELD THEORY

Wien, 25-27 November, 2005

Neutrino Physics Data

★ Neutrinos are massive

Allowed parameter region from all neutrino experimental data: [⇒]

[M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6, 122 (2004)]

Solution Dirac neutrinos: $v \neq \overline{v}$

$$\mathcal{L}^{\mathrm{D}} = -\sum_{\ell\ell'} \, \overline{oldsymbol{
u}}_{\ell' \mathrm{R}} \, M^{\mathrm{D}}_{\ell'\ell} \, oldsymbol{
u}_{\ell \mathrm{L}} + \mathrm{h.c.}$$

Solution Dirac neutrinos: $v \neq \overline{v}$

$$\mathcal{L}^{\mathrm{D}} = -\sum_{\ell\ell'} \, \overline{oldsymbol{
u}}_{\ell'\mathrm{R}} \, M^{\mathrm{D}}_{\ell'\ell} \, oldsymbol{
u}_{\ell\mathrm{L}} + \mathrm{h.c.}$$

 \bigcirc Total *L* is conserved

Solution Dirac neutrinos: $v \neq \overline{v}$

$$\mathcal{L}^{\mathrm{D}} = -\sum_{\ell\ell'} \, \overline{oldsymbol{
u}}_{\ell' \mathrm{R}} \, M^{\mathrm{D}}_{\ell'\ell} \, oldsymbol{
u}_{\ell \mathrm{L}} + \mathrm{h.c.}$$

Total L is conserved
Majorana neutrinos: $v = \overline{v}$

$$\mathcal{L}^{\mathrm{M}} = -rac{1}{2}\sum_{\ell\ell'} \, \overline{m{
u}}^{\mathrm{c}}_{\ell'\mathrm{L}} \, M^{\mathrm{M}}_{\ell'\ell} \, m{
u}_{\ell\mathrm{L}} + \mathrm{h.c.}$$

O Dirac neutrinos: $v \neq \overline{v}$

$$\mathcal{L}^{\mathrm{D}} = -\sum_{\ell\ell'} \, \overline{oldsymbol{
u}}_{\ell' \mathrm{R}} \, M^{\mathrm{D}}_{\ell'\ell} \, oldsymbol{
u}_{\ell \mathrm{L}} + \mathrm{h.c.}$$

Total *L* is conserved
 Majorana neutrinos: $v = \overline{v}$

$$\mathcal{L}^{\mathrm{M}} = -rac{1}{2}\sum_{\ell\ell'} \, \overline{m{
u}}^{\mathrm{c}}_{\ell'\mathrm{L}} \, M^{\mathrm{M}}_{\ell'\ell} \, m{
u}_{\ell\mathrm{L}} + \mathrm{h.c.}$$

Double Beta Decay

 $(Z, A) \rightarrow (Z+2, A) + 2e^- + X$

Double Beta Decay

$$(Z,A) \rightarrow (Z+2,A) + 2e^- + X$$

$\bigcirc \text{ If } X = 2\overline{\nu}_e, \quad \Rightarrow \quad 2\nu\beta\beta$

Allowed within the SM

Solution Experimentally observed for 9 isotopes

Double Beta Decay

$$(Z,A) \rightarrow (Z+2,A) + 2e^- + X$$

$\bigcirc \text{ If } X = 2\overline{\nu}_e, \quad \Rightarrow \quad 2\nu\beta\beta$

Allowed within the SM

- Experimentally observed for 9 isotopes
- $\bigcirc \text{ If } X = \mathbf{0} \overline{\mathbf{v}}_{e}, \quad \Rightarrow \quad \mathbf{0} \mathbf{v} \beta \beta$
 - \bigcirc L is violated in 2 units
 - Experimentally not observed
 - Current experimental limits:

$$m_{ee} \leq 0.3 - 1 \,\mathrm{eV}$$

[L. Baudis *et al.*, Phys. Rev. Lett. 83, 41 (1999). C. E. Aalseth *et al.* [IGEX Collaboration], Phys. Rev. D65, 092007 (2002).]

How can it happen?

Mass mechanism: exchange of massive Majorana neutrinos

How can it happen? Mass mechanism: exchange of massive Majorana neutrinos

How can it happen?

- Mass mechanism: exchange of massive Majorana neutrinos
- \bigcirc However, it is not the only mechanism! [\Rightarrow]

Black-box Theorem

"In any gauge theory, whatever the mechanism for inducing $0\nu\beta\beta$ is, it is bound to also yield a Majorana neutrino mass at some level."

[J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982)]

Black-box Theorem

"In any gauge theory, whatever the mechanism for inducing $0\nu\beta\beta$ is, it is bound to also yield a **Majorana** neutrino mass at some level."

[J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982)]

Black-box Theorem

"In any gauge theory, whatever the mechanism for inducing $0\nu\beta\beta$ is, it is bound to also yield a Majorana neutrino mass at some level."

[J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982)]

SM neutrinos are massless

- SM neutrinos are massless since:
 - Right-handed neutrinos do not exist
 - Lepton number is "accidentally" conserved
 - Higgs triplets do not exist

- SM neutrinos are massless since:
 - Right-handed neutrinos do not exist
 - Solution Lepton number is "accidentally" conserved
 - Higgs triplets do not exist

- \Rightarrow SM must be extended in some sector:
 - Particles
 - Symmetries
 - or both

- SM neutrinos are massless since:
 - Right-handed neutrinos do not exist
 - Lepton number is "accidentally" conserved
 - Higgs triplets do not exist

- \Rightarrow SM must be extended in some sector:
 - Particles
 - Symmetries
 - or both

 \bigstar A₄ flavour symmetry extension

It is the finite group of even permutations of 4 objects

- It is the finite group of even permutations of 4 objects
- It has 12 elements in 4 equivalence classes

- It is the finite group of even permutations of 4 objects
- It has 12 elements in 4 equivalence classes
- It has 4 irreducible representations (irreps):
 Three 1-dimensional irreps:

One 3-dimensional irrep:

- It is the finite group of even permutations of 4 objects
- It has 12 elements in 4 equivalence classes
- It has 4 irreducible representations (irreps):
 Three 1-dimensional irreps:

1, 1', 1"

One 3-dimensional irrep:

3

★ Suitable for describing 3 families!

A₄ Group Character Table

Class	$\chi^{(1)}$	$\chi^{(\mathbf{1'})}$	$\chi^{(1'')}$	$\chi^{(3)}$
C_1	1	1	1	3
C_2	1	ω	ω^2	0
C_3	1	ω^2	ω	0
C_4	1	1	1	-1

where

$$\omega \equiv \sqrt[3]{1} = e^{i2\pi/3}$$
$$\omega + \omega^2 + 1 = 0$$

Irrep Products

Invariant terms:

 $1 = 1 \times 1 \qquad \qquad 1 = 1' \times 1''$

Product decomposition:

 $3 \times 3 = 1 + 1' + 1'' + 3 + 3$

$$(x_{1}, x_{2}, x_{3}) \times (y_{1}, y_{2}, y_{3}) = x_{1}y_{1} + x_{2}y_{2} + x_{3}y_{3} \sim 1$$

+ $x_{1}y_{1} + \omega^{2}x_{2}y_{2} + \omega x_{3}y_{3} \sim 1'$
+ $x_{1}y_{1} + \omega x_{2}y_{2} + \omega^{2}x_{3}y_{3} \sim 1''$
+ $(x_{2}y_{3}, x_{3}y_{1}, x_{1}y_{2}) \sim 3$
+ $(x_{3}y_{2}, x_{1}y_{3}, x_{2}y_{1}) \sim 3$

Irrep Products

Invariant terms from three-3 product:

 $(x_1, x_2, x_3) \times (y_1, y_2, y_3) \times (z_1, z_2, z_3) = x_1 y_2 z_3 + x_1 y_3 z_2$ + $x_2 y_1 z_3 + x_2 y_3 z_1$ + $x_3 y_1 z_2 + x_3 y_2 z_1$

Quantum Numbers

Fields	L	ℓ ^c	ϕ_1	ϕ_2	\$ 3	η_1	η_2	η_3	ξ
$SU(2)_L$	2	1	2			3			3
Ŷ	-1	2	—1			2			2
A_4	3	3	1	1′	1″	1	1′	1″	3

Charged Lepton Masses $[\Rightarrow]$

 $\mathcal{L} \supset h_1 \phi_1^0 (ee^c + \mu\mu^c + \tau\tau^c)$ + $h_2 \phi_2^0 (ee^c + \omega \mu \mu^c + \omega^2 \tau \tau^c)$ + $h_3 \phi_3^0 (ee^c + \omega^2 \mu \mu^c + \omega \tau \tau^c)$

Charged Lepton Masses $[\Rightarrow]$

 $\mathcal{L} \supset h_1 \phi_1^0 (ee^c + \mu\mu^c + \tau\tau^c)$ + $h_2 \phi_2^0 (ee^c + \omega \mu \mu^c + \omega^2 \tau \tau^c)$ + $h_3 \phi_3^0 (ee^c + \omega^2 \mu \mu^c + \omega \tau \tau^c)$

Once ϕ_i^0 get VEVs:

$$\mathcal{L} \supset h_1 \ v_1 \ (ee^{\mathbf{c}} + \mu\mu^{\mathbf{c}} + \tau\tau^{\mathbf{c}})$$

$$+ h_2 \ v_2 \ (ee^{\mathbf{c}} + \omega\mu\mu^{\mathbf{c}} + \omega^2\tau\tau^{\mathbf{c}})$$

$$+ h_3 \ v_3 \ (ee^{\mathbf{c}} + \omega^2\mu\mu^{\mathbf{c}} + \omega\tau\tau^{\mathbf{c}})$$

Charged Lepton Mass Matrix

Already diagonal in the flavour basis

$$M_l = \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{pmatrix}$$

$$m_{e} = h_{1}v_{1} + h_{2}v_{2} + h_{3}v_{3}$$

$$m_{\mu} = h_{1}v_{1} + \omega h_{2}v_{2} + \omega^{2}h_{3}v_{3}$$

$$m_{\tau} = h_{1}v_{1} + \omega^{2}h_{2}v_{2} + \omega h_{3}v_{3}$$

$$\mathcal{L} \supset \lambda_{1} \eta_{1}^{0} (\boldsymbol{\nu}_{e}\boldsymbol{\nu}_{e} + \boldsymbol{\nu}_{\mu}\boldsymbol{\nu}_{\mu} + \boldsymbol{\nu}_{\tau}\boldsymbol{\nu}_{\tau}) \\ + \lambda_{2} \eta_{2}^{0} (\boldsymbol{\nu}_{e}\boldsymbol{\nu}_{e} + \boldsymbol{\omega}\boldsymbol{\nu}_{\mu}\boldsymbol{\nu}_{\mu} + \boldsymbol{\omega}^{2}\boldsymbol{\nu}_{\tau}\boldsymbol{\nu}_{\tau}) \\ + \lambda_{3} \eta_{3}^{0} (\boldsymbol{\nu}_{e}\boldsymbol{\nu}_{e} + \boldsymbol{\omega}^{2}\boldsymbol{\nu}_{\mu}\boldsymbol{\nu}_{\mu} + \boldsymbol{\omega}\boldsymbol{\nu}_{\tau}\boldsymbol{\nu}_{\tau})$$

$$\mathcal{L} \supset \lambda_{1} \eta_{1}^{0} (\mathbf{v}_{e}\mathbf{v}_{e} + \mathbf{v}_{\mu}\mathbf{v}_{\mu} + \mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + \lambda_{2} \eta_{2}^{0} (\mathbf{v}_{e}\mathbf{v}_{e} + \omega\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega^{2}\mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + \lambda_{3} \eta_{3}^{0} (\mathbf{v}_{e}\mathbf{v}_{e} + \omega^{2}\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega\mathbf{v}_{\tau}\mathbf{v}_{\tau})$$
Once η_{i}^{0} get VEVs:

$$\mathcal{L} \supset \lambda_{1} \langle \eta_{1}^{0} \rangle \left(\mathbf{v}_{e} \mathbf{v}_{e} + \mathbf{v}_{\mu} \mathbf{v}_{\mu} + \mathbf{v}_{\tau} \mathbf{v}_{\tau} \right) \\ + \lambda_{2} \langle \eta_{2}^{0} \rangle \left(\mathbf{v}_{e} \mathbf{v}_{e} + \omega \mathbf{v}_{\mu} \mathbf{v}_{\mu} + \omega^{2} \mathbf{v}_{\tau} \mathbf{v}_{\tau} \right) \\ + \lambda_{3} \langle \eta_{3}^{0} \rangle \left(\mathbf{v}_{e} \mathbf{v}_{e} + \omega^{2} \mathbf{v}_{\mu} \mathbf{v}_{\mu} + \omega \mathbf{v}_{\tau} \mathbf{v}_{\tau} \right)$$

Neutrino Masses: η

Once η_i^0 get VEVs:

$$\mathcal{L} \supset \lambda_{1} \langle \eta_{1}^{0} \rangle (\mathbf{v}_{e}\mathbf{v}_{e} + \mathbf{v}_{\mu}\mathbf{v}_{\mu} + \mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + \lambda_{2} \langle \eta_{2}^{0} \rangle (\mathbf{v}_{e}\mathbf{v}_{e} + \omega\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega^{2}\mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + \lambda_{3} \langle \eta_{3}^{0} \rangle (\mathbf{v}_{e}\mathbf{v}_{e} + \omega^{2}\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega\mathbf{v}_{\tau}\mathbf{v}_{\tau})$$

Neutrino Masses: η

Once η_i^0 get VEVs:

$$\mathcal{L} \supset \lambda_{1} \langle \eta_{1}^{0} \rangle \left(\mathbf{v}_{e} \mathbf{v}_{e} + \mathbf{v}_{\mu} \mathbf{v}_{\mu} + \mathbf{v}_{\tau} \mathbf{v}_{\tau} \right) \\ + \lambda_{2} \langle \eta_{2}^{0} \rangle \left(\mathbf{v}_{e} \mathbf{v}_{e} + \omega \mathbf{v}_{\mu} \mathbf{v}_{\mu} + \omega^{2} \mathbf{v}_{\tau} \mathbf{v}_{\tau} \right) \\ + \lambda_{3} \langle \eta_{3}^{0} \rangle \left(\mathbf{v}_{e} \mathbf{v}_{e} + \omega^{2} \mathbf{v}_{\mu} \mathbf{v}_{\mu} + \omega \mathbf{v}_{\tau} \mathbf{v}_{\tau} \right)$$

$$\mathcal{L} \supset a \quad (\mathbf{v}_{e}\mathbf{v}_{e} + \mathbf{v}_{\mu}\mathbf{v}_{\mu} + \mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + b \quad (\mathbf{v}_{e}\mathbf{v}_{e} + \omega\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega^{2}\mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + c \quad (\mathbf{v}_{e}\mathbf{v}_{e} + \omega^{2}\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega\mathbf{v}_{\tau}\mathbf{v}_{\tau})$$

Neutrino Mass Matrix: η

$$\mathcal{L} \supset a \quad (\mathbf{v}_{e}\mathbf{v}_{e} + \mathbf{v}_{\mu}\mathbf{v}_{\mu} + \mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + b \quad (\mathbf{v}_{e}\mathbf{v}_{e} + \omega\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega^{2}\mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + c \quad (\mathbf{v}_{e}\mathbf{v}_{e} + \omega^{2}\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega\mathbf{v}_{\tau}\mathbf{v}_{\tau})$$

Neutrino Mass Matrix: η

$$\mathcal{L} \supset a \quad (\mathbf{v}_{e}\mathbf{v}_{e} + \mathbf{v}_{\mu}\mathbf{v}_{\mu} + \mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + b \quad (\mathbf{v}_{e}\mathbf{v}_{e} + \omega\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega^{2}\mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ + c \quad (\mathbf{v}_{e}\mathbf{v}_{e} + \omega^{2}\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega\mathbf{v}_{\tau}\mathbf{v}_{\tau}) \\ M_{\mathbf{v}} \ni \begin{pmatrix} a + b + c & 0 & 0 \\ 0 & a + \omega b + \omega^{2}c & 0 \\ 0 & 0 & a + \omega^{2}b + \omega c \end{pmatrix}$$

 $\mathcal{L} \supset \lambda \left(\xi_1^0 \nu_\mu \nu_\tau + \xi_2^0 \nu_e \nu_\tau + \xi_3^0 \nu_e \nu_\mu \right)$

$\mathcal{L} \supset \lambda \left(\xi_1^0 \nu_{\mu} \nu_{\tau} + \xi_2^0 \nu_e \nu_{\tau} + \xi_3^0 \nu_e \nu_{\mu} \right)$

Once ξ_i^0 get VEVs:

$\mathcal{L} \supset \lambda \left(\langle \xi_1^0 \rangle \boldsymbol{\nu}_{\mu} \boldsymbol{\nu}_{\tau} + \langle \xi_2^0 \rangle \boldsymbol{\nu}_{e} \boldsymbol{\nu}_{\tau} + \langle \xi_3^0 \rangle \boldsymbol{\nu}_{e} \boldsymbol{\nu}_{\mu} \right)$

 $\mathcal{L} \supset \lambda \ (\xi_1^0 \nu_\mu \nu_\tau + \xi_2^0 \nu_e \nu_\tau + \xi_3^0 \nu_e \nu_\mu)$ Once ξ_i^0 get VEVs:

 $\mathcal{L} \supset \lambda \left(\langle \xi_1^0 \rangle \boldsymbol{\nu}_{\mu} \boldsymbol{\nu}_{\tau} + \langle \xi_2^0 \rangle \boldsymbol{\nu}_e \boldsymbol{\nu}_{\tau} + \langle \xi_3^0 \rangle \boldsymbol{\nu}_e \boldsymbol{\nu}_{\mu} \right)$

 $\mathcal{L} \supset (d \nu_{\mu} \nu_{\tau} + e \nu_{e} \nu_{\tau} + f \nu_{e} \nu_{\mu})$

Neutrino Mass Matrix: ξ

 $\mathcal{L} \supset (d \nu_{\mu} \nu_{\tau} + e \nu_{e} \nu_{\tau} + f \nu_{e} \nu_{\mu})$

Neutrino Mass Matrix: ξ

$$\mathcal{L} \supset (d \,\mathbf{v}_{\mu} \mathbf{v}_{\tau} + e \,\mathbf{v}_{e} \mathbf{v}_{\tau} + f \,\mathbf{v}_{e} \mathbf{v}_{\mu})$$

$$M_{\nu} \ni \begin{pmatrix} 0 & f & e \\ f & 0 & d \\ e & d & 0 \end{pmatrix}$$

$$M_{\nu} = \begin{pmatrix} a+b+c & f & e \\ f & a+\omega b+\omega^2 c & d \\ e & d & a+\omega^2 b+\omega c \end{pmatrix}$$

$$M_{\nu} = \begin{pmatrix} a+b+c & f & e \\ f & a+\omega b+\omega^2 c & d \\ e & d & a+\omega^2 b+\omega c \end{pmatrix}$$

Simplifying assumptions:

$$b = c$$
 $d = e = f$

$$M_{\nu} = \begin{pmatrix} a+2b & d & d \\ d & a-b & d \\ d & d & a-b \end{pmatrix}$$

Simplifying assumptions:

$$b = c \qquad \qquad d = e = f$$

$$M_{\nu} = \begin{pmatrix} a+2b & d & d \\ d & a-b & d \\ d & d & a-b \end{pmatrix}$$

Simplifying assumptions:

$$b = c$$
 $d = e = f$

Predictions:

$$\theta_{23} = \pi/4 \qquad \qquad \theta_{13} = 0$$

Parameters

$$a = |a| e^{i\phi_a}$$
 $b = |b| e^{i\phi_b}$ $d = |d| e^{i\phi_d}$

Phase differences:

$$\phi_1 \equiv \phi_a - \phi_d \qquad \qquad \phi_2 \equiv \phi_d - \phi_b$$

Atmospheric Neutrino Mass Splitting

If we consider

$$\Delta m_{\rm SOL}^2 \simeq 0$$

then

 $b, d \in \mathbb{R}$

and

$$\Delta m_{32}^2 = 6bd \equiv \Delta m_{\text{ATM}}^2$$

If, on the contrary,

 $\Delta m_{\rm SOL}^2 \neq 0$

then

$$\Delta m_{\text{ATM}}^2 \simeq \text{Sign}[\cos(\phi_2)]6|b||d|$$

Solar Neutrino Mass Splitting

$$\Delta m_{21}^2 = \sqrt{T_1^2 + T_2^2 + T_3^2} \equiv \Delta m_{sol}^2$$

where

$$T_{1} \equiv 6\sqrt{2}|b||d|\sin(\phi_{2})$$

$$T_{2} \equiv 2\sqrt{2}|d|\left(2|a|\cos(\phi_{1}) + |b|\cos(\phi_{2}) + |d|\right)$$

$$T_{3} \equiv -3|b|^{2} + |d|^{2} - 6|a||b|\cos(\phi_{1} + \phi_{2})$$

$$+ 2|a||d|\cos(\phi_{1}) - 2|b||d|\cos(\phi_{2})$$

Therefore

$$|T_i| \leq \Delta m_{\text{SOL}}^2 \qquad \forall i$$

Inequalities

Normalizing by $|\Delta m^2_{ATM}|$, then

 $\sqrt{2}|\sin(\phi_2)| \leq \alpha$

$$\frac{\sqrt{2}}{3|b|} |2|a| \cos(\phi_1) + |b| \cos(\phi_2) + |d| | \le \alpha$$

$$\frac{1}{6|b||d|} \Big| - 3|b|^2 + |d|^2 - 6|a||b|\cos(\phi_1 + \phi_2) \\ + 2|a||d|\cos(\phi_1) - 2|b||d|\cos(\phi_2) \Big| \le \alpha$$

where

$$\alpha \equiv \Delta m_{\rm SOL}^2 / |\Delta m_{\rm ATM}^2| \quad \text{[]]}$$

$$t_{2SOL} \equiv \tan(2\theta_{12}) = \frac{2\sqrt{2}d}{3b-d}$$

$$t_{2\text{SOL}} \equiv \tan(2\theta_{12}) = \frac{2\sqrt{2}d}{3b-d}$$

Best value:

$$\tan^2\theta_{12}=1/2$$

for

$$t_{2SOL} \equiv \tan(2\theta_{12}) = \frac{2\sqrt{2}d}{3b-d}$$

Best value:

$$\tan^2\theta_{12}=1/2$$

for

$$b=0, b=2d/3$$

Performing a series expansion of $tan^2 \theta_{12}$ around the two solutions...

$$\tan^2 \theta_{12} \simeq \frac{1}{2} + \frac{b}{d}$$
$$\tan^2 \theta_{12} \simeq \frac{1}{2} - \frac{1}{d} \left(b - \frac{2}{3} d \right)$$

Neutrinoless Double Beta Decay

Amplitude proportional to:

$$\langle m_{\nu} \rangle = m_{ee} = a + 2b$$

Neutrinoless Double Beta Decay

Amplitude proportional to:

$$\langle m_{\nu} \rangle = m_{ee} = a + 2b$$

We need to express a and b in terms of observables

Solve this system of equations

$$\Delta m_{\text{SOL}}^2 \equiv \Delta m_{21}^2 = |2a + b + d| \sqrt{(d - 3b)^2 + 8d^2}$$
$$\Delta m_{\text{ATM}}^2 \equiv \Delta m_{32}^2 = 6bd$$
$$t_{2\text{SOL}} \equiv \tan(2\theta_{12}) = \frac{2\sqrt{2}d}{3b - d}$$

Solve this system of equations

$$\Delta m_{\text{SOL}}^2 \equiv \Delta m_{21}^2 = |2a + b + d| \sqrt{(d - 3b)^2 + 8d^2}$$
$$\Delta m_{\text{ATM}}^2 \equiv \Delta m_{32}^2 = 6bd$$
$$t_{2\text{SOL}} \equiv \tan(2\theta_{12}) = \frac{2\sqrt{2}d}{3b - d}$$

Solution Express the parameters: *a*, *b* and *d* in terms of observables: Δm_{SOL}^2 , Δm_{ATM}^2 and t_{2SOL}

Solve this system of equations

$$\Delta m_{\text{SOL}}^2 \equiv \Delta m_{21}^2 = |2a + b + d| \sqrt{(d - 3b)^2 + 8d^2}$$
$$\Delta m_{\text{ATM}}^2 \equiv \Delta m_{32}^2 = 6bd$$
$$t_{2\text{SOL}} \equiv \tan(2\theta_{12}) = \frac{2\sqrt{2}d}{3b - d}$$

- Solution Express the parameters: *a*, *b* and *d* in terms of observables: Δm_{SOL}^2 , Δm_{ATM}^2 and t_{2SOL}
- Substitute *a* and *b* in

$$\langle m_{\nu} \rangle = m_{ee} = a + 2b$$

$$\begin{aligned} \frac{m_{ee}}{\sqrt{\Delta m_{\text{ATM}}^2}} &= \text{Sign}[\Delta m_{\text{ATM}}^2] \frac{1}{\sqrt{2\sqrt{2}t_{2\text{SOL}} + t_{2\text{SOL}}^2}} \\ \pm \text{Sign}[2\sqrt{2}t_{2\text{SOL}} + t_{2\text{SOL}}^2] \frac{\alpha\sqrt{2\sqrt{2}t_{2\text{SOL}} + t_{2\text{SOL}}^2}}{4\sqrt{1 + t_{2\text{SOL}}^2}} \end{aligned}$$

Left: $\alpha = 0.022$ Right: $\alpha = 0.065$ Vertical line: $\tan^2 \theta_{12} = 1/2$

Case-1: Complex parameters

Case-1: Complex parameters

We use the approximations:

 $\sin\phi_2\simeq 0$

and

 $2|a|\cos\phi_1 + |b|\cos\phi_2 + |d| \simeq 0$

 $\alpha = 0.065$

Different values of: $cos(\phi_1) \in [-1, 1]$

The lower bounds are in fact exactly the same as obtained in the real case

- The lower bounds are in fact exactly the same as obtained in the real case
- The maximum degree of destructive interference between the three neutrino-exchange contributions occurs in the real case with appropriate CP parities

Lower bounds values

Given the currently allowed experimental 3σ range

$\tan^2 \theta_{12} \in [0.30, 0.61]$

Lower bounds values

Given the currently allowed experimental 3σ range $\tan^2 \theta_{12} \in [0.30, 0.61]$

we can set lower bounds for $|m_{ee}/\sqrt{\Delta m_{ATM}^2}|$

$$0.17 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}|$$
 for NH
 $0.70 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}|$ for IH

Lower bounds values

Given the currently allowed experimental 3σ range $\tan^2 \theta_{12} \in [0.30, 0.61]$

we can set lower bounds for $|m_{ee}/\sqrt{\Delta m_{ATM}^2}|$

$$0.17 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}| \qquad \text{for NH}$$
$$0.70 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}| \qquad \text{for IH}$$

★ Lower bound even for NH!

In the future...

If $tan^2 \theta_{12} \leq 1/2$ could ever be established

In the future...

If $\tan^2\theta_{12} \leq 1/2$ could ever be established , then we would have

$$0.23 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}| < 0.41$$
 for NH
 $0.70 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}|$ for IH

In the future...

If $\tan^2\theta_{12} \leq 1/2$ could ever be established , then we would have

$$0.23 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}| < 0.41$$
 for NH
 $0.70 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}|$ for IH

★ We might be able to distinguish between both neutrino mass hierarchies!

In the future...

If $\tan^2\theta_{12} \leq 1/2$ could ever be established , then we would have

 $0.23 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}| < 0.41$ for NH $0.70 < |m_{ee}/\sqrt{\Delta m_{ATM}^2}|$ for IH

- ★ We might be able to distinguish between both neutrino mass hierarchies!
- Solution It can also be seen that, up to order α corrections, m_{ee} can only be zero if $\tan^2 \theta_{12} = 1$, now strongly rejected experimentally

Lower bound phase dependence

The lower bounds on $|m_{ee}/\sqrt{\Delta m_{\rm ATM}^2}|$ depends on the Majorana phase ϕ_1

Lower bound phase dependence

The lower bounds on $|m_{ee}/\sqrt{\Delta m_{\rm ATM}^2}|$ depends on the Majorana phase ϕ_1

 \bigstar Lower bounds become weaker for $\phi_1=0$

Solution There is a lower bound for the $0\nu\beta\beta$ amplitude even in the case of normal hierarchical neutrino masses

- Solution There is a lower bound for the $0\nu\beta\beta$ amplitude even in the case of normal hierarchical neutrino masses
- The lower bound is robust as it holds irrespective of whether CP is conserved or not

- There is a lower bound for the 0νββ amplitude even in the case of normal hierarchical neutrino masses
- The lower bound is robust as it holds irrespective of whether CP is conserved or not
- In the latter case we show explicitly how the lower bound is sensitive to the value of the Majorana phase

- There is a lower bound for the 0νββ amplitude even in the case of normal hierarchical neutrino masses
- The lower bound is robust as it holds irrespective of whether CP is conserved or not
- In the latter case we show explicitly how the lower bound is sensitive to the value of the Majorana phase
- Neutrinoless double beta decay may be within reach of the next generation of high sensitivity experiments

Allowed 3- γ parameter values

parameter	best fit	2σ	3σ	4σ
$\Delta m_{21}^2 \left[10^{-5} \mathrm{eV}^2 \right]$	8.1	7.5–8.7	7.2–9.1	7.0–9.4
$\Delta m^2_{31} \left[10^{-3} {\rm eV}^2 ight]$	2.2	1.7–2.9	1.4–3.3	1.1–3.7
$\sin^2 heta_{12}$	0.30	0.25–0.34	0.23–0.38	0.21–0.41
$\sin^2 \theta_{23}$	0.50	0.38–0.64	0.34–0.68	0.30–0.72
$\sin^2 heta_{13}$	0.000	\leq 0.028	\leq 0.047	\leq 0.068

Other $0\gamma\beta\beta$ Mechanisms

[∉]

Under SU(2):

$\mathcal{L} \supset h \phi L \ell^{c} \sim 2 \times 2 \times 1$

Under SU(2):

$\mathcal{L} \supset h \phi L \ell^{c} \sim 2 \times 2 \times 1$ = $h \phi^{0} \ell \ell^{c} \sim 1$

Under A_4 :

 $\mathcal{L} \supset h \phi^0 \ell \ell^c$

Under A_4 :

 $\mathcal{L} \supset h \phi^0 \ell \ell^c$

 $= h_1 \phi_1^0 \ell \ell^c \sim 1 \times 3 \times 3$

 $+ h_2 \phi_2^0 \ell \ell^c \sim 1' \times 3 \times 3$

 $+ h_3 \phi_3^0 \ell \ell^c \sim 1'' \times 3 \times 3$

Under A_4 :

 $\mathcal{L} \supset h \phi^0 \ell \ell^c$ = $h_1 \phi_1^0 \ell \ell^c \sim 1 \times 3 \times 3$

 $+ h_2 \phi_2^0 \ell \ell^c \sim 1' \times 3 \times 3$

 $+ h_3 \phi_3^0 \ell \ell^c \sim 1'' \times 3 \times 3$

 $\mathcal{L} \supset h_1 \ \phi_1^0 \ (ee^{c} + \mu\mu^{c} + \tau\tau^{c}) \qquad \sim \quad 1 \times 1$ $+ \ h_2 \ \phi_2^0 \ (ee^{c} + \omega\mu\mu^{c} + \omega^2\tau\tau^{c}) \qquad \sim \quad 1' \times 1''$

+ $h_3 \phi_3^0 (ee^c + \omega^2 \mu \mu^c + \omega \tau \tau^c) \sim 1'' \times 1'$

Under SU(2):

$\mathcal{L} \supset \lambda \eta L L \sim 3 \times 2 \times 2$

Under SU(2):

Under A_4 :

 $\mathcal{L} \supset \lambda \eta^0 \mathbf{v} \mathbf{v}$

Under A_4 :

Under A_4 :

$$\mathcal{L} \supset \lambda \eta^{0} \mathbf{v} \mathbf{v}$$

$$= \lambda_{1} \eta_{1}^{0} \mathbf{v} \mathbf{v} \sim \mathbf{1} \times \mathbf{3} \times \mathbf{3}$$

$$+ \lambda_{2} \eta_{2}^{0} \mathbf{v} \mathbf{v} \sim \mathbf{1}' \times \mathbf{3} \times \mathbf{3}$$

$$+ \lambda_{3} \eta_{3}^{0} \mathbf{v} \mathbf{v} \sim \mathbf{1}' \times \mathbf{3} \times \mathbf{3}$$

$$\supset \lambda_{1} \eta_{1}^{0} (\mathbf{v}_{e}\mathbf{v}_{e} + \mathbf{v}_{\mu}\mathbf{v}_{\mu} + \mathbf{v}_{\tau}\mathbf{v}_{\tau}) \sim \mathbf{1} \times \mathbf{1}$$

$$+ \lambda_{2} \eta_{2}^{0} (\mathbf{v}_{e}\mathbf{v}_{e} + \omega\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega^{2}\mathbf{v}_{\tau}\mathbf{v}_{\tau}) \sim \mathbf{1}' \times \mathbf{1}''$$

$$+ \lambda_{3} \eta_{3}^{0} (\mathbf{v}_{e}\mathbf{v}_{e} + \omega^{2}\mathbf{v}_{\mu}\mathbf{v}_{\mu} + \omega\mathbf{v}_{\tau}\mathbf{v}_{\tau}) \sim \mathbf{1}'' \times \mathbf{1}''$$

 \mathcal{L}

Under SU(2):

$\mathcal{L} \supset \lambda \xi L L \sim 3 \times 2 \times 2$

Under SU(2):

$$\mathcal{L} \supset \lambda \ \xi \ L \ L \ \sim \ 3 \times 2 \times 2$$
 $= \lambda \ \xi^0 \ m{v} \ m{v} \ \sim \ 1$

Under A_4 :

 $\mathcal{L} \supset \lambda \xi^0 \nu \nu \sim 3 \times 3 \times 3$

Under A_4 :

 $\mathcal{L} \supset \lambda \xi^0 \mathbf{v} \mathbf{v} \sim 3 \times 3 \times 3$

The invariant term is then

$$\mathcal{L} \supset \lambda \ (\xi_1^0
u_\mu
u_ au + \xi_2^0
u_e
u_ au + \xi_3^0
u_e
u_\mu)$$

Current allowed values of α

 $\Delta \chi^2$ from global oscillation data as a function of $\alpha \equiv \Delta m_{SOL}^2 / |\Delta m_{ATM}^2|$ and $\alpha \sin 2\theta_{12}$:

[M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6, 122 (2004)]

Best fit value: $\alpha = 0.035$ [\Leftarrow]